Electronics (3)
Faculty of Engineering
Elec. \& Comm. Dept.
Third Year - First Term
Fall 2011

Sheet 2: Linear Op-Amp Circuit Applications

1. An almost ideal op-amp has an open-circuit output voltage $\mathrm{Vo}=10 \mathrm{~V}$ and a gain $A=100 \mathrm{~dB}$.
a) What is the input voltage V_{id} ?
b) How large gain must be to make $\mathrm{V}_{\mathrm{id}} \leq 1 \mu \mathrm{~V}$?
2. Assuming ideal op-amp, find the gain and input resistance for the following circuits:

Fig. (P2-a)

Fig.(P2-b)
3. Assuming ideal op-amp, write V_{O} as a function of $\mathrm{V} 1 \& \mathrm{~V} 2$ in the following figure. Can you suggest an application for this circuit?

Fig. (P3)
4.
a) Assuming ideal $\mathrm{Op}-\mathrm{amp}$, what are the gain, input resistance, and output resistance of the amplifier in Fig.(P4) if $\mathrm{R}_{1}=180 \Omega$ and $\mathrm{R} 2=47 \mathrm{k} \Omega$? Express the gain in dB.
b) If the resistors have 10% tolerances, what are the worst-case values (highest and lowest) of gain that could occur? What are the resulting positive and negative tolerances on the voltage gain with respect to the ideal value?

Third Year - First Term
Fall 2011
c) Show the contradiction in satisfying both the gain and input resistance conditions for a typical inverting voltage amplifier and how this problem can be alleviated with a non-inverting configuration

Fig. (P4)
5. For the following circuit:
a) Get V_{O} in terms of $\mathrm{V}_{\mathrm{II}} \& \mathrm{~V}_{\mathrm{I} 2}$.
b) Find the condition on the resistances to use it as a difference amplifier. Then calculate the common mode gain, differential input resistance and the CMRR. State the main disadvantage to use it as a difference amplifier.

Fig. (P5)
6. What is the voltage gain of the instrumentation amplifier in Fig. (P6) if $\mathrm{R}_{1}=20 \mathrm{k} \Omega$, $\mathrm{R}_{2}=100 \mathrm{k} \Omega, \mathrm{R}_{3}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{4}=10 \mathrm{k} \Omega$. Write an expression for the output voltage if

Fall 2011
$\mathrm{v}_{1}=4-0.1 \sin (4000 \pi \mathrm{t}) \mathrm{V}$ and $\mathrm{v}_{2}=4+0.1 \sin (4000 \pi \mathrm{t}) \mathrm{V}$. Discuss its advantages over a regular difference amplifier.
7.
a) The input voltage of the integrator circuit in Fig. (P7) is a rectangular pulse with amplitude of 5 V and a width 1 ms . Draw the waveform at the output of the integrator if the pulse starts at $t=0, R=10 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. Assume $\mathrm{v}_{0}=0$ for $\mathrm{t} \leq 0$.
b) Repeat (a) if the capacitor is initially charged to 0.5 V , i.e. $\mathrm{v}_{0}=0.5 \mathrm{~V}$ for $\mathrm{t} \leq 0$. Suggest a method to eliminate this initial voltage.

Fig. (P6)

Fig. (P7)
8. Assuming ideal op-amp, find the relation between V_{i} and V_{o} for the following circuit. State its function.

Third Year - First Term
Fall 2011

Fig. (P8)
9. Show, using ideal Op-Amps, how to realize a PID controller that has the input/output relation: $y=k_{1} x+k_{2} \int x d t+k_{3} \frac{d x}{d t}$. Find the constants $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} in terms of the used resistors and/or capacitors.

Op-Amps non-idealities:

10. Find the gain and input resistance for the circuits in Fig. (P10) if the Op-amp has finite open loop gain (A) and input resistance (Rin)

Fig. (P10-a)

Fig. (P10-b)
11. Calculate the worst-case output voltage for the circuit in Fig. (P11) if $\mathrm{V}_{\mathrm{OS}}=1 \mathrm{mV}$, $\mathrm{I}_{\mathrm{B} 1}=100 \mathrm{nA}$, and $\mathrm{I}_{\mathrm{B} 2}=95 \mathrm{nA}$. What would the ideal output voltage be? What is the total error in this circuit? Is there a better choice for the value of R1? If so, what is the value?

Fig. (P11)

