Lecture 9

Internet (continued)

By

Mahmoud T. El-Hadidi

Professor of Computer Networks

Dept. of Electronics and Elec. Communications

Faculty of Engineering – Cairo University

EECE Department Faculty of Engineering Cairo University

Internet Protocol

General View

Some operational details

Some operational details (continued)

EECE Department Faculty of Engineering Cairo University

Some operational details (continued)

- IP pkt may NOT arrive at destination, due to :
 - * Host being unreachable
 - * Looping of pkt in NW

In this case, source host is informed using ICMP (Internet Control Message Protocol).

- If pkt does NOT arrive at destination due to :
 - * Transmission errors affecting header
 - * Buffer overflow in intermediate nodes
 - No ICMP messages are generated. BUT, it is up to higher layer
 - (Transport protocol) to detect & correct situation
- ICMP Protocol uses IP

EECE Department Faculty of Engineering Cairo University

IP header format

OSPF (Open Shortest Path First)

- General facts
 - * Determines shortest path from one node of a graph to all other nodes of the graph.
 - * Is based on Dijkstra's algorithm
 - * Length of path is defined as sum of length of links along the path
- Physical picture

* nodes Ξ balls (total = N, say), links bet. nodes Ξ strings bet. balls

- * To find shortest path from one node and all other nodes :
 - Place all balls on floor
 - ↑ Select ball representing that node, call it ball 1 (b1)
 - ↑ Lift b1 from floor, till the next ball is lifted from floor, call it ball 2 (b2).
 - ↑ Continue to lift b1 and b2 till the next ball is lifted from floor, call it ball 3 (b3).
 - ↑ Clearly, string bet. b1 and b2 is shortest path from b1 to b2

EECE Departmentand shortest path from b1 to b3 = min. {string bet. b1 & b3 (if one exists)Faculty of Engineering
Cairo UniversityDr. Mahmoud T. El-Hadidi -
ELC403a_Computer(4)& string bet. b1 & b2 + string bet. B2 & b3
Faculty of Elc403a_Computer(4)7

Step n		0			1			2		
Topology		a		a X Z Y			a x z k k			
U(n)	i, d _n (i), p _n (i)				а	0	а	а	0	а
Up								У	d _y	а
step n						N (1)			N (2)	
F(n) Floor balls at step n	i, d _n (i), p _n (i)	1	8		x	$d_1(x)$	а	Х	$d_2(x)$	а
	i = ball id	2	∞		у	d ₁ (y)	а	z	d ₂ (z)	а
	d _n (i) = distance to "root" ball from ball i at step n	-			z	d ₁ (z)	а	k	d ₂ (k)	у
	$p_n(i) = path to "root" ball$	а	0	а	1	∞.			d ₂ (l)	у
	from ball i at step n							1	8	
	N(n)= "Floor" balls that are neighbors of "up" balls at step n.	N	∞		N	∞		N	∞	

EECE Department Faculty of Engineering Cairo University

- Simple Example Step 0

Node A is reference ==> distance A --> A is 0 No link bet. A & others yet ==> distance A --> others is ∞ \therefore A is smaller value ==> A is first to be lifted (mark RED) $U(0) = \emptyset$ $F(0) = \{A, 2, 3, B\}$

EECE Department Faculty of Engineering Cairo University

- Simple Example

Step 1

EECE Department Faculty of Engineering Cairo University Lift node A $U(1) = \{A\}$

$$F(1) = \{2,3,B\}$$

 $N(1) = \{2,3\}$

Two middle nodes (nodes 2 and 3) are now neighbors of A with

node 2, $d_1(2) = 3$, $p_1(2) = A$

node 3, $d_1(3) = 4$, $p_1(2) = A$

while node B has :

node B, $d_1(B) = \infty$

... next node to be lifted is node 2

(it has smallest $d_1(i)$).

- Simple Example

Step 2

Lift node 2

 $U(2) = \{A, 2\}$

 $F(2) = \{3,B\}$ N(2) = $\{3,B\}$

Nodes 3 and B are now neighbors of nodes A and 2 :

node 3, $d_2(3) = 4$, $p_1(3) = A$

node B, $d_2(B) = 6$, $p_2(B) = 2$

• next node to be lifted is node 3

(It has smallest $d_2(i)$).

