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Frequency Response

1 Introduction

• Frequency Response is the response of a system to a sinusoidal input

• For a stable linear time-invariant system, the system produces a scaled shifted sinusoidal of
a sinusoidal input

x(t) = XSinωt y(t) = Y sin(ωt+ φ)

1.1 Notation and Terminology

x(t) = XSinωt y(t) = Y sin(ωt+ φ)

G(s) = Y (s)
X(s)

=⇒ System Transfer Function

Y = X |G(jω)| =⇒Output magnitude

φ = tan−1 Img(G(jω)
Re(G(jω)

=⇒ Phase shift of the output sinusoid from the input sinusoid

|G(jω)| = Y
X

=⇒ Amplitude Ratio of the output sinusoid to the input sinusoid

PH[G(jω)] = φ

• Negative phase angle is known as Phase lag systems while positive phase angle corresponds
to phase lead systems
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1.2 Graphical Representation of Frequency Response

• Three Common representation of sinusoidal transfer function

� Bode plot

� Nyquist plot

� log-magnitude versus phase plot

2 Bode Plot

• Bode plot is a (semi-log) diagram consists of two plot

� the transfer function magnitude vs. frequency

� phase transfer function angle vs. frequency

• The gain magnitude is many times expressed in terms of decibels (dB)

dB = 20log10A

where A is the amplitude or gain

• A decade is de�ned as any 10-to-1 frequency range

• An octave is any 2-to-1 frequency range

20dB/decade = 6dB/octave

• An important advantage of bode plot is that multiplication of magnitude can be
converted into addition.
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• Another advantage is the ability to sketch using a simple method based on asymptotic ap-
proximation. The exact curve can be obtained using some known corrections.

• Bode diagrams can be easily used to obtain the transfer function from the experimentally
obtained bode plots.

2.1 Basic factors of Bode Plots

a general transfer function that can be considered can be expressed as

G(s) =
K(1 + jωTz)

[
1 + 2ζ (jω/ωnz) + (ω/ωnz)

2]
(jω)n(1 + jωTp)

[
1 + 2ζ (jω/ωnp) + (jω/ωnp)

2]
2.1.1 Constant (K)

• |G(jω)| = constant

• φ = 0

• The e�ect of the gain is just raising or lowering the bode magnitude curve

2.1.2 Integral and Derivative Terms (jw)±1

• 1/(jω) =⇒ Magnitude → −20logω dB
Phase → −90deg

• (jω) =⇒ Magnitude → 20logω dB
Phase → 90deg

• Note that the magnitude equals ZERO at ω = 1
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2.1.3 First Order Factors (1 + jwT )±1

• (1 + jwT ) =⇒ |G| = 20log(
√

1 + (ωT )2)
PH(G) = tan−1(ωT )

• 1
T
is called the corner frequency divides the curve into two regions (φ = tan−11 = 45deg)

• ω ≪ 1/T : magnitude equals ZERO

• ω ≫ 1/T : magnitude drops 20dB/decade

• CORRECTION:
1/T =⇒ −3dB for �rst order pole and
1/2T =⇒-0.97
1/10T 1/2T 1/T 2/T 10/T

5.7 26 45 63.5 84.3

Figure 1: First order zero Bode plot

1/ (1 + jwT ) =⇒ |G| = −20log(
√

1 + (ωT )2)
PH(G) = −tan−1(ωT )
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Figure 2: First Order Pole Bode Plot

Bode Plot Procedure

1. Put the transfer function in the standard form for di�erent components

2. Determine the critical frequencies

3. draw the asymptotic log-magnitude and phase curves with proper slopes between corner
frequencies

4. corrections may be then introduced at corner frequency

Example 1
Plot the Bode diagram of the following open-loop transfer function

G(s) =
2000(s+ 0.5)

s(s+ 10)(s+ 50)

substituting s = jω into G(s)

G(jω) =
2(1 + jω

0.5
)

jω(1 + jω
10
)(1 + jω

50
)

Critical Frequencies: 0, 0.5, 10, 50
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2.1.4 Second Order (Quadratic) Term
[
1 + 2ζ (jω/ωn) + (jω/ωn)

2]±1
Second Order Factor 1

1+2ζ(jω/ωn)+(jω/ωn)
2

• ζ > 1 =⇒ two �rst order terms

• 0 < ζ < 1 =⇒two complex-conjugate roots

• for very small values of ζ, the approximations may not be accurate because the magnitude
and phase depends on both the damping factors in addition to the corner frequency

• |G| = −20log
√

(1−
(
w
wn

)2
)2 + (2ζ ω

ωn
)2, PH(G) = −tan−1 2ζ ω

ωn

1−( w
wn
)
2

• Corner frequency: ωn

• ω ≪ ωn: magnitude equals ZERO
φ = tan−10 = 0

• ω = ωn, magnitude is highly dependent on ζ
φ = −90deg
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• ω ≫ ωn: magnitude drops 40dB/decade
−20log( ω

ωn
)2 = −40log( ω

ωn
) dB

φ = −180deg

Figure 3: Second order Systems

Resonant Frequency ωr and the resonant peak Mr

• The frequency at which the max peak occurs for 1/Quadratic factor

• ωr can be obtained by di�erentiating the magnitude

• ωr = ωn
√

1− 2ζ2 for 0 ≤ ζ ≤ 0.707, Mr = |G| = 1

2ζ
√

1−ζ2

• for larger ζ, no peak exist (check the �gure). the system is oscillatory but well-damped :)
Mr = 1

• ζ → 0, ωr → ωn

Quadratic term Bode plot

• Magnitude is drawn using the asymptotes intersecting at the corner frequency ωn.

