Sheet 1 Solution

Problems:

1. The effect of the following opinions on Transmission Delay $=\&$ Propagation Delay:

Option	Transmission Delay	Propagation Delay
Increasing the packet size	Increasing	Fixed
Bit rate is doubled Moving the two end points physically closer	be half	Fixed

Note: -Transmission Delay $=$ Packet Size (P) / Bit Rate (R)
-Propagation Delay $=$ Distance $(\mathrm{D}) /$ Propagation Speed(V)
2. Analog broadcast television channel has Bandwidth $(\mathrm{B})=6 \mathrm{MHZ}$
a) Using (256-QAM) signal \& Symbol rate $=6^{*} 10^{\wedge} 6 \mathrm{QAM}$ symbol/sec, So

Bit rate $=$ Symbol rate $* \log _{2} \mathrm{M}$,where $\mathrm{M}=$ number of bits per Symbol=256
Bit rate $=6 * 10 \wedge 6 * \log _{2}(256)=48 \mathrm{Mbit} / \mathrm{sec}$
b) In Noisy -Channel, according to Shannon Theorem :

Bit rate $=\mathrm{B}^{*} \log _{2}(1+\mathrm{SNR})$ where $\mathrm{SNR}=$ signal-to-noise-ratio, $\mathrm{B}=$ Bandwidth
So,

- $48 * 10^{\wedge} 6=6 * 10^{\wedge} 6 * \log _{2}(1+$ SNR $)$
- $\quad \mathbf{S N R}=\mathbf{2 5 5}$
c) Band width is doubled ($\left.\mathrm{B}_{2}=2 * \mathrm{~B}_{1}\right)$
-To have same the bit rate
$-\mathrm{B}_{1} * \log _{2}\left(1+\mathrm{SNR}_{1}\right)=\mathrm{B}_{2} * \log _{2}\left(1+\mathrm{SNR}_{2}\right)$
$-(1 / 2) * \log _{2}\left(1+\mathrm{SNR}_{1}\right)=\log _{2}\left(1+\mathrm{SNR}_{2}\right)$
$-\log _{2}\left(1+\mathrm{SNR}_{1}\right)^{\wedge}(1 / 2)=\log _{2}\left(1+\mathrm{SNR}_{2}\right)$
$-\left(1+\right.$ SNR $\left._{2}\right)=\left(1+\text { SNR }_{1}\right)^{\wedge}(1 / 2)$
$-\mathrm{SNR}_{1}=255 \rightarrow \mathrm{SNR}_{2}=15$
$-\frac{\text { SNR2 }}{\text { SNR1 }}=\frac{\text { Signal } 2 * \text { Noise } 1}{\text { Signal } 1 * \text { Noise } 2} \& \frac{\text { Noise } 1}{\text { Noise } 2}=\frac{B 1}{B 2}=\frac{1}{2}$
$-\frac{\text { Signal } 1}{\text { Signal } 2}=\frac{30}{255}$

3. Telephone Link is known to have Losses $=15 \mathrm{~dB}$, input power $=0.7$ watt ,Output noise $=5$ uwatt .
a) Output $\operatorname{SNR}(\mathrm{dB})=$ Output Power (dBw) - Output Noise (dBw), where:

- Output Power $(\mathrm{dBw})=10 * \log ($ Input Power $)-\operatorname{Losses}(\mathrm{dB})=-16.549 \mathrm{dBw}$
- Output Noise $(\mathrm{dBw})=10 * \log ($ Output Noise $)=-42 \mathrm{dBw}$

So, Output SNR(dB) $=\mathbf{2 5 . 4 5 1} \mathbf{d B}$
b) Capacity of this phone line $=$? with a frequency range $300 \mathrm{~Hz}-3300 \mathrm{~Hz}$:

Capacity $=\mathrm{B}^{*} \log _{2}\left(1+\mathrm{SNR}_{\text {Out }}\right)$
$=3000 * \log _{2}(1+350.8)=\mathbf{2 5 . 3 7 6} \mathrm{Kbit} / \mathrm{sec}$
c) Phone line length $=$? when phone line attenuation rate $=4 \mathrm{~dB} / \mathrm{Km}$, minimum output signal $=0.001$ watt $\&$ input signal $=0.7$ watt :

Maximum attenuation inside line $=10 * \log _{10}($ Input Signal/Output Signal $)$

$$
=28.45 \mathrm{~dB}
$$

So, Phone line length \leq (Maximum attenuation/attenuation rate) $\leq 28.45 / 4$
$\leq 7.113 \mathrm{Km}$
4. Ten 9600-bps lines

First : Capacity = ? for multiplexing these lines using Synchronous TDM

- Capacity = Number of lines * bit rate of each line
$=10 * 9600$
$=96 \mathrm{Kbps}$
Second : Capacity $=$? for statistical TDM assuming that link utilization $=0.8 \&$ TDM link is busy 50 \%
- Link utilization $=\frac{\text { Actual_Bit_Rate }}{\text { Capacity }}=\frac{10 * 0.5 * 9600}{\text { Capacity }}=0.8$ So, Capacity $=\mathbf{6 0} \mathbf{K b p s}$

5. File is to be transmitted along a path composed of the source, destination and 5 switches.

- File Size = 5000-byte.
- Link propagation Delay $=2 \mathrm{~ms} \&$ bit rate $=4 \mathrm{Mbps}$.
- Switch processing time (for packets \& setup message) $=1 \mathrm{~ms}$.

