Sheet (7): System Solution in SSR

(1) A system is characterized by the state equation
$\dot{\underline{x}}=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right] \underline{x}+\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$
Where $u(t)=$ unit step input. Compute the solution of the state vector if the initial conditions are $X_{1}(0)=1$ and $X_{2}(0)=-1$.
(2) Compute the solution of state vector for the system
$\underline{\dot{x}}=\left[\begin{array}{cc}0 & 2 \\ -3 & -5\end{array}\right] \underline{x}+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t)$
Given that $\mathrm{X}(0)^{\mathrm{T}}=\left[\begin{array}{ll}3 & 1\end{array}\right]$ and $\mathrm{u}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}$.
(3) For the system described by

$$
\dddot{y}+3 \ddot{y}+2 \dot{y}=u
$$

Derive two state space representations, then solve the system for the initial conditions $y(0)=0$, $\dot{y}(0)=0, \ddot{y}(0)=-1$ and $u=$ unit step input.
(4) For problem (6) sheet (5) get the response of the system for the given initial conditions and the input $u(t)$ is as shown.
(5) Write the state and output equations for the circuit shown.

Let $\underline{X}^{T}=\left[\begin{array}{ll}i_{1} & i_{2}\end{array}\right]$ and find:
(a) The impulse response.
(b) The step response.

(6) Consider the system shown. It is required to
(a) Find the SSR of the system, using the following state
variables: $\mathrm{X}_{1}=y, \mathrm{X}_{2}=\dot{y}$.
(b) Find the state transition matrix $\phi(\mathrm{t})$ associated with the
 representation of part (a).
(c) Verify that $\dot{\phi}(t)=A \phi(t)$.
(d) Find the free (no input) response for $\mathrm{X}_{1}(0)=0$ and $\mathrm{X}_{2}(0)=1$.
(e) Find the system's response for the same initial conditions as in part (d) with $u(t)=1$.
(f) Find the SSR such that the matrix A is diagonal.
(g) Verify the results of parts (d) and (e) using the representation of (f).

