Midterm Test Solution (November)

Question (1):

i.) Scenario (1) : Circuit Switching

ii. Total delivery time for a message of size $1 \mathrm{kB}=$

$$
\begin{aligned}
& \left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right) * 2+\left(t_{p 1}+t_{p 2}+t_{p 3}\right)+t_{t M} \\
& \quad+\left(t_{t 1}+t_{t 2}+t_{t 3}\right)+\left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right)=
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{3 * 10^{3}}{1 * 10^{8}}+\frac{16 * 8}{5 * 10^{5}}+\frac{10 * 10^{3}}{2 * 10^{8}}+\frac{16 * 8}{1 * 10^{6}}+\frac{5 * 10^{3}}{1.25 * 10^{8}}+\frac{16 * 8}{2 * 10^{6}}\right) * 4+\frac{1000 * 8}{5 * 10^{5}} \\
=1827.2 * 10^{-5} s
\end{gathered}
$$

Scenario (2): Packet Switching with Pipelining
i.

ii.

Total delivery time for a messageofsize $1 \mathrm{kB}=$

$$
\begin{gathered}
\left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right)+\left(t_{t 1}-t_{t 2}\right)+\left(t_{t 2}-t_{t 3}\right)+t_{t 3}= \\
\left(\frac{3 * 10^{3}}{1 * 10^{8}}+\frac{520 * 8}{5 * 10^{5}} * 2+\frac{10 * 10^{3}}{2 * 10^{8}}+\frac{520 * 8}{1 * 10^{6}}+\frac{5 * 10^{3}}{1.25 * 10^{8}}+\frac{520 * 8}{2 * 10^{6}}\right) \\
=2300 * 10^{-5} \mathrm{~s}
\end{gathered}
$$

Scenario (3): Message Switching
i.

ii. Total delivery time for amessage of size $1 \mathrm{kB}=$

$$
\left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right)=
$$

$$
\left(\frac{3 * 10^{3}}{1 * 10^{8}}+\frac{1020 * 8}{5 * 10^{5}}+\frac{10 * 10^{3}}{2 * 10^{8}}+\frac{1020 * 8}{1 * 10^{6}}+\frac{5 * 10^{3}}{1.25 * 10^{8}}+\frac{1020 * 8}{2 * 10^{6}}\right)=2668 * 10^{-5} s
$$

b)

Scenario (1)	18.272 ms	Smallest
Scenario (2)	23 ms	
Scenario (3)	26.68 ms	Largest

c) Delivery time of circuit switching = Delivery time of packet switching

$$
\begin{gathered}
\left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right) * 4+t_{t M}= \\
\left(t_{p 1}+\widetilde{t_{t 1}}+t_{p 2}+\widetilde{t_{t 2}}+t_{p 3}+\widetilde{t_{t 3}}\right)+[N-1] *\left[\left(\widetilde{t_{t 1}}-\widetilde{t_{t 2}}\right)+\left(\widetilde{t_{t 2}}-\widetilde{t_{t 3}}\right)+\widetilde{t_{t 3}}\right] \\
t_{t M}=\frac{M * 8}{5 * 10^{5}}, \quad N=\frac{M}{500}
\end{gathered}
$$

$$
\left(3 * 10^{-5}+5 * 10^{-5}+4 * 10^{-5}\right) * 4+\left(\frac{16 * 8}{5 * 10^{5}}+\frac{16 * 8}{1 * 10^{6}}+\frac{16 * 8}{2 * 10^{6}}\right) * 4+\frac{M * 8}{5 * 10^{5}}
$$

$$
=\left(3 * 10^{-5}+5 * 10^{-5}+4 * 10^{-5}\right)+\frac{M}{500} * \frac{520 * 8}{5 * 10^{5}}+\frac{520 * 8}{1 * 10^{6}}+\frac{520 * 8}{2 * 10^{6}}
$$

$$
M=-6387.5 \rightarrow \text { Not Feasible }
$$

d) Delivery time of circuit switching = Delivery time of message switching

$$
\left(t_{p 1}+t_{t 1}+t_{p 2}+t_{t 2}+t_{p 3}+t_{t 3}\right) * 4+t_{t M}=\left(t_{p 1}+\widetilde{t_{t 1}}+t_{p 2}+\widetilde{t_{t 2}}+t_{p 3}+\widetilde{t_{t 3}}\right)
$$

$\left(3 * 10^{-5}+5 * 10^{-5}+4 * 10^{-5}\right) * 4+\left(\frac{16 * 8}{5 * 10^{5}}+\frac{16 * 8}{1 * 10^{6}}+\frac{16 * 8}{2 * 10^{6}}\right) * 4+\frac{M * 8}{5 * 10^{5}}$

$$
\begin{gathered}
=\left(3 * 10^{-5}+5 * 10^{-5}+4 * 10^{-5}\right) \\
+\left(\frac{(M+20) * 8}{5 * 10^{5}}+\frac{(M+20) * 8}{1 * 10^{6}}+\frac{(M+20) * 8}{2 * 10^{6}}\right) \\
M=132.66 B
\end{gathered}
$$

Question (2):

a) Hub

No software is used by a hub.

Faculty of Engineering
Communications

- Ethernet Switch

Software in the form of routing table is used. Learning is used to fill the routing table with MAC addresses.

Port 1	Port 2	Port 3	Port 4
	$\mathrm{a}:$ E1		$\mathrm{d}:$ E3
	$\mathrm{k}: \mathrm{E} 1$		
	$\mathrm{u}: \mathrm{E} 2$		
	$\mathrm{~s}: \mathrm{E1}$		

- Router

Software is needed to exchange routing information among routers (routing protocols, e.g. OSPF), which enables each router to build its routing table.

Subnet Address	Subnet Mask	Port	Next Hop
X	Mx	1	
Y	My	2	
K	Mk	3	

- ATM Switch

Software in the form of routing table is used. The entries of the routing table are obtained during the setup phase.

Input Port	VCl in	Output Port	VCl out
1	1	2	1
2	2	4	2
3	2	1	2

b) Packet/cell entering at Port 1, and leaving at Port 3:

- For a hub, no processing takes place. Only simple repeating at all ports.

- For an Ethernet switch:
- CPU extracts destination MAC address.
- CPU compares destination MAC address with the entries of routing table:
- If destination MAC address exists under specific port, packet is forwarded via such port.

Fouth Year

Faculty of Engineering
Communications

- If destination MAC address doesn't exist, packet is forwarded via all other ports.
- CPU extracts source MAC address:
- If it doesn't exist in the routing table, it creates a new entry under port \# through which packet entered, and places value of source MAC address.

- For a router:
- CPU extracts destination Network address.
- CPU checks routing table to determine the record which contains the destination Network address.
- CPU forwards incoming packet to port that matches destination Network address.
- CPU replaces source MAC address and destination MAC address by new values corresponding to MAC address from which packet exits and MAC address to which packet is delivered.

- For ATM switch:
- CPU extracts VCl in header of cell.
- CPU checks routing table to determine the record which contains Input Port/ Input VCl for incoming cell.
- CPU forwards incoming cell to output port appearing in the record identified above.
- CPU replaces VCI in header of incoming cell by output VCI in identified record of routing table.

c)

Question (3):

