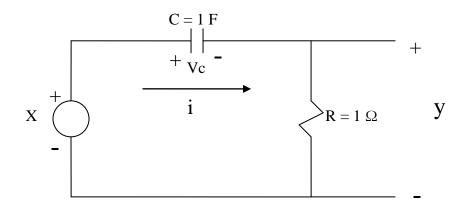


Sheet(1): Revision

1. Solve the following differential equations:

- a) $\dot{y}(t) + 3\dot{y}(t) + 2y(t) = u(t) = unit step$, assume the initial conditions: $y(0) = -1, \dot{y}(0) = 2$
- b) $\dot{y}(t) + 3\dot{y}(t) + 2y(t) = \dot{x}(t) + 3x(t)$, assume the initial conditions: y(0) = 1, $\dot{y}(0) = 0$ and the input is given by: $x(t) = e^{-4t}$
- c) $\dot{x}(t) = ax(t) + bu(t)$, where a,b are constants, u(t) is an arbitrary time function and x(0) is the initial value of x(t) at t = 0.

2. For the RC network in the schematic given below:

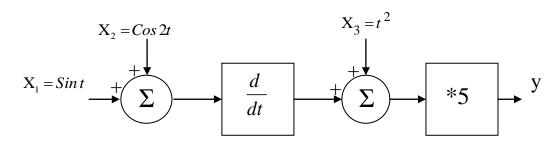


- a) Find a differential equation that relates the output voltage 'y' and the input voltage 'x'.
- b) Let the initial voltage across the capacitor C be Vc = 1volt with the polarity shown, and let $x(t) = 2e^{-t}$. Using the Laplace Transform technique, find 'y'.

3. Test the linearity of the systems described by the following i/p - o/p relations:

- a) y(t) = au(t), where 'a' is a constant.
- b) $y(t) = u^3(t)$
- c) $y(t) = e^{u(t)}$
- d) $\dot{x}(t) = ax(t) + bu(t)$, x(0) = 0, a,b are constants
- e) $\dot{y}(t) + a\dot{y}(t) + y(t) = u(t), \ y(0) = \dot{y}(0) = 0$

4. Determine the output 'y' of the following system:



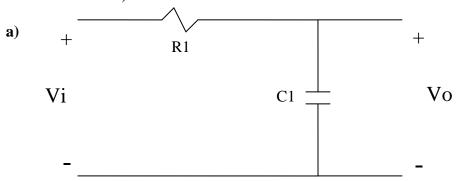
5. Find the Transfer Function of the following systems:

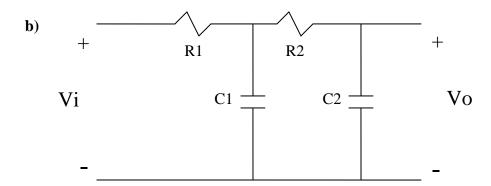
a)
$$\dot{y}(t) + 3\dot{y}(t) + 2y(t) = \dot{x}(t) + 3x(t)$$

b)
$$\dot{y}(t) + y(t) = x(t - T)$$

6. Derive the Transfer Function of the following RC circuits:

(hint: Solve directly in the complex domain (Capacitance \rightarrow 1/SC) and assume zero initial conditions)





Summary

- 1. Properties of linear systems
- 2. Laplace transform

For a time function f(t), Laplace transformation is obtained by evaluating

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$

3. Famous Laplace Transform Pairs

Time Function	Laplace transform
Unit step u(t)	$\frac{1}{S}$
Ramp function tu(t)	$\frac{1}{S^2}$
$t^{^{n}}$	$\frac{n!}{S^{n+1}}$
$e^{^{-ca}}$	$\frac{1}{S+\alpha}$
$e^{-\alpha t}f(t)$	$F(s+\alpha)$
$\cos(at)$	$\frac{S}{S^2 + a^2}$
$f(t-t_0)$	$e^{-st_0}F(s)$
$\dot{f}(t)$	SF(S) - f(0)
$\ddot{f}(t)$	$S^2F(S) - Sf(0) - \dot{f}(0)$
$\int f(t)dt$	$\frac{F(S)}{S}$
-tf(t)	$\frac{d}{dS}F(s)$
Convolution $f_1(t) * f_2(t)$	Multiplication $F_1(s)*F_2(s)$

4. Initial and Final value theorems

Initial value theorem

$$f(0) = \lim_{S \to \infty} SX(s)$$

Final value theorem

$$f(\infty) = \lim_{S \to 0} SX(s)$$

5. Transfer Function

Transfer function is a relation between system output Y and system input X in S-domain

$$TF = \frac{Y(s)}{X(s)}$$