Time needed to transfer the whole file = ? if:
a) Circuit Switching is used, Setup message $=1 \mathrm{~KB}$ (make one round trip)

Time Sequence Diagram
-Time needed to transfer this File (T) = Setup_Time + Data _Transfer_Time ,

- Setup_Time $=2 *\left[6 * P_{d}+6 * \operatorname{Tr}_{d(\text { setup-message) }}+5 * T s\right]$,
- Data_Transfer_Time $=6 * P_{d}+\operatorname{Tr}_{d(\text { Data }}$

Where : - $\mathrm{P}_{\mathrm{d}=}$ Link propagation Delay $=2 \mathrm{~ms}$.

- $\operatorname{Tr}_{\mathrm{d}}=$ Transmission Delay
- $\operatorname{Tr}_{\mathrm{d}(\text { setup-message })}=\frac{\text { Setup_message_Size }}{\text { Bit_Rate }}=2.048 \mathrm{~ms}$.
$-\operatorname{Tr}_{\mathrm{d}(\text { data })}=\frac{\text { Data_Size }}{\text { Bit_Rate }}=10 \mathrm{~ms}$.
- Ts $=$ Processing time $=1 \mathrm{~ms}$.

So, Time needed to transfer this File (\mathbf{T}) $\mathbf{= 8 0 . 5 7 6} \mathbf{~ m s}$
b) Packet Switching is used, Packet Size $=1 \mathrm{~KB}=1000 \mathrm{~B}$ (payload) +24 B (header).

So,Number of packets $=\frac{\text { File_Size }}{\text { Payload }}=\frac{5000 B}{1000 B}=5$

Time Sequence Diagram
-Time needed to transfer this File (T) =Time to transfer first packet + Tramsmission Time of Remaining Packets in last link,
-Time to transfer first packet $=6 * \mathrm{P}_{\mathrm{d}}+6 * \operatorname{Tr}_{\mathrm{d} \text { (packet) }}+5 * \mathrm{Ts}$,
-Tramsmission Time of Remaining Packets in last link $=(5-1) * \operatorname{Tr}_{\mathrm{d} \text { (packet) }}$ where : - $\mathrm{P}_{\mathrm{d}}=$ Link propagation Delay $=2 \mathrm{~ms}$.

- $\operatorname{Tr}_{\mathrm{d}}=$ Transmission Delay
- $\operatorname{Tr}_{\mathrm{d}(\text { packet })}=\frac{\text { Packet_Size }}{\text { Bit_Rate }}=\frac{1 * 1024 * 8}{4 * 10^{\wedge} 6}=2.048 \mathrm{~ms}$.
- Ts $=$ Processing time $=1 \mathrm{~ms}$.

So, Time needed to transfer this File (\mathbf{T}) = $\mathbf{3 7 . 4 8} \mathbf{~ m s}$.
\&
Link Utilization $=$
Packet_transimission_time
Packet_transimission_time + waiting _time _between _two _consec utive _ packets

$$
=\frac{2.048 \mathrm{~ms}}{2.048+0}=\mathbf{1 0 0 \%}
$$

c) Packet Switching with acknowledge is used, Packet Size $=1$ byte .

- Time needed to transfer this File (T) =Number of packets * [Time to transfer packet + Time of receiving Packet Acknowledge]
- Time to transfer packet $=6 * \mathrm{P}_{\mathrm{d}}+6 * \operatorname{Tr}_{\mathrm{d}(\text { packet) }}+5 * \mathrm{Ts}$,
- Time of receiving Packet Acknowledge $=6 * \mathrm{P}_{\mathrm{d}}+6 * \mathrm{Tr}_{\mathrm{d}(\mathrm{Ack})}+5 * \mathrm{Ts}_{(\text {Ack })}$,
where : - $\mathrm{P}_{\mathrm{d}=}$ Link propagation Delay $=2 \mathrm{~ms}$.
- $\operatorname{Tr}_{\mathrm{d}}=$ Transmission Delay
- $\operatorname{Tr}_{\mathrm{d}(\text { packet })}=\frac{\text { Packet_Size }}{\text { Bit_Rate }}=\frac{1 * 1024 * 8}{4 * 10^{\wedge} 6}=2.048 \mathrm{~ms}$.
- $\operatorname{Tr}_{\mathrm{d}(\text { Ack })}=\frac{\text { Ack_Size }}{\text { Bit_Rate }}=\frac{1 * 8}{4 * 10^{\wedge} 6}=2$ us.(negligible)
- Ts =Processing time $=1 \mathrm{~ms}$.
- $\mathrm{Ts}_{(\text {Ack })}$ (negligible)

So, Time needed to transfer this File (\mathbf{T}) $\mathbf{=} \mathbf{2 0 6 . 4 4} \mathbf{~ m s}$.