EECE Department Faculty of Engineering Cairo University

- Simple Example

Step 3

EECE Department Faculty of Engineering Cairo University Lift node 3 $U(3) = \{A, 2, 3\}$ $F(3) = \{B\}$ $N(3) = \{B\}$ Node B is now neighbor of nodes A, 2, and 3 : node B, $d_3(B) = 5$, $p_2(B) = 3$ $(d_3(B) = \min \{d_2(B) \& d(3) + L(3,B)\})$... next node to be lifted is node 4 (The only remaining node).

- Simple Example

Step 4

Lift node B $U(4) = \{A,2,3,B\}$ $F(4) = \emptyset$ node A, d(A) = 0, p(A) = A node 2, d(2) = 3, p(2) = A node 3, d(3) = 4, p(3) = A node B, d(B) = 5, p(B) = 3

EECE Department Faculty of Engineering Cairo University

- More sophisticated network

EECE Department Faculty of Engineering Cairo University

- More sophisticated network

Step 2

EECE Department Faculty of Engineering Cairo University

EECE Department Faculty of Engineering Cairo University

- More sophisticated network

Step 6

EECE Department Faculty of Engineering Cairo University

BGP

- BGP differs from OSPF in TWO aspects :

a) BGP router has – in general – different network information to that of another BGP router.

==> BGP is a distributed protocol

b) BGP router makes a decision based on preferred path

(as opposed to OSPF which bases its decision on a metric).

==> BGP uses a preferred path algorithm

- Physical view :

EECE Department

Cairo University

- * Consider a host D that is to be reached by an AS X.
- * Assume that X is connected to a number of AS's as shown

BGP (continued)

* Let at some time, both AS Y & AS U have developed certain

preferred paths to D : AS Y to D : [Y , X , U ; 17] AS U to D : [U ; 18] Some metric. E.g. delay in msec

- * Both AS Y & AS U will advertise these preferred paths to D, to other AS's including AS X.
- * At AS X, it receives preferred paths to D :

If X decides to choose preferred path of Y (because metric is smaller) ==>

BG router in X sends to BG router in Y then BG router in Y sends to BG router in X

∴ have a loop !!!

Hence, X will decide to choose – as its preferred path to D – the path via U.

* The resulting preferred path to D from AS X will be :

[X, U; 23] [X, U; 23] 23 = 18 + 5 5 = Metric representing delay bet. 2 boundary pts. on X. E.g. (entry to X from V) to (exit from X to U) * The above preferred path will next be advertised by AS X. Dr. Mahmoud T. El-Hadidi - ELC403a_Computer(4) **BGP** (continued)

* To explain the inconsistency bet. :

metric of preferred path to D (by Y) which is 17

& metric of preferred path to D (by U) which is 18

despite the implication of topology, consider the following scenario:

Mobile IP

- <u>Idea</u> :

To allow a host to be temporarily connected to a new network

(& getting an IP address associated with this new network)

while at the same time

to *forward messages* that are normally sent to his permanent network, *to his NEW (temporary) location*.

- Implementation :

Uses a special protocol – called Mobile IP – which involves TWO agents :

Home Agent (HA); located at permanent (Home) network Remote Agent (RA); located at network being visited

EECE Department Faculty of Engineering Cairo University

BGP (continued)

- Implementation
 - * Though an AS may have several border routers, AS manager selects one border router to implement BGP (called BGP speaker)
 - * Usually, an AS maintains a list of other AS's it does not want to send pkts through.

(can belong to competitors ==> not secure or reliable)

- * Each AS advertises its preferred paths of destinations only to its neighbor AS's
 - ==> minimized amount of information is exchanged

(in case of OSPF, routing information may flood network)

* Since using metric information alone can cause looping, advertised information contain both (path & metric)

EECE Department Faculty of Engineering Cairo University

DHCP (Dynamic Host Configuration Protocol)

- <u>Idea</u> :

- To allow a host to have a real IP address for a limited time.
- (Typical situation : Attaching a Laptop to an Ethernet port to get E-Mail, browse WWW, and transfer files. These applications do not require registering a user/host name & its IP address permanently).

- Implementation :

Uses a special protocol – called DHCP – which assigns an IP address from a pool of free IP addresses to a requester, for a limited time (timeout).

DHCP (Dynamic Host Configuration Protocol) (continued)

- Steps :

Mobile IP (continued)

