


INTRO TO
BLUETOOTH LOW ENERGY

by Mohammad Afaneh

edited by Jessica Cast

Copyright © 2018 Novel Bits, LLC
All Rights Reserved



Table of Contents

Table of Contents

Preface
About the author

Why I wrote this book

Who is this book for?

How to read this book

Acknowledgments

Basics of Bluetooth Low Energy
1.1. What is Bluetooth Low Energy?

1.2 Technical Facts About BLE

1.3. Bluetooth Classic vs. BLE

1.4. Advantages and Limitations of BLE
1.4.1. Limitations of BLE

1.4.1.1. Data Throughput

1.4.1.2. Range

1.4.1.3. Gateway Requirement for Internet Connectivity

1.4.2. Advantages of BLE

1.4.3. Applications Most Suitable for BLE

1.5. Architecture of BLE
1.5.1. Application

1.5.2. Host

1.5.3. Controller

1.5.4. Layers of the BLE Architecture
1.5.4.1. Physical Layer (PHY)

1.5.4.2. Link Layer
Bluetooth Address

Public Address

Random Address



1.5.4.3. Direct Test Mode

1.5.4.4. Host Controller Interface (HCI) Layer

1.5.4.5. Logical Link Control and Adaptation Protocol (L2CAP) Layer

1.5.4.6. Upper-level Layers

BLE Peripherals and Centrals
2.1. Peripherals

2.2. Centrals

2.3. Observers and Broadcasters vs. Centrals and Peripherals

2.4. Power Consumption and Processing Power Considerations

2.5. Multi-Role BLE Devices

2.6. The Role of Smartphones in BLE
2.6.1. Challenges with BLE Development on Smartphones

Advertising and Scanning
3.1. Generic Access Profile (GAP)

3.2. Advertising State

3.3. Scanning State

3.4. Advertising Events

3.5. Advertising Parameters

3.6. Scanning Parameters

Connections
4.1. Connection Events

4.2. Connection Parameters

4.3. Channel Hopping

4.4. White List & Device Filtering

Services and Characteristics
5.1. Attribute Protocol (ATT)

