Sheet 1: Revision

1)

a) For the current source shown in fig (1-a), derive an approximate expression for I_{01} and I_{02} as functions of V_{cc}. [Assume matched transistors]
b) If the current source of fig (p1-a) is replaced by the current source of fig (p1-b), find the new values of $\mathrm{I}_{01}, \mathrm{I}_{02}$ as functions of V_{cc} [Assume matched transistors]
c) Which of the two circuits do you prefer from the point of view of IC fabrication?
d) For the source shown in fig(p1-c), find the relation between $I_{\text {out } 2}, I_{\text {out3 }}$, and $I_{\text {ref }}$ $\left[\mathrm{W} /\left.\mathrm{L}\right|_{\mathrm{M} 3}=2 \mathrm{~W} /\left.\mathrm{L}\right|_{\mathrm{M} 1, \mathrm{M} 2}\right]$

Fig (p1-a)

Fig (p1-b)

Fig (p1-c)
2) For the following circuit, draw the output in time domain and determine the maximum value of the signal, the input is a square wave signal alternating from 0 and 5 V , draw the output for two cases:
a- Input frequency is 100 Hz .
b- Input frequency is 1 KHz .

Fig (p2)
3) The following diode network is used to change the circuit output level from $15,-15$ to $5,-5$. For each circuit design the zener diode. If the maximum current that the opamp can supply is 5 mA , what is the minimum R value can be used?

Fig (p3-a)

Fig (P3-b)

Electronics (3)
Faculty of Engineering
4) Draw the layout for the following circuits, state which circuit is better.

Fig (p4-a)
Fig (p4-b)

