)
&
:'v
Srry

ELECTRONICS AND COMMUNICATIONS DEPT. A eSI YL 5 Sl g SSIY) and
FACULTY OF ENGINEERING Al 4418
CAIRO UNIVERSITY 3Ll dxals
GlIzA, 12613, EGYPT duall e dy) sean— 3l

Third Year
Control Subject

A brief overview of:

MATLAB Control Toolbox

Written By:

Mostafa Adly
Tarek Abubakr

Control Engineering, 3rd year -1- Matlab Control Toolbox

Lz

£
Iy

Table of Contents

1. System Identification

1.1.Transfer function
1.2.System zeros, poles, and gain
1.3.Feedback systems

1.4.Block Diagrams
1.5.Transformations

2. System Response

2.1.The step response
2.2.The impulse response
2.3.Arbitrary input response
2.4.Steady state response
2.5.Disturbance analysis

3. System characteristics
3.1.Stability
3.2.Controllability
3.3.0bservability
3.4.Damping
3.5.Root locus

4. Frequency analysis

4.1.Bode plots & System margins
4.2 .Nyquist plots

5. Control Design and compensation

5.1.Compensation using root locus
5.2.Compensation using MATLAB GUI

Control Engineering, 3rd year -2-

Matlab Control Toolbox

A
Ludities O e

1. System ldentification

1.1. Transfer function

The transfer function is the direct relationship between system output and its input
regardless of the internal components of the system. Every system that has an input and
output may be considered a system that has a transfer function. For example, the
electronic buffer is a system that has an input voltage Vi and output voltage Vo such that

the transfer function of the system is: \\;—° =1

The operational amplifier in the shown configuration represents a system with a transfer

function:

Note that Zo or Zi may be a capacitor, coil, resistor, or combination of them, i.e. it will be

a function of S (S-domain).

So, electric and electronic components and basic circuits may be considered as systems

and can have a transfer function.

In our course, we concern with control systems that have their transfer function in the S-
domain using Laplace transform. In order to deal with MATLAB to analyze any system
and control it we should first define this system to MATLAB by any method of system
identification methods (will be mentioned one by one), in this part of the lab. we will

focus on defining the system using its transfer function (it will be your task to get the

Control Engineering, 3rd year -3- Matlab Control Toolbox

A
Ludities O e

transfer function in the S-domain using lectures and tutorials.) then use the given transfer
function to identify the system to MATLAB.

So, let’s see an example:

Assume that the transfer function of a system is given as follows and you are required to
define this system to MATLAB:

i
[
+
e | -
)
+
Lo

To define any system, we should give it a name and then specify its T.F. numerator and

denominator coefficients.

First, let the system name be sys, then let’s identify the denominator coefficients:

Take a look at the polynomial in the denominator of the T.F. and define it as we learned
in the Introduction to MATLAB chapter.

Let’s name the denominator polynomial denom and the numerator polynomial num then

define these polynomials to MATLAB as follows:

>> num=[1];

>>denom=[1 5 6];

Then define the system sys through its components num & denom as follows:

>>sys=tf(num,denom)

Control Engineering, 3rd year -4- Matlab Control Toolbox

Lz

£
Iy

Which means that the instruction tf is the one that is used for defining systems through

their transfer function (note that it’s an abbreviation of Transfer Function). The format of

this instruction is as follows:

Sys_name = tf (T.F._numerator_polynomial , T.F._denominator_polynomial)

Another example:

Define the following system to MATLAB using its shown transfer function:

¥(s) 25+ 3
Uis) 552 +2)+352 25

The used code will be:
>> a=[2 3];
>>p=[1 3 2 5];
>>system=tf(a,b)
You can get the same results using the following code in which we define s as a symbol

in the transfer function of system:
>> s=tf('s’);

>> system= (2*s+3)/(s"3+3*s"2+2*s+5)

1.2. System zeros, poles, and gain

Another method of defining systems is through knowing their zeros (roots of the
numerator of the transfer function of this system), poles (roots of the denominator of the

transfer function of this system), and gain (over all constant gain of the transfer function).

So, let’s have an example, to learn how to use this method.

Example:

W
&

,

71y

z
-

Control Engineering, 3rd year -5- Matlab Control Toolbox

Lz

£
Iy

A system is defined by the shown transfer function:

Fis) 3(§+2)
R(s) S(S+1iS+3)

And you are required to define this system to MATLAB.

Note that the system zeros are got by: (§+2)=0 - S=-2 , also system poles can be got
using the same manner to be: S =0, -1, -3. The system gain is of course 3.

Thus we can define this system as follows:
>>zeros=[-2];
>>poles=[0 -1 -3];
>>gain=3;

>>system=zpk(zeros,poles,gain)

Note that you can define this system in only one step as follows:

>>system=zpk([-2],[0 -1 -3],3)

Also, we can define this system directly using the transfer function method as follows:

>>system=tf([3 6],[1 4 3 0])

This means that the format of the zpk function is as follows:

Sys_name = zpk (System_zeros , System_poles, overall_gain)

Note that the zeros, poles, and gain of the system may be given without the transfer
function, then you are required to define the system. Of course we are desired only in
getting the zeros and the poles of the system without any care for how we got them.