5.2. Generic Attribute Profile (GATT)

5.3. Services & Characteristics



5.3.1. Services

5.3.2. Characteristics

5.4. Profiles

5.5. Example GATT

5.6. Attribute Operations
5.6.1. Flow Control and Sequence of Attribute Operations

5.6.2. Reading Attributes

5.6.3. Writing To Attributes

5.6.4. Exchange MTU Request

5.7. Designing your GATT
5.7.1. General Guidelines

GATT Design Exercise
6.1. General System Description

6.2. System Elements

6.3. GATT Design
6.3.1. Step 1: Documenting the Different User Scenarios and Data Points

6.3.1.1. Gateway
Peripheral Role

Central Role

6.3.1.2. Remote Control

6.3.2. Step 2: Define the Services, Characteristics, and Access Permissions
6.3.2.1. Gateway

6.3.2.2. Remote Control

6.3.3. Step 3: Re-use Bluetooth SIG-Adopted Services & Characteristics
6.3.3.1. Gateway

6.3.3.2. Remote Control

6.3.4. Step 4: Assign UUIDs to Custom Services and Characteristics

6.3.5. Step 5: Implement the Services and Characteristics Using the Vendor
SDK APIs

Bluetooth 5
7.1. Twice the Speed, Four Times the Range



7.1.1. 2M PHY

7.1.2. Coded PHY

7.2. Eight Times the Advertising Capacity
7.2.1. Extended Advertisements

7.2.2. Periodic Advertisements

7.3. More on Extended Advertisements

Security
8.1. Security Concerns

8.1.1. Types of Attacks

8.2. Security in BLE
8.2.1. Pairing and Bonding

8.2.1.1. Phase One

8.2.1.2. Phase Two

8.2.1.3. Phase Three

8.2.2. Pairing methods
8.2.2.1. LE Legacy Connections (All Bluetooth versions)

8.2.2.2. LE Secure Connections (Bluetooth version 4.2 and later)

8.3. Privacy

8.4. An Overview of the Different Security Keys

8.5. Security Modes and Levels

8.6. What Triggers Security on a Connection?

An Introduction to Bluetooth Mesh
9.1. Basics of Bluetooth Mesh

9.2. Architecture of Bluetooth Mesh

9.3. Core Concepts and Terminologies
9.3.1. Nodes

9.3.2. Elements

9.3.3. States

9.3.4. Properties

9.3.5. Messages



9.3.6. Addresses

9.3.7. Publish-Subscribe

9.3.8. Managed Flooding

9.3.9. Models

9.3.10. Scenes

9.4. Node Types
9.4.1. Relay Nodes

9.4.2. Proxy Nodes

9.4.3. Friend Nodes and Low Power Nodes

9.5. The Provisioning Process
9.5.1. Step 1: Beaconing

9.5.2. Step 2: Invitation

9.5.3. Step 3: Public Key Exchange

9.5.4. Step 4: Authentication

9.5.5. Step 5: Provision Data Distribution

9.6. Security in Bluetooth mesh
9.6.1. Node Removal

9.6.2. Privacy

9.6.3. Replay Attacks

9.7. Summary

Glossary of Terms



Preface

About the author

Mohammad Afaneh has been developing embedded software and firmware since 2006. He
has worked at, and consulted for multiple large companies including: Allegion (Schlage
locks), Motorola, Technicolor, Audiovox, and Denon & Marantz Group. Throughout his career,
he has worked on multiple IoT (Internet of Things) products including: wireless electronic
door locks, satellite receivers, wireless doorbells, and various other side projects.

In July 2015, he decided to leave his full-time job to start his own company Novel Bits, LLC
where he shares his knowledge and experience through educational resources on his
website, via on-site training, and e-books, all focused on Bluetooth Low Energy
development.

You can reach Mohammad at his email mohammad@novelbits.io, or by connecting with him
on LinkedIn.

Why I wrote this book

When I first started learning BLE, I spent hours, days, and weeks reading every resource I
could get my hands on. However, all the ones I came across were either:

Too detailed, leaving me overwhelmed with all the jargon and details I didn't really care
about as a beginner.

Too short, leaving me with many unanswered questions.

This is aside from the fact that the last read-worthy book written on Bluetooth Low Energy
was published or updated back in 2015! That's 3 years ago, which is an eternity for a rapid-
changing wireless technology standard such as BLE!

I've even spent days and weeks going through the official 2,800+ page Bluetooth
specification document in an attempt to find answers to the many questions I had. With this
book in your hands, my goal is to save you from going down this painful path of learning BLE.
Instead, you'll spend a few hours reading through this guide that will teach you the core



concepts of BLE and Bluetooth 5 － only what you truly need to get started with this exciting
wireless technology.

I hope you really enjoy reading the book and find the content valuable in guiding you on your
BLE learning journey!

Who is this book for?

This book is for anyone looking to learn and get started with Bluetooth Low Energy (BLE):
whether you're an embedded developer or a mobile developer working on a companion BLE
app, you'll need to understand the basics of the Bluetooth Low Energy protocol.

Without understanding the core concepts, you'll be scratching your head, wondering what
each API really does each time you call it. Yes, you may be able to cruise through building a
mobile app with no issues, but when the time comes for real-life testing and you're hit with
something like a connection bug, understanding the BLE protocol and how data is
communicated between devices can be crucial, saving you countless hours of debugging
and research.

How to read this book

This book is best read in sequence, from beginning to end. It can, however, also be used as a
reference if you already have enough knowledge about Bluetooth Low Energy, or you're
interested in learning about a specific topic within BLE.



Acknowledgments

I dedicate this work to my mother Ameena, my better half Dana, and my two sons Bassam
and Yaseen. Thank you so much for your endless love and support!

