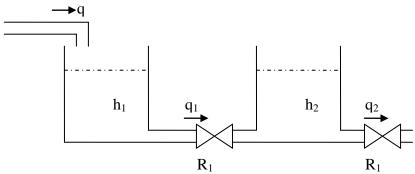
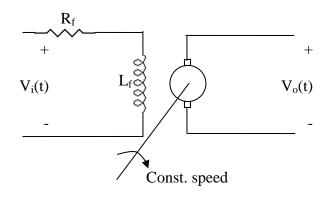


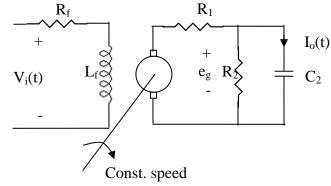
Sheet(2): Modeling

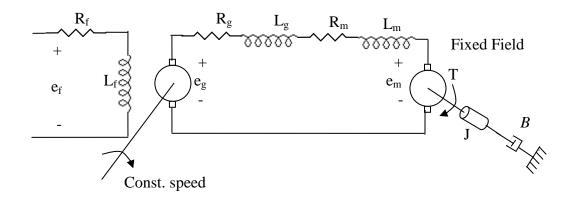

1. Derive the differential equations that represent the mechanical system shown, where U is a force applied on the mass m. Hence, derive the transfer function x(s)/U(s).

2. Derive the differential equations that represent the mechanical system shown, where U is a force that affects the mass M_1 and hence derive the transfer functions $X_1(s)/U(s)$ and $X_2(s)/U(s)$. If the force U has a value of 1 N find the steady state values of X_1 and X_2 .



3. The figure shows a process plant containing of two tanks of areas A_1 and A_2 , and having steady state flow rate of Q. suppose that the incoming flow rate changes to Q+q, and that the corresponding changes in the flow rate to the second tank and at the outlet become Q+q₁ and Q+q₂, respectively. Derive the transfer function that relates q_2 to q.




4. The shown figure shows a DC shunt wound generator, rotating at a constant speed, with a voltage signal applied to its field winding. Drive a mathematical model for determining the generator output voltage. Then, find the T.F = Vo(s)/Vi(s).

5. The system shown in the figure consists of a DC- generator connected to RC impedance. Find the differential equation and the T.F that relates V_i and I_o .

6. A schematic diagram of a generator-motor system driving an inertia load J with viscous damping B at an angular velocity θ is shown in the figure. Given that the torque constant of the motor and its induced back emf constants are K_T and K_m respectively and the generator constant is K_g . Derive a mathematical model for determining the motor output speed and hence find the transfer function of the system.

7. The figure shows a level control process. We wish to ensure that the level h in the vessel follows a desired value h_r even when there is variations in the outlet flow rate q_o . The different components have the following characteristics:

- Vessel: Max level $h_{max} = 0.5$ m, area of section = 0.25 m².

- Level measuring instrument: Output voltage is proportional to level with a constant λ , where $\lambda = 20$ volts/m.

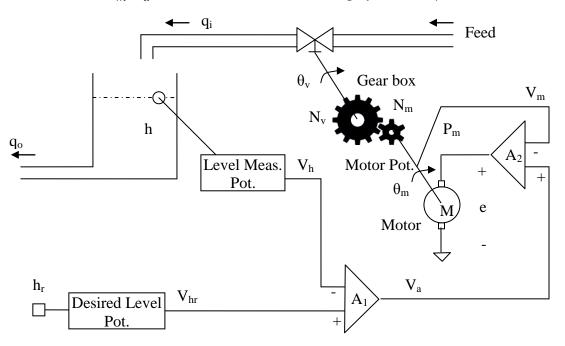
- Desired level potentiometer: Graduated from 0 to h_{max} , its output voltage is the same as above.

- Amplifiers: Gains $A_1 \& A_2$ adjustable. Their B.W and i/p impedances are infinite, o/p impedances=0.

- Motor: The T.F of the motor system can be approximated by

$$\frac{\theta_m(s)}{e(s)} = \frac{K_m}{s(1+\tau_m s)},$$

where $K_m = 0.5$ radian/sec/volt and $\tau_m = 0.1$ sec.


- Motor potentiometer: It provides a voltage proportional to the angular position of the motor shaft θ_m with a constant $K_p = 1$ volt / radian.

- Gearbox: $N_v/N_m = 20$.

- Valve: The flow rate q_i is proportional to the angular position θ_v with a flow rate coefficient $K_v = 0.1 \text{ m}^3/\text{sec/rad}$.

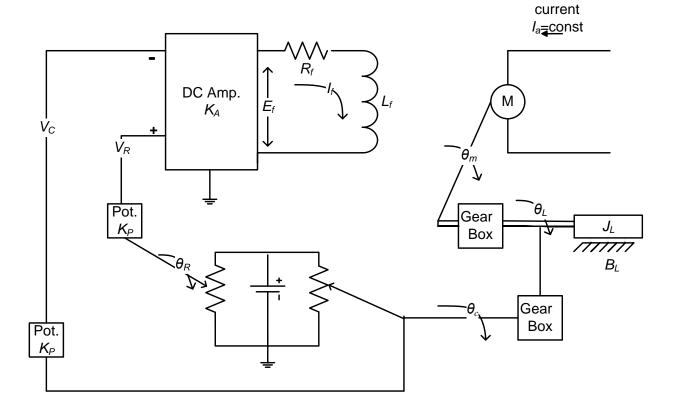
Assuming that the outlet flow q_o is independent of the level h in the vessel, answer the following:

- a) Show how the system operates.
- b) Draw a functional block-diagram for the whole system. Identify components and variables.
- c) Deduce the T.F θ_m/V_a , and the T.F of the closed-loop system h/h_r .

Armature

8. The figure shows a position control system. Assume that the input to the system is the reference shaft position θ_R and the system output is the load shaft position θ_c , the parameters of the system are given below:

-Draw a complete block diagram for the system. -Obtain the overall transfer function θ_C/θ_R .


Assume the following data:

I/P potentiometer const. = o/p potentiometer const. = $K_p = 10$ volt/rad. DC Amplifier gain = $K_A = 50$. Motor field resistance = $R_f = 100\Omega$. Motor field inductance = $L_f = 20$ Henry. Motor torque const. = $K_T = 10$ Newton meter / Ampere (Nm/Amp.) Moment of inertia of the load = $J_L = 250$ Kg.m². Coefficient of viscous Friction of the load = $B_L = 2500$ Nm per rad./sec. Motor to Load gear ratio:

$$\frac{\theta_L}{\theta_M} = \frac{N_M}{N_L} = \frac{1}{50}$$

Load to potentiometer gear ratio:

$$\frac{\theta_C}{\theta_L} = 1$$