W
&

Q

“ G
1y

<
,

Control Engineering, 3rd year -6- Matlab Control Toolbox

A
Ludities O e

Another example:
Define the system given by the shown T.F. to MATLAB:

r__ v
R s5?i55+4
The code will be:

>>a=[|;

>>b=[-1 -4];

>>k=1,

>>sys=zpk(a,b,k)

Or directly in one step:
>>sys=zpk([],[-1 -4],1)

Note that this system doesn’t have any zeros as the polynomial of the numerator of the
transfer function can’t equal zero any way. So, we define the system zeros to be an empty

matrix as described.

1.3. Feedback systems

In this part, we will only care for using the previously discussed methods in
interconnecting system components such as feedback systems to define the overall
system to MATLAB.

So, let’s consider the simple feedback system shown:

G(s) »
(s) T

His)

Control Engineering, 3rd year -7- Matlab Control Toolbox

Sty

Ludities O e

The feed forward T.F. G(s) and the feed back transfer function H(s) are simply systems
that can be defined to MATLAB either by transfer function method or zeros-poles-gain
method. Then we can from a feedback from these systems to get the overall system
definition.

Example:

.

A closed loop system has a feed forward transfer function (5) = ﬁ and

a feedback transfer functiong 5';:1 , you are required to get the overall transfer
h

function of the feedback system.
Solution:

G(s) and H(s) should be defined separately as if isolated systems, then they should be

combined to get the required feedback system using the following code:

>> G=zpk([],[-1],[2]);
>> H=zpk([,[0],(3]);
>> system=feedback(G,H)

Using the tf instruction we can build a similar code as follows:

>> G=tf([2],[1 1]);
>> H=tf([3],[1 0]);
>> system=feedback(G,H)

What about positive feedback?
The feedback instruction assumes negative feedback connection but if it’s required to

build a positive feedback system, an additional input argument is added as will be

illustrated in the following example:

Control Engineering, 3rd year -8- Matlab Control Toolbox

A
Ludities O e

Example:

Get the transfer function of the system SY'S whose feed forward transfer function is (2/S)
and feed back transfer function is 0.25 knowing that SYS is a positive feedback system.

Solution:

>> G=tf([2],[1 0]);
>> H=tf([1],[4]);
>> SYS=feedback(G,H,+1)

Now, in general the feedback instruction has the following syntax:

||Sys_name=feed back(Feedforward_transfer_function,Feedback_transfer_function,il)"

Note that the +1 is applied only for positive feedback systems while -1 is applied for
negative feedback systems (the -1 may be canceled as it is the default value for
MATLAB).

1.4. Block diagrams

Sometimes systems may be defined using their block diagram. So, how to define a
system in block diagram form for MATLAB? And how to get its transfer function
without involving in block-diagrams’ reduction rules?

Let’s analyze this method using an example:

Control Engineering, 3rd year -9- Matlab Control Toolbox

Lz

£
Iy

Example:

Define the following system to MATLAB and hence show how to get its transfer

function.
1
"‘ S+3
3 , 2 B
§+2 S+1 Yis)
S
&

You can use the rules of reduction of block diagrams to simplify this system and get the
transfer function of this system Y(s)/U(s).

Step (1)
Define each block as a separate sub-system and assume that the sub-systems are:

5

Svs2 = _ Sygi=—
542 §+3 §+1

Svsl =

: 1
Svsd =3 Svsa = E Sys6 =2

Now, define each sub-system to MATLAB:
>>sys1=tf([3],[1 2]);
>>sys2=tf([1],[1 3]);
>>sys3=tf([2],[1 1]);
>>sys4=tf([3],[1]);

W
&

71y

£
<
,

Control Engineering, 3rd year -10- Matlab Control Toolbox

Lz

£
Iy

>>sys5=tf([1],[1 O]);
>>sys6=tf([2],[1]);

Step (2)

Now, these sub-systems should be appended to get the overall system connecting them

using the append instruction as follows:
>>sys=append(sysl,sys2,sys3,sys4,sys5,sys6);

Step (3)

MATLAB should know how these sub-systems are connected through a connection

matrix, in which the connections between sub-systems are indicated.

The connection matrix is formed as follows:

Each sub-system has a row in this matrix, so the first column in each row is the index of
each sub-system (1,2,3,4, or 5). The remaining elements in each row specify the sub
systems to which the sub-system whose index is indicated in the first column is
connected. If the connection is due to a summing element and of subtraction operation,

the index of the sub-system of connection should be of negative sign. For example:

mdex of Tt sub-system input of syal= -1*cutput of sys2

A
=®_2
=153

index of 2nd sub-gyetem mput of eyel= 1*etput of 2ye]

This means that sysl is connected to sys2 through a summing element in which the
output of sys2 is subtracted from the certain input forming the input of sys2 then the

output of sysl is fed as an input to sys2 without any inversion of sign.

Note that the index of the sub-systems is got from the order of the sub-system in the

W
&

z
-

,

Control Engineering, 3rd year -11- Matlab Control Toolbox

e

Lz

£
Iy

append instruction.

(1 -6 0)
2 1 0
Now, the connection matrix of our example is as follows: 301 0
=
4 -2 3
: . 5,
Which means that the input of sysl comes from the output of sys6 only,; the:inpll,it of sys2
L6 |

comes from the output of sysl only, the input of sys3 comes from the o‘utput' of sy"sl only,
the input of sys4 comes from the outputs of sys3 and sys2 but inverted, the input of sys5
comes from the output of sys4, and finally the input of sys6 comes from the output of

SysS.
Now, define this matrix to MATLAB:

>>0Q=[1-60;210;310;4-23;540;650];
Step (4)
Finally, the main input and output of the system should be specified. This is done by
specifying the sub-system in which the main input is fed and the sub-system from which

the main output is got using the connect instruction as follows:

>>Final_sys=connect(sys,Q,[1],[4])
Which means that the final connected system is the connection of the appended system
through a connection matrix Q where the main input of the system is fed to sysl of the

block diagram and the main output is taken out of sys4.