� A correction of −20log2ζ is applied at ωn when required
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• Phase shift

� 1 > ζ ≥ 0.5, we draw lines connecting ωn/10 and 10ωn with respective value of 0 and
±180

� ζ < 0.5, we draw lines connecting ωn/5
ζ and 5ζωn with respective value of 0 and ±180

Example 2
Plot the Bode diagram of the following open-loop transfer function

G(s) =
20(s2 + s+ 0.5)

s(s+ 1)(s+ 10)

substituting s = jω into G(s),

G(jω) =
((j w√

0.5
)2 + 1.414(j w√

0.5
) + 1)

jω(jω + 1)(j0.1ω + 1)

Critical frequencies: 0, 1, 10, ωn =
√
0.5 = 0.707 , ζ = 0.707

2.2 Minimum and non-min-phase systems

• Min phase systems are systems without zeros or poles in the RHP.

• Illustrative Example: G1(jω) =
1+jωT
1+jωT1

and G1(jω) =
1−jωT
1+jωT1

and 0 < T < T1

� both systems have the same magnitude but di�erent phases as shown in Figure 4

Figure 4: Phase angle [PH(G1]=−2tan−1ωT

� non min-phase systems are slow in response and such behavior is not required in most
of the practical applications.

• Characteristics of min-phase systems
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� Min phase systems have the min phase shift in comparison to all systems with the same
magnitude factor

� Min-phase system can be completely represented using the magnitude curve. The phase
curve is related to the magnitude by Hilbert transform.

� phase angle as ω →∞, φ→ −90(q−p), where q and p are the degrees of the denominator
and the numerator.

• Transport Lag G(jω) = e−jωT

Figure 5: Transport Lag Phase

� Magnitude |cosωT − jsinωT | = 1

� Phase: tan−1tanωT = ωT rad = −57.3ωT deg
� Linear change in the phase versus the frequency.

Example 3
Plot the Bode diagram for G(s) = e−jωL

1+jωT
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Figure 6: Example 3 (Transport Lag )

2.3 Plotting Bode Plot Using Matlab

w=logspace(-1,2);
num=[0 0 25];
den=[1 4 25];
bode(num,den,w);

3 Analyzing System Performance Using Bode Plots

3.1 Steady State Error Analysis Using Bode Plot

• For Unity feedback system, the static, position, and acceleration error constants describe
the low-frequency behavior of type 0, type-1, and type-2 respectively

• Only ONE static errors is �nite and signi�cant depending on the system type

step input r(t)=1 ramp input (r(t)=t) parabolic input (r(t)=t2/2)

Type-0 1/(K+1) ∞ ∞
Type-1 0 1/K ∞
Type-2 0 0 1/K

Table 1: Steady State Error and System Gain
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• The type of the system determines the slope of log-magnitude curve at low frequencies.
Hence, the low-frequency behavior can be used to determine the static error constants

• For Type-0 Systems, the horizontal line at low frequencies equals 20logKp

Figure 7: Static Error Constant and System Type 0

• For Type-1 systems, ω = 1→ 20logKv. Also, the intersection frequency of the -20dB/dec
line and the horizontal line equals Kv, why?

Figure 8: Static Error Constant and System Type 1

• For Type-2 Systems, the intersection frequency of the -40dB/dec line and the horizontal
line equals Ka, why?
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Figure 9: Static Error Constant and System Type 2

3.2 Analyzing System Stability Using Bode Plot

• Gain cross-over frequency (ωgc):

� is the frequency where the amplitude ratio is 1, or when log modulus is equal to 0

� |G(jωgc)H(jωgc)| = 1

• Phase cross-over frequency (ωpc):

� is the frequency where phase shift is equal to −180o.
� ∠G(jωpc)H(jωpc) = 180o

3.2.1 Stability Criteria (Is my system stable?)

• If at the phase crossover frequency, the corresponding log modulus of G(jωpc) is less than 0
dB, then the feedback system is stable

• ωpc >ωgc =⇒ Stable system

3.2.2 Relative Stability

• The relative stability measures the system immunity to changes in the input due to noise or
sudden changes.

• Relative stability also indicates how close the roots of the closed-loop characteristic equation
1+G(s)H(s) are to the jw axis.

• Relative stability is usually expressed in terms of gain and phase margin measure.

• Gain Margin

� is the amount of change in the value of the gain of the transfer function, from its present
value, to that value that will make the magnitude Bode plot pass through the 0 db at
the same frequency where the phase is -180 degrees.is
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� the inverse of transfer function magnitude at ωpc.

• Phase Margin

� is the amount of pure phase shift (no change in magnitude) that will make the phase
shift of G(jw)H(jw) equal to -180 degrees at the same frequency where the magnitude
is 0 db (1 in absolute value).

� Let ϑ=PH(G(jωgc)) then the phase margin is given by PM = 180o + ϑ

Figure 10: Bode Relative Stability Analysis

• The gain margin of �rst and second order systems is in�nite, why? Hence these systems,
ideally, are always stable.

• Any of the aforementioned margins alone is not a su�cient indication for relative stability

• For a satisfactory performance, a phase margin between 30 and 60 and a gain margin greater
than 6dB are required.

Example
Consider a unity feedback system with G(s) = K

s(s+1)(s+5)
for K=10, 100

Solution
K=10, we have Phase Margin=21 and Gain Margin = 8dB
K=10, we have Phase Margin=-30 and Gain Margin = -12dB
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