Cairo University Faculty of Engineering Elec. & Comm. Dept.

Sheet(4): Signal Flow Graph

1. From the shown SFG obtain the TF of the system Y/R.

2. The shown figure gives the SFG of a MIMO system with two inputs and two outputs. Find expressions for the outputs Y_1 , Y_2 in terms of the inputs R_1 , R_2 .

- 3. Construct an equivalent SFG for the shown block diagram then
 - a. Evaluate the transfer function C/R.
 - b. Determine the relation among the transfer functions G_1 , G_2 , G_3 , G_4 , H_1 , and H_2 so that the output C is not affected by the disturbance signal N.

Cairo University Faculty of Engineering Elec. & Comm. Dept.

4. For the shown circuit find the TF using SFG.

5. Construct the SFG representing the shown circuit. Hence, find V_o/V_i . Then find the value of g_m that makes V_o/V_i independent of R_2 and find V_o/V_i at this value of g_m .

- 6. For the shown circuit determine
 - a. V_0/V_i using SFG method.
 - b. The frequency at which V_o/V_i is real.
 - c. $|V_0/V_i|$ at the frequency obtained in part b.

Cairo University Faculty of Engineering Elec. & Comm. Dept.

- 7. For the control system represented by the following block diagram, where U(s) and F(s) are the system inputs and P(s) is the system output:
 - a. Draw the signal flow graph for the system.
 - b. From the graph find the transfer functions: P(s)/U(s) and P(s)/F(s).