The final complete code will be:
>>sys1=tf([3],[1 2]);
>>sys2=tf([1],[1 3]);
>>sys3=tf([2],[1 1]);
>>sys4=tf([3],[1])
>>sys5=tf([1],[1 0]);
>>sys6=tf([2],[1]);

Control Engineering, 3rd year -12- Matlab Control Toolbox

Lz

£
Iy

>>sys=append(sysl,sys2,sys3,sys4,sysb5,sys6);
>>0Q=[160;210;310;4-23;540;650];
>>Final_sys=connect(sys,Q,[1],[4])

Then you will get the overall transfer function of the system.

Sys_name=append(Sub-sysl , Sub-sys2 , SUb-sY83 , wasasasss)
Sys=connect(Appended_system, Connection matrix, main ip subsys, main ofp subsys)

1.5. Transformations

In this section, the transformation from any representation method to any other one and
getting the data of any representation will be covered. First, getting the information of
any representation should be covered as follows:

Assume that a certain system SYS is defined for MATLAB in transfer function form and
you are required to get the parameters of this representation which are the polynomial of
the numerator and the polynomial of the denominator of the transfer function

corresponding to this system. In this case, you may use the tfdata instruction.

Example:
The transfer function of a certain system is given by:

¥is) 2543

Uis)y s5?.554+6

And it’s defined for MATLAB using the TF form with the system name SYS, so it’s

required to get the parameters of the TF representation using MATLAB.

Solution:

>> [num,denom]=tfdata(SYS)

W
&

Q

“ G
1y

<
,

Control Engineering, 3rd year -13- Matlab Control Toolbox

Lz

£
Iy

Now, num contains the polynomial of the numerator of the transfer function of SYS,
which is [2 3] while the polynomial of the denominator is in denom [1 5 6].
If the same system is defined for MATLAB using the ZPK method and you are required
to get the poles, zeros, and gain of the system; it will be suitable to use the zpk data
instruction as follows:

>> [z,p,k]=zpkdata(SYS)
Now, Z contains the zeros of the system, P contains the poles of the system, and K
contains the overall gain of the system. Z=[-1.5] , P=[-2 -3], K=[2].

[numerator,denomenator]=tidata(System_name_defined_in_tf_format)

[zevos, poles, gain]=2pkdata(System_name_defined_in_zpk_format)

Transformation:

Suppose that a system is defined using append/connect instruction or zpk instruction and
you would like to get this system in transfer function form. In this case, you may use the

tf instruction in the shown syntax.

System_representation_in_TF_form = tF (System_representation_ in=any=form)H

Example:
A system is defined for MATLAB in the zpk form with name SYSTEM and it’s required

to get the system representation in transfer function form.
Solution:
>> SYSTEM=tf(SYSTEM)
Now, assume that the system is defined in the tf from and it’s required to get the system

representation in the zpk form and hence get the zeros, poles, and gain of the system.

“ System_representation_in_ZPK_form = zpk (System_representation_ in_any_form) “

>> SYSTEM=zpk(SYSTEM);

-

W
&

1y

,

Control Engineering, 3rd year -14- Matlab Control Toolbox

Lz

£
Iy

>>[Z,P,K]=zpkdata(SYSTEM)

2. System Response

2.1. The step response

The response of a system is the shape and characteristics of the output of this_system for
a certain input._In the analysis of systems, some basic test input signals are used such as
the unit step, the_impulse, and the ramp function.

In this section, the response of the system for a step input will be taken into consideration

while the response for different inputs will be discussed later.

To get the step response of a certain system using MATLAB, the system should first be
defined using either block diagrams, transfer functions, or zeros-poles-gain, then use the

following function syntax.

step (System_name , time_duration_of_analysis)

In this case, the response of the system will be displayed in the time interval specified by

the second input argument of the step function.

Example:
A system has the following transfer function:

Vo §+3

Vi Ts2.544
and you are required to get the step response of this system and hence get the value of the
rise time, peak time, settling time, system overshoot, and the steady state error.

Solution:
A suitable period of analysis is about 15 seconds as an estimation (or by trial), so the time
period is set to be 15 seconds with step size of 0.01 second. The code will be as follows.

>>1=0:0.01:15;

W
&

,

71y

z
-

Control Engineering, 3rd year -15- Matlab Control Toolbox

R
iy

O gy o

Lz

£
Iy

>> sys=tf([1 3],[1 1 4]);
>> step(sys,t);

The output will be displayed as in the following window:

Flgure 1 El rEl E|

Fle Edt Wissw [msert Tools Desitop Window Help

DEds R fE@a € 08 8O

Slep Response

Time [=ec)

On the previously shown window, right click your mouse and then activate the

characteristics as shown:

Control Engineering, 3rd year -16- Matlab Control Toolbox

Lz

£
Iy

R
iy

O gy o

Fle Edt “ew Insel Took Deshoop Window Help]

DS L AaN® (£ 08 =0

Slap Rasponss

Srphem: Ty

Pk cnplude: 117
Ouersheook (%1 G55
Al tkne (gec) 125

. System ays

Rrs T 0488
! ns.u ims fEss 5 = .

