Sheet (9): Controlability, Observability, and State Feedback

(1) Given the following state space model

$$
\underline{\dot{X}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-21 & -16 & -6
\end{array}\right] \underline{X}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] U ; y=\left[\begin{array}{lll}
10 & 15 & 5
\end{array}\right] \underline{X}
$$

Test this model for both controllability and observability.
(2) A system is described by:
$\left[\begin{array}{l}\dot{X}_{1} \\ \dot{X}_{2} \\ \dot{X}_{3}\end{array}\right]=\left[\begin{array}{ccc}-5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$
$\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$
Test the system for both controllability and observability.
(3) Consider the system characterized by the D.E:

$$
\ddot{y}(t)-\dot{y}(t)-6 y(t)=\dot{u}(t)-3 u(t)
$$

By choosing the states:

$$
\mathrm{x}_{1}=\mathrm{y}, x_{2}=\dot{y}-y-u
$$

a- Write down the state equations.
b- Test the stability of the system
c- Check controllability and observability of the system.
(4) Given a system described by
$\underline{\dot{X}}=\left[\begin{array}{cc}-1 & 3 \\ 4 & -2\end{array}\right] \underline{X}+\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right] U$
$y=\left[\begin{array}{ll}1 & 2\end{array}\right] \underline{X}$
Test the system stability, Controllability and observability.
(5) (Jan2001) the state diagram of a linear control system is shown in the following figure

- For $\mathrm{a}=1, \mathrm{~b}=2$, determine the state controllability and observability of the system.
- Determine the relation between the parameters a and B that should be avoided in order that the system is completely controllable.

Page 1 of $\mathbf{2}$
(6) ($\operatorname{Dec} 2002$) an automobile suspension system has three physical state variables as shown in the following figure.

- Develop the state space representation of the system.
- Test the controllability and observability of the obtained state model.
- Select $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} so that the roots of the characteristic equation are placed at: -2,-2,-6.

(7)(Jan2002) Consider the system

$$
\underline{\dot{X}}=A \underline{X}+B, \mathrm{y}=\mathrm{C} \underline{X}
$$

Where
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right], B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathrm{C}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$

Check the controllability and observability of the system.
By using state feedback control $u(t)=-\underline{k} \underline{X}(t)$, where k is state feedback vector, it is desired to have the closed loop poles at:

$$
\lambda_{1}=-2+\mathrm{j} 3.464, \lambda_{2}=-2-\mathrm{j} 3.464, \lambda_{3}=-5
$$

Determine the state feedback gain vector and the control signal