－ Mohammad



1. Basics of Bluetooth Low Energy

1.1. What is Bluetooth Low Energy?

Bluetooth started as a short-distance cable-replacement technology to replace wires in
devices such as a mouse, a keyboard, or a PC. If you own a modern car or a smartphone,
chances are youʼve used Bluetooth at least once in your life. It's everywhere: in speakers,
wireless headphones, cars, wearables, medical devices, and even flip-flops!

The first official version of Bluetooth was released by Ericsson in 1994. It was named after
King Harald “Bluetooth” Gormsson of Denmark who helped unify warring factions in the 10th
century CE.

There are two types of Bluetooth devices: one is referred to as Bluetooth Classic (BR/EDR),
used in wireless speakers, car infotainment systems, and headsets, and the other is
Bluetooth Low Energy (BLE). BLE, introduced in Bluetooth version 4.0, is more prominent in
applications where power consumption is crucial (such as battery-powered devices) and
where small amounts of data are transferred infrequently (such as in sensor applications).

These two types of Bluetooth devices are incompatible with each other even though they
share the same brand and even specification document. A Bluetooth Classic device cannot
communicate (directly) with a BLE device. This is why some devices such as smartphones
choose to implement both types (also called Dual Mode Bluetooth devices), allowing them
to communicate with both types of devices.

Figure 1: Types of Bluetooth devices



Here are a few important notes about BLE:

The official Bluetooth specification document combines both types of Bluetooth
(Bluetooth Classic and BLE), sometimes making it difficult to locate BLE-specific
specifications.

BLE was introduced in the 4.0 version of the Bluetooth specification, released in 2010.

BLE is sometimes referred to as Bluetooth Smart or BTLE, and sometimes mistaken as
Bluetooth 4.0 (since this version really included both types of Bluetooth).

Both Bluetooth Classic and BLE operate in the same frequency spectrum (the 2.4 GHz
Industrial, Scientific, and Medical (ISM) band).

Since many Internet of Things (IoT) systems involve small devices and sensors, BLE
has become the more common protocol of the two (versus Bluetooth Classic) in IoT. In
December 2016, the Bluetooth Special Interest Group (SIG), the governing body behind the
Bluetooth standard, released Bluetooth version 5.0 (for marketing simplicity, the point
number is removed and the official name is Bluetooth 5). A majority of the enhancements
and features introduced in this version focused on BLE, not Bluetooth Classic.

You may have also heard of another term related to Bluetooth: Bluetooth mesh. Bluetooth
mesh was released in July 2017. It builds on top of BLE and it requires a complete BLE stack
(a software that acts as an interface for another piece of software or hardware) to work, but
itʼs not part of the core Bluetooth specification. Weʼll talk more about Bluetooth mesh in the
chapter “Introduction to Bluetooth Mesh”.

To summarize, here's a figure showing the progression of BLE over the years:



Figure 2: History of BLE

1.2 Technical Facts About BLE

Some of the most important technical facts about BLE include:

The frequency spectrum occupied is 2.400 - 2.4835 GHz.



The frequency spectrum is segmented into 40 “2 MHz”-wide channels.

The maximum data rate supported by the radio (introduced in Bluetooth version 5) is 2
Mbps.

The range varies significantly depending on the environment surrounding the
communicating BLE devices as well as the mode used (for example, in long-range mode,
the range will be significantly longer than in the 2M/high-speed mode). A typical range
is 10-30 meters (30-100 feet).

Power consumption also varies widely. It depends on the implementation of the
application, the different BLE parameters, and the chipset used. The peak current
consumption of a BLE chipset during radio transmission is typically under 15 mA.

Security is optional in BLE communication, and it is up to the device and applications
developers to implement it. That said, though, there are also varying levels of security
that can be implemented.

For all encryption operations, BLE uses AES CCM with a 128-bit key.