Cheracterstics b [Clia=ELd=e b

[
; | Grid Satthng Thre:
- I | Homalze w Rise Time

& i | v Full i ey Stata

| I
Propeftias, ..
L1 : !
u 5 i .
Time (2es)

It’s now clear that the transient and steady state characteristics can be obtained from the
figure or the window in which the step response is displayed using the right mouse key

and then choosing characteristics to select between any one of the characteristics.

2.2. The impulse response

In the same manner, the response of the system to a unit impulse is called the impulse
response which can be got using the following function syntax.

impulse (System_name , time_duration_of_analysis)

The output will also be displayed in a window that allows right clicking to get the

characteristics of the response.

Example:

For the previously discussed example, it’s required to get the impulse response of this

system and hence find the peak response and the settling time.

Control Engineering, 3rd year -17- Matlab Control Toolbox

U

£
Iy

Solution:

>> t=0:0.01:15;
>> sys=tf([1 3],[1 1

>> impulse(sys,t);

The output will be displayed as shown:

Fe Ece Yow Insaet Tools Desktop Wodow Heb Y
Dedé&e hRaMHe & 08 s d
Syster syx
Pask senpRude: 1 33
L, Atftine(zec) 034 i omtnid sl
.
g2y | sysems | . " ‘
; !I R v PediRemponze |
1 i } id v S=tting Time ‘
0B 'i I-‘ Mormakas 4
b | w Ful Vs |
oGt ’ } Praoperbes. .. 1
S | |
E 04 i : ‘
02l ‘ Systern zys ‘
S f Segtling Tima (2201 74
1 J —_—
(= B i Bk ool o, Bt
s 7 h
I }[/ = I ‘
o2 '
2 J !
ol | |
S ! .'I | -
. \ . f . ‘
06 Nl = 1 1 =
o in S
Time (zec)

O iaves

AR
Ty

4]);

2.3. Arbitrary input response

Control Engineering, 3rd year

-18- Matlab Control Toolbox

Lz

£
Iy

Sometimes, there may be a need to check the system response if the input is a sinusoidal
input or in general an arbitrary input signal. In this case, you may use the following

function syntax.

ISin(System_name ,Input_function , time_duration_of_analysis)

where the input function is a function of the time of analysis which means that it is a

vector of the same length as the time vector.

Example:
A system is defined by the following transfer function:

0P 2
I'P 51,2516

And it’s required to get the response of the system for an input signal u(t), where:
a) U(t) is a unit ramp function, where U(t)=t.
b) U(t) is a cosine function, where U(t)=cos(t).

Solution:

In this case, the time period of analysis should be specified first then the input function is
defined and finally the LINEAR SIMULATION function should be applied on the

defined system as follows.

>> sys=tf([2],[1 2 6]);
>> t=0:0.01:10;

>> ul=t;

>> u2=cos(t);

>> figure(1);

>> [sim(sys,ul,t);

>> grid;

W
&

Q

“ G
1y

<
,

Control Engineering, 3rd year -19- Matlab Control Toolbox

Lz

£
Iy

>> figure(2);
>> |sim(sys,u2,t);

>> grid;

,

W
&
71y

z
-

In this code, ul is a ramp function as it increases with time in the same rate as the time

vector t, while u2 is a cosine function. Both signals are applied to the same system in a

time interval specified by t and the output of each input signal is displayed in a separate
figure using the FIGURE instruction. The figures will look like the following ones.

Note that the linear simulation function can also display the peak response of the system

output using the right mouse key and then the characteristics option. The plots displayed

in each figure represent the input signal (in gray) and the output (in blue).

Now, it’s clear that MATLAB is helpful for getting the response of the system for any

input function form.

Control Engineering, 3rd year

-20-

Matlab Control Toolbox

/ Figure 1 }:|E®
»

Fl= Edt Uex [sert Tock Oesktop Wredox Hep
Deda b KA e 08 i 0
Unear Smakdion Resuls

10 T v T
5 ; L
H Input: In(1) H
gl : : Time (sec): 709 | ;
' ' Amplude: 709 | 1
s : I
6 : :

g - R O Keominm o _n IE L e aaw) o mimarin s fans wos 5 -
At : S - et :
Syatent sys

g Time (sece 7M 3 2 -l

' Aerpdiuce 222 T

2 i 5 PR . s
R :
{ i - oY i
| I i i

d | 2 3 4 $ 5 7 [8 12

T (==c)

/ Flpure 2 —
Fla Edt View Isert Took Daskop Window Help ~

DS L KAO® £ 0B s O

Linasf Simdetion Resats
1 T T ’
o |
IS U O 40 O L O 1

Bl bcccceeioccectocmeeatoececcbocccecdbomenatan.
ws 7 v ‘\,_ | Syatam aya ; . PN |
g TN s Time (2a0) 204 [amex ‘ |
s N Amaitade 000056 / : ~ ‘

AnpRude

Input: (1) :
L Tine (gec). 198 ¢

fnpkude: 0408 |] \ ’
> . ;]

0§t
; i : L |
1 1 2 3 4 S] T 8 el 10

Control Engineering, 3rd year -21- Matlab Control Toolbox

Lz

£
Iy

2.4. Steady state response

The response of any system has two phases; the transient phase in which it is desired to
get the rise time, peak time, settling time, and maximum peak - and the steady state
phase in which it is desired to get the steady state final value of the output and the steady
state error. The steady state error is the shift or the difference between the desired output
and the current fed back output.

