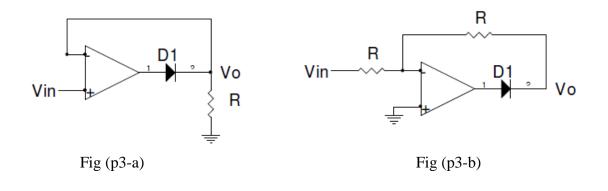
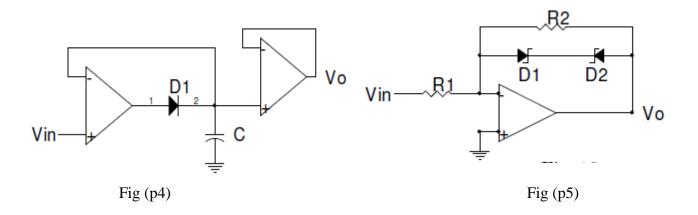

Cairo University Faculty of Engineering Elec. & Comm. Dept.



Sheet 4 Non-linear Applications of Op-Amp

- 1) For the circuit shown in fig. (p1), if $V_{EE} = 15V$, $R = 30\Omega$, $I_S = 10^{-13}A$, Q in active mode with $\beta_F = 30$. Then find:
 - a. I_c and the output voltage of the op-amp .
 - b. What is the min. V_{cc} needed for Q to operate in active region?
 - c. What must be the power dissipation rating of the resistor R?
- 2) For the circuit shown in fig. (p2), if the max. Op-amp output current is 5 mA and $\beta_F = 50$, what is the min. value of R?



- 3) For both circuits in fig (p3-a) and fig (p3-b)
 - a. Sketch the dc transfer characteristic of the circuit.
 - b. Sketch the output waveform when a sinusoidal input of 1v amplitude and 1 KHz frequency is applied.

- 4) Describe the operation of the peak detector circuit shown in fig (p4).
- 5) Find the dc transfer characteristic of the circuit shown in fig (p5). Given that $(V_{Z1} = V_{Z2} = 5V)$.

6) Find the dc transfer characteristic of the circuit shown in fig (p6). Given that (VZ1 = 3V and VZ2 = 6V).

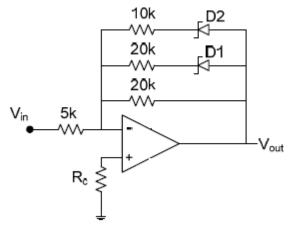


Fig (p6)

- 7) For the circuit shown in fig (p7), if all transistors are matched, Find:
 - a. The input-output relationship.
 - b. V_{in} range for proper operation of the circuit.

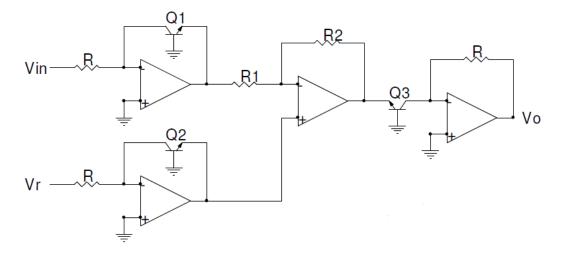


Fig (p7)

8) Implement the following mathematical function using Log-Antilog circuits utilizing minimum number of op-amps.

$$F = K \cdot \frac{X^2 \sqrt{Y}}{Z^3}$$

9)

- a. For the circuit shown in fig (p9-a), show that $I_1I_2 = I_3I_4$, if all transistors are matched. Then find the conditions on I_1 , I_2 , I_3 and I_4 for proper operation of the circuit.
- b. The circuit shown in fig (p9-b) is implemented in a commercial ICRC4200. It has a variety of applications. One of these applications is a four quadrant analog multiplier as shown in fig (p9-b). Find the output voltage V_o and the conditions on V_x and V_y for proper operation.
- c. The RC4200 can be used to implement a one-quadrant analog divider as shown in fig (p9-c). Find the output voltage V_o and the conditions on V_x and V_z for proper operation.

Cairo University Faculty of Engineering Elec. & Comm. Dept.

d. Show how to use the circuit shown in fig (p9-c) to implement a square rooting circuit.

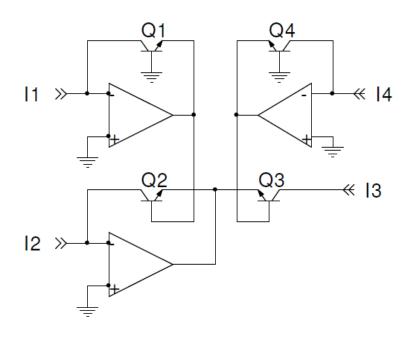


Fig (p9-a)

Cairo University Faculty of Engineering Elec. & Comm. Dept.

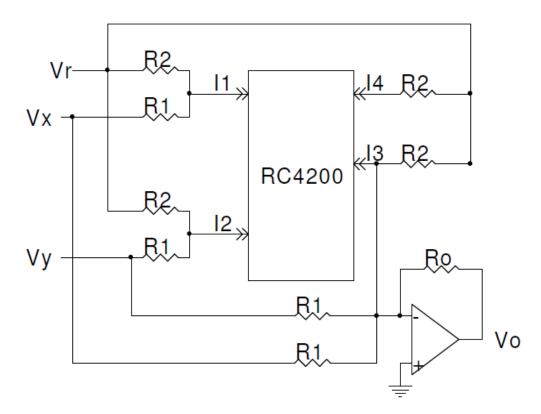
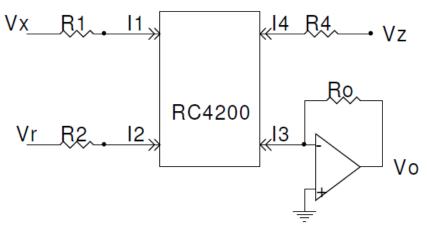



Fig (p9-b)