\& \quad Link Utilization $=$

Packet_transimission_time
Packet_transimission_time + waiting _time _between _two _consec utive _ packets

$$
=\frac{2.048 m s}{29.288 m s+12 m s}=4.9 \%
$$

6. Users share a 5 Mbps link, each user requires 500 Kbps where it is active \& $\mathrm{P}($ active $)=0.25$.
a)With Circuit switching, Number of users can be supported $=\frac{5 \mathrm{Mbps}}{500 \mathrm{kbps}}=10$ users.
b)With Packet switching, 50 user
-Probability that 10 users are active $={ }^{50} \mathrm{C}_{10} *(.25)^{\wedge 10} *(.75)^{\wedge 40}$.
c)With Packet switching,50 user
-Probability that at least 10 users are active $=\sum_{i=10}^{50}{ }^{50} \mathrm{C}_{\mathrm{i}} *(.25)^{\wedge \mathrm{i}} *(.75)^{\wedge}{ }^{\wedge 0-\mathrm{i}}$.
d) Number of $\operatorname{Users}(\mathrm{N})=$?
$1-\sum_{i=10}^{N}{ }^{\mathrm{N}} \mathrm{C}_{\mathrm{i}} *(.25)^{\wedge^{\mathrm{i}}} *(.75)^{\wedge^{\mathrm{N}-\mathrm{I}}} \geq .05 \rightarrow$ get N .
7.

In solving this problem, reference will be made to figures in Problem\#5.

For Circuit Switching

T = End-to-end delay
= Call Setup Time + Message Delivery Time
$=$ Call Setup Time + Propagation Delay + Transmission Time
$=\mathrm{S}+\mathrm{NXD}+\mathrm{L} / \mathrm{B}$
$=0.537 \mathrm{sec}$

Datagram Packet Switching

T = End-to-end delay
$=$ Time to Transmit and Deliver all packets through first hop + Time to Deliver last packet across second hop + Time to Deliver last packet across third hop + Time to Deliver last packet across forth hop $=\mathrm{D}_{1}+\mathrm{D} 2+\mathrm{D} 3+\mathrm{D} 4$

There are $\mathrm{P}-\mathrm{H}=1024-16=1008$ data bits per packet. A message of 3200 bits requires four packets (3200 bits/1008 bits/packet $=3.17$ packets which we round up to 4 packets).

$$
\begin{aligned}
& \mathrm{D} 1=4 \mathrm{xt}+\mathrm{p} \\
& \mathrm{where} \\
& \mathrm{t} \quad=\text { transmission time for one packet } \\
& \mathrm{p} \quad \\
& \begin{aligned}
\mathrm{D} 1 & =4 \mathrm{propagation} \mathrm{delay} \mathrm{for} \mathrm{one} \mathrm{hop} \\
& =0.428 \\
\mathrm{D} 2 & =\mathrm{D} 3=\mathrm{D} 4=\mathrm{t}+\mathrm{p} \\
& =(\mathrm{P} / \mathrm{B})+\mathrm{D} \\
& =0.108 \\
\mathrm{~T} & =0.752 \mathrm{sec}
\end{aligned}
\end{aligned}
$$

Virtual Circuit Packet Switching

T = End-to-end delay
= Call Setup Time + Datagram Packet Switching Time
$=S+$ Datagram Packet Switching Time
$=0.952 \mathrm{sec}$
b. Circuit Switching vs. Diagram Packet Switching
$\mathrm{T}_{\mathrm{c}}=$ End-to-End Delay, Circuit Switching

$$
=\mathrm{S}+\mathrm{NxD}+\mathrm{L} / \mathrm{B}
$$

Td= End-to-End Delay, Datagram Packet Switching
$=$ Time to Transmit and Deliver all packets through first hop $+(\mathrm{N}-1) x$ Time to Deliver last packet through a hop
$=\mathrm{Np}(\mathrm{P} / \mathrm{B})+\mathrm{D}+(\mathrm{N}-1) \mathrm{x}(\mathrm{P} / \mathrm{B}+\mathrm{D})$
where
$\mathrm{Np}=$ Number of packets $=\left\lceil\frac{\mathrm{L}}{\mathrm{P}-\mathrm{H}}\right\rceil$
$\mathrm{T}_{\mathrm{c}}=\mathrm{Td}$
$\mathrm{S}+\mathrm{L} / \mathrm{B}=(\mathrm{Np}+\mathrm{N}-1)(\mathrm{P} / \mathrm{B})$

Circuit Switching vs. Virtual Circuit Packet Switching

TV = End-to-End Delay, Virtual Circuit Packet Switching
$=$ Setup Time + End-to-End Delay, Datagram Packet Switching
$=S+T d$
$=S+(N p+N-1)(P / B)+N \times D$
$\mathrm{Tv}=\mathrm{Tc}$
$\mathrm{L} / \mathrm{B}=(\mathrm{Np}+\mathrm{N}-1)(\mathrm{P} / \mathrm{B})$