Steady state error = Desired output - Current fed back output

This means that the steady state error for the shown system can be calculated as follows:

S E(s)=Ris)-H(s)Y(s) . ,
(x(5) -
wYis)=Gis)Eis) ¥is)
o Eis)=Ris)-Gi(s)H(s)E(s)
A EEI+GsIH(5)]) = Ris) His)
~Eis) :L
1+ GisIH (s5)

Then, How to get the steady state error given the error function?
You can use the final value theorem:

€, = limeir) =

|ill'|:|5E[.$':'

&

So the steady state error can be calculated using the general following formula:

. SRis)
l'_ﬁ — III“—
=01+ Gis)H (5)

The used code will be:

>>symsts

S>> = ; % any time function

>> r=laplace(rt);

>> 0=, ; % any s-domain function
>>h=........ ; % any s-domain function

>> ess=limit(s*r/(1+g*h),0)

W
&

71y

£
<
,

Control Engineering, 3rd year -22- Matlab Control Toolbox

Ludities O e

Sometimes the error signal is called the “error actuating signal” because while there is an
error, the plant G(s) is actuated but if error equals zero the plant is deactivated. Usually
the error signal is fed to either a controller to control the process through an actuator or
directly to the actuator if there was no need for a controller.

Dusturtance

o 1

Controller— Actuator — Flam .
R(s) Y(s)

Mleasirernent

There may be a special case in which the input is a step function and the feedback
transfer function H(s)= constant C. In this case the steady state error can be calculated

using the following formula:

€ = 'R.T.T - C}n' = A- (_'}Tﬂ

Where A is the amplitude of the step function of the input, Yss is the steady state value of
the output which can be got from the step response using MATLAB step function. Revise
the rules of calculating the steady state error using the error coefficients mentioned in the
lecture.

Example (1):

A feed back control system is shown in the following figure:

5

S(S+2) Y(s)

It’s required to get the steady state error for an input R(t)=3 and R(t)=4t.

Control Engineering, 3rd year -23- Matlab Control Toolbox

~
B
Ly
Solution:
>>symsts

>> rt1=3*t/t; % due to a bug in MATLAB 7

>> rt2=4%;

>> rl=laplace(rtl);

>> r2=laplace(rt2);

>> g=2/(s*(s+2));
>> h=4/(s+5);

>> ess1=limit(s*r1/(1+g*h),0)
>> ess2=limit(s*r2/(1+g*h),0)

It is clear that ess1=0 and ess2=5.

Example (2):

A feed back control system is shown in the following figure:

+
Ris)

~
-

542

Yis)

It’s required to get the steady state error for an input R(t)=unit step and R(t)=10 units.

Solution:

>>symsts

>> rt1=1*t/t; % due to a bug in MATLAB 7

>> rt2=10*t/t;

>> rl=laplace(rtl);

>> r2=laplace(rt2);

>> g=2/(s+2);
>> h=3;

>> essl=limit(s*r1/(1+g*h),0)

Control Engineering, 3rd year

-24-

Matlab Control Toolbox

A
Ludities O e

>> ess2=limit(s*r2/(1+g*h),0)
It is clear that ess1=1/4 and ess2=5/2.

You may solve it using the special case because H(s)=constant (:H(s)=3) and the input is
a unit step.

>> G=tf([2],[1 2]);

>> H=tf([3],[1]);

>> sys=feedback(G,H);

>>1=0:0.1:10;

>> step(sys,t)
Form the step response, you can find that Yss = 0.25 and hence ess =1— 3*0.25 = 0.25 .

You can also use the following instruction:
>> s1=step(sys,t);
>> ess1=1-3*s1(end)
>> 52=10*step(sys,t);
>>es52=10-3*s2(end)

2.5. Disturbance analysis

Continuous-time control systems may have some disturbances that affect their responses.
The disturbance is by default unpredictable which leads to an unpredictable output. So, it
is usually important to check the response of the system with respect to the disturbance.
You can evaluate the effect of the disturbance on the by applying a zero test input signal
which means that the output will be only due to the disturbance signal.

You can find that the output of any system is given by the following general form:

. Yis) ¥is))
Fis)=—— *Ris)+— #INs)

R(s) pisi-n D(5) g(s)-0

Where Y(s) is the output of the system, R(s) is the input of the system, and D(s) is the

disturbance.

Control Engineering, 3rd year -25- Matlab Control Toolbox

AN B,
Ludities T
Yis)
R(5) oo - i i : : .
WID-0 s the transfer function relating the output to the input while the disturbance
Fis)
is zero and D(s) Ris)-0 is the transfer function relating the output to the disturbance

calculated when R(s)=0.

Some times you can estimate the value of the output under the effect of the disturbance
when the input is zero and hence it will be possible to subtract this value of the output

from the output at any time to get an output free from the effect of the disturbance.

. . Fis) . Yis)
Vipe 5)=Y(§) ——— 5= —

D(5) pis)-0

L Rr 5 -I

R(5) p(s-

MATLAB enables us to get these transfer functions by specifying the main input and the

disturbance in the connect instruction as follows:

D(3)

i 35 4+3
+ o
—-{+ I Y » V(%)

>> G1=tf([1],[1 1]);

>> G2=tf([3 3],[1 2]);

>> G3=tf([5],[1]);

>> sys=append(G1,G2,G3);

>> Q=[1-3;2 1,3 2];

>> Final_sys=connect(sys,Q,[1 2],[2])

Control Engineering, 3rd year -26- Matlab Control Toolbox

A
Ludities O e

3. System characteristics

3.1. Stability
Stability is the most important property of the system as it implies that if the system is

achievable or not. There are a lot of techniques to analyze the stability of any system but
in this lab. manual, we will focus on using MATLAB for stability analysis.

Because stability of a system can be determined through the location of its poles, it will
be more useful to ask MATLAB about the location of these poles then examine their
location by direct look or using a simple code programming.

Remember that stable system have their poles in the left half plane while unstable ones

have their poles in the right half plane.

To get the location of the system poles using MATLAB, you may use the following

instruction syntax.

“ eig(Systemn_name) or pole(System_name)

The output of this instruction is a vertical vector containing the location of the poles of
the system under test. Simply, you can use if conditions to check that the location of the

poles is in the left half plane for stable system.

Example:

A system is defined by the shown transfer function:

V §+3

Vi §ti5+4

And it’s required to check the stability of this system.

Control Engineering, 3rd year -27- Matlab Control Toolbox

e

Lz

£
Iy

Solution:

The code in this case may be:
>> sys=tf([1 3],[1 1 4]);
>> eig(sys) or Pole(sys)
Now, by a simple look at the ans variable generated by MATLAB that contain the

location of the poles of the system, you can decide whether this system is stable or not.
The ans variable will contain: -0.5000 + 1.9365i -0.5000 - 1.9365i

Which means that the system is stable.

Note also that the code may be:
>> sys=tf([1 3],[1 1 4]);
>> poles=eig(sys);
>> if poles(:)<0
disp(‘System is stable’);
else
disp(‘System is unstable or critically stable’);

end

PZMAP method:

The pzmap function displays a map for the system on which the poles and zeros of this

system are displayed. So, by looking at this map you can directly deduce the stability of
the system.

You can use the following syntax for the pzmap function.

pzmap(Systen_name)

Control Engineering, 3rd year -28- Matlab Control Toolbox

ey ¥

a7

, >
% g€

e\
F

G2

Now, the code will be:
>> sys=tf([1 3],[1 1 4]);
>> pzmap(sys);

The map contains 0’s to represent the locations of the zeros and x’s for poles.

Fhe Bl b et Toakr [wsdoop wiedom el
ODEgda L &Re e w 0B O

P Zora Mg

ey &
i

3.2. Controllability

Controllability is the ability to control the locations of the poles of a certain system to get
a desired system response. Systems are classified into controllable and uncontrollable
systems through a simple mathematical check. In this section, classifying systems into

controllable or uncontrollable will be taken into consideration.

To do so, the ctrb, rank, and ss functions will be used. Usually, you will use the

following syntax:

rank(ctrb(ss(System_name)))

If the answer of this instruction is equal to the system’s order, the system is controllable,

otherwise the system is uncontrollable.

Control Engineering, 3rd year -29- Matlab Control Toolbox

71y

/N i
Ludities T
Example:
A system is defined by the transfer function:

Y(S) = 25+3
US) s5?4155+6

And you are required to check whether this system is controllable or not.

Solution:

First, define the system, then use the above syntax.

>> sys=tf([2 3],[1 5 6]);

>> rank(ctrb(ss(sys)))
The answer of the final instruction is equal to 2 and the system under check is of 2™ order
(the highest power of S in the denominator of the transfer function), so the system is
controllable. The previous syntax first transforms your system into state space form (one
of the system representation methods) then gets the controllability matrix of the state
space format of the system and finally checks its rank which should be equal to the

system order for controllable system.

3.3. Observability

Observability is the ability to determine system states through the observation of its
output in finite time intervals. Systems are classified into observable and unobservable
systems through a simple mathematical check. In this section, classifying systems into

observable and unobservable will be taken into consideration.

To do so, the obsv, rank, and ss functions will be used. Usually, you will use the

following syntax:

rank(obsv(ss(System_name)))

If the answer of this instruction is equal to the system’s order, the system is observable,

otherwise the system is unobservable.

Control Engineering, 3rd year -30- Matlab Control Toolbox

Lz

£
Iy

Example:
A system is defined by the transfer function:

Fis) §+1
U(S) §%4+85+4

And you are required to check whether this system is observable or not.

Solution:
First, define the system, then use the above syntax.

>> sys=tf([1 1],[1 1 4));

>> rank(obsv(ss(sys)))
The answer of the final instruction is equal to 2 and the system under check is of 2 order,
so the system is observable. Similarly as in the controllability check, the previous syntax
first transforms your system into state space form then gets the observability matrix of the
state space format of the system and finally checks its rank which should be equal to the

system order for observable system.

3.4. Damping
MATLAB can help you in analyzing systems by getting their damping ratio _ and natural

frequency cn for further analysis and calculations of the transient response parameters.

To do so, you can use the following syntax.

[w,z]=damp(System_name)

The output argument W is a vertical vector containing the natural frequency of each pole
in the system, while Z is also a vertical vector containing the damping ratio of each pole
in the system.

Example:
A system is defined by the following transfer function:

Fis) 542

U(S) 8§2.§5+4

W
&

71y

£
<
,

Control Engineering, 3rd year -31- Matlab Control Toolbox

Lz

£
Iy

It’s required to get the settling time of this system.

Solution:

The settling time of a system is calculated by the formula:
._1_

e,

fe=

so it’s now required to get the damping ratio zeta and the natural frequency wn of the
system. The code will be:

>> sys=tf([1 2],[1 1 4]);

>> [w,z]=damp(sys);

>> ts=4./(w.*z)
Note that the code uses the dot operator because W and Z are both vectors and it’s

required to deal with their adjacent components. Why?

You can answer this by typing the following instruction and noticing the output.
>> damp(sys)

The output is as follows:

Eigenvalue Damping Freq. (rad/s)

-3.00e-001 + 1.94e+0007 2.50e-001 2.00e+000
S3.00e-001 - 1.94e+0001 2.50e-001 2.00e+000

Which means that the first element in the damping vector is related to the first one in the

frequency vector and so on.

3.5. Root locus

It’s a method of analyzing systems and compensation design using the possible root
locus. It simplifies the method of gain adjustment to get a desired pole location. To plot
the root locus of a system, the system’s feed forward transfer function should be first

defined then use the following syntax.

rlocus(System_feed_forward_transfer_function)

Control Engineering, 3rd year -32-

W
&

Q

“ G
1y

-

,

Matlab Control Toolbox

~
7
Ly
Example:
Given the feed forward transfer function of a certain system:
G(S) = l

S(stisen

You are required to plot the root locus of this system, hence find the value of the system

gain such that the poles of the system lie at: 0, -0.244+ 0.831i.

S olution:

On the MATLAB command window, type:

>> G=tf([1],[1 1 1 O]);
>> rlocus(G)

The shown window will appear.
The plot specifies the locations of

the poles and their possible loci.

J Frgure 1

For better identification for the system

the values of zeta and cn should be
displayed. To do so, you need to
right click on the shown window and
select Grid from the pop-up menu.
The result is shown in the figure at

the beginning of the next page.

Now, constant _ lines appear,
also constant mn lines appear.
Thus full identification of the
system is possible.

Currently, the poles of the
system lie at: 0, -0.5% 0.866i.
In order to locate the poles of
the system in another location,
simple gain adjustment should
be made.

Control Engineering, 3rd year

File Edt Wes Imsmt Took Deddop Windos Help

DedaS k aafe E 0H O

oot Lomus

Imiscrary Suds

Fle Ecke W Irsart Tools

DEWe Kh Ra@ e £« 03

Desktop Window Heb

ficct Lo
" O5R 04g.--0Y 1

i Plot Took

-33-

Matlab Control Toolbox

Lz

£
Iy

et

To do so using MATLAB, just click any point on the plots of the locus then drag it to

check different gains and pole locations as shown in the next figure. As shown, it’s now

possible to change the system gain to get another location for the poles.

From this figure, the suitable Fio Edh ‘oo

value of the gain is: 0.384.
Note that the question may be
formed in many other forms
such as asking about the value
of the gain that ensure certain
damping ration, percent
overshoot, or frequency.

All you have to do, is to drag
the cursor on the plots and get
that gain to ensure a certain
property for the system.

DS

Iy S
.0

[reeet Tools Cuesttop Window Hep

F&aaMe €| 0@ =00

<o Owersboot (%5 388
so" .« Frequency (raclsec 0.857

4. Frequency analysis

4.1. Bode plots & system margins

MATLAB can help getting the frequency response of any system using bode plots. First,

you should define the feed forward transfer function of the system. Then, use the

following syntax.

bode(System_feed_forward_transfer_function)

Example:

Given the feed forward transfer function of a certain system:

G(S)=

1

S(sTiseny

You are required to plot the bode plots of this system.

Control Engineering, 3rd year

-34-

Matlab Control Toolbox

%, <
9% ,\'x\\}

e\
F

¥
G2

Solution:
On the MATLAB command window, type:

>> G=tf([1],[1 1 1 0)]);
>> pbode(G)
You will get the shown figure after right clicking the figure window and choosing Grid.
) Figure 1 FBE&E

Fle Edt ¥ew [t Toods [eskop ‘Window Help

eS| k 2y & 0B =0

Bucxcke Dk am

Fzgnlugs ()

P heres (deg)
| &

Freguency (radisec)

But it will be better to use the margin instruction for the previous example as it not only
displays the frequency response via bode plots but also calculates the system parameters

such as: Gain Margin GM, Phase Margin PM, gain crossover frequency o gc, and phase

crossover frequency o pc . You can use the following syntax for that purpose.

margin(System_feed_forward_transfer_function)

Control Engineering, 3rd year -35- Matlab Control Toolbox

Ty

Lz

£
Iy

R

Cumav &

The result will be as shown below:

- EX

Fle Edt Wiem st Toopk Desitop Wndes Help

ODedE kK e & 0EH =0

Boce [aagram
{m= -3 86e4HJ &0 [t 1 radsec), Pm=0dag sl 1 rodisec)

: -—_—_‘——_

=k 10 o
Fraguancy [FadiEes)

Finally, if you would like to get the parameters of the system directly or without bode

plots, you can use the allmargin instruction for that purpose.

allmargin(System_feed_forward_transfer_function)

The output in the case of the previous example will be:
GMFrequency: 1.0000
GainMargin: 1.0000
PMFrequency: 1.0000
PhaseMargin: 0
DMFrequency: 1.0000
DelayMargin: 0
Stable: 1

Control Engineering, 3rd year -36- Matlab Control Toolbox

Lz

£
Iy

RS
Stry

9% ,\'x\\}

4.2. Nyquist plots

It’s another method of analyzing system’s frequency response. You can use MATLAB to

get the Nyquits response of any system using the following syntax.

nyquist(Syslem_ieed_iorward_transier_iunction)‘

But note that the resulting figure is some how different from our ordinary plotted Nyquist
plots because we are used to plot the absolute value of the feed forward transfer function
versus its angle, while MATLAB calculates both the real part and the imaginary part of
the frequency response of the feed forward transfer function. For the previously
illustrated example, type:

>> G=tf([1],[1 1 1 O]);

>> nyquist(G)

J Frgure 1 grﬁl@

File Edt Wes Jmsst Took Desdop Window Help

DEdaS| k RaNe E0EH O

gzt Limgran
| Cheracteristics b
Show]
Grid
Zoam on i-1,2%
£ | /JI w Full view

n |

3 Froperies...

E St E\K\

Real Axiz

From the pop-up menu, you can choose grid or display system characteristics on the plot.

Control Engineering, 3rd year -37- Matlab Control Toolbox

Lz

£
Iy

5. Control Design and compensation

5.1. Compensation using root locus

Sometimes you are required to design a compensator to achieve specific requirements on
the given system. The design of the compensator is some how a logical operation. It may
be a very simple process in which the gain of the system should be adjusted to a certain
value using either an amplifier or an attenuator as a compensator and sometimes a very
complicated process in which you need adding poles or zeros to the system using lead,
lag, or lead-lag compensators. In this part we will focus on the simple gain adjustment
using root locus method then the compensation by adding zeros or poles will be covered
in the next section.

Example:
A unity feed back control system has a feed forward transfer function:

1

G(§) = ————
S5 +385+2)

Assuming a unit step input of the system:
a) Find the peak time of the system.
b) Find the percent overshoot of the system.
c) Design a compensator to have an overshoot of not more than 5%.
Solution:
Using MATLAB:
>> G=tf([1],[1 3 2 0]);
>> sys=feedback(G,1);
>>1=0:0.01:30;
>> step(sys,t)
From the step response figure use the characteristics (peak response) to get the peak time
and the overshoot.
t\f)?‘p =6H.08sec

(i) Overshoot = 14.5%

W
&

Q

; ()

£
<
,

Control Engineering, 3rd year -38- Matlab Control Toolbox

R
ey ¥

Lz

£
Iy

Cumav &

To design the suitable controller, let’s first assume simplicity and check the
effect of simple gain adjustment using root locus for the whole system as follows:
On MATLAB type:

>> rlocus(G)

The following window will appear:

Al Edk Vi Irsed Tooks DesHop Seindid Help

DedS AN € 0@ a0

/
7
/

Sysherm g
[it 9 B3
Pabs 0142 + 1.1
; Diamping -0053

7| Creerahioad (50 130
Fracuency irackect 1.71

Imegirary Axis

i i
L= = 4 3 2 1 i
Real Axix

Dragging until we can adjust the gain to have overshoot less than 5%, the suitable value
of the gain will be: 0.646.

Now, check your results using MATLAB command window:

>> K=0.646;

>> new_sys=feedback(K*G,1);

>> step(new_sys,t)
From the step response figure, check the new values of the peak time and the overshoot:
{f}rp =8.85sec

(ii yOvershoot = 3.99%

Control Engineering, 3rd year -39- Matlab Control Toolbox

Lz

£
Iy

5.2. Compensation using MATLAB GUI

This is the general method of compensation in which we depend on defining the system
transfer function then use MATLAB GUI (Graphical User Interface) to control the

system.

3130t00N(System_transfer_function)

Example:

Try to compensate the system of the given transfer function to achieve different

requirements:

Y(S) 1
U(S) §%.55+4

Solution:
On the MATLAB command window, type:

>> sys=tf([1],[1 5 4])
>> sisotool(sys)

The following GUI will appear after a few seconds:

J 5150 Design for System sys E||E|E|

Fla Edt Wes Compensabors Arakiss Took Windows Help

p® @ & = st M FH|
urrerl Compenzabor
i o]
os)= | 1 | e
E _ I il
P — Dpen-Loow Dode Edior [
- - ——
=
a0t o
s
=R N
Firescy I 3
5 . by \
0 — - -
o5 | ﬂx\
M,
al \"'
\K
1330 W nr n,

&] -180

|ﬁgﬂpﬂ:h on e plods Tor more desian opions .

Control Engineering, 3rd year -40-

Matlab Control Toolbox

Lz

,

r
t
T

Note that this method is only valid for Single-Input Single-Output systems SISO, while

Multi-Input Multi-Output systems MIMO are not valid. Now, you are able to design a
compensator and place it where you want. Also it’s possible to add poles or zeros and
specify their locations, you can also adjust a gain for the compensator and check the
effect of each modification on the bode plots (frequency response of the new system) and

on the root locus plot.

Check each menu and try to full use this tool in your designs.

Finally, it’s a wide tool that you can use to get any suitable kind of compensators to

achieve any type of requirements.

e For more details on any fi\unction on the matlob, just write:

>> help control

>> help function_name

Control Engineering, 3rd year -41- Matlab Control Toolbox