BLE is designed for low-bandwidth data transfer applications. Implementing BLE for
high-bandwidth applications will significantly compromise the low power consumption
promise. So, minimizing radio usage as much as possible achieves the optimal power
consumption.

Bluetooth versions (when it relates to BLE) are backwards compatible with each other.
However, the communication may be limited to the features of the older version of the
two communicating devices.
For example, a Bluetooth 5 BLE device can communicate with a Bluetooth 4.1 BLE
device, but 5-specific features wonʼt be supported. On the other hand, Connections,
Primary Advertisements, discovering Services, discovering Characteristics, and
reading/writing to these Characteristics are all possible between two BLE devices
regardless of their supported Bluetooth version (since they were supported by the initial
version of BLE).



1.3. Bluetooth Classic vs. BLE

Itʼs important to note that thereʼs a big difference between Bluetooth Classic and Bluetooth
Low Energy in terms of technical specification, implementation, and the types of applications
to which theyʼre each suited. This is in addition to the fact that they are incompatible with
each other.

Some of the notable differences are summarized in the following table:

Bluetooth Classic BLE

Used for streaming applications such as
audio streaming, file transfers, and

headsets

Used for sensor data, control of devices,
and low-bandwidth applications

Not optimized for low power, but has a
higher data rate (3Mbps maximum

compared to 2Mbps for BLE)

Meant for low power, low duty data
cycles

Operates over 79 RF (radio frequency)
channels

Operates over 40 RF channels.

Discovery occurs on 32 channels
Discovery occurs on 3 channels, leading

to quicker discovery and connections
than Bluetooth Classic

Table 1: Bluetooth Classic vs. BLE
BLE has gone through some major revisions and changes in the short time since its official
release in 2010, with the most recent major update being Bluetooth 5 released in December
2016. Bluetooth 5 introduced many important upgrades to the Bluetooth specification, most
of which were focused on BLE. Some of the most important enhancements include twice the
speed, four times the range, and eight times the advertising data capacity.

1.4. Advantages and Limitations of BLE

Every technology has its limitations, and BLE is no exception. As we mentioned earlier, BLE is
most suitable for applications with relatively short range and infrequent low-bandwidth data



transfers.

1.4.1. Limitations of BLE

1.4.1.1. Data Throughput

The data throughput of BLE is limited by the physical radio data rate, which is the rate at
which the radio transmits data. This rate depends on the Bluetooth version used. For
Bluetooth 4.2 and earlier, the rate is fixed at 1 Mbps. For Bluetooth 5 and later, however, the
rate varies depending on the mode and PHY (discussed later in the Physical Layer section)
being used. The rate can be at 1 Mbps like earlier versions, or 2 Mbps when utilizing the
high-speed feature. When utilizing the long-range feature, the rate drops to either 500 or
125 Kbps. Weʼll discuss each of these in more detail in the section on Bluetooth 5.

At the application layer and for the end-user, the data rate is much lower than the radio data
rate due to the following factors:

Gaps in between packets: The Bluetooth specification defines a gap of 150
microseconds between packets being transmitted as a requirement for adhering to the
specification. This gap is time lost with no data being exchanged between two devices.

Packet overhead: All packets include header information and data handled at levels
lower than the application level, which count towards the data being transmitted but are
not part of the data utilized by your application.

Slave data packets requirement: The requirement to send back data packets from the
slave, even when no data needs to be sent back and empty packets are sent.

Retransmission of data packets: In the case of packet loss or interference from devices
in the surrounding environment, the lost or corrupted data packets get resent by the
sender.

1.4.1.2. Range

BLE was designed for short range applications and hence its range of operation is limited.
There are a few factors that limit the range of BLE including:

It operates in the 2.4 GHz ISM spectrum which is greatly affected by obstacles that exist
all around us such as metal objects, walls, and water (especially human bodies).



Performance and design of the antenna of the BLE device.

Physical enclosure of the device which affects the antenna performance, especially if
itʼs an internal antenna.

Device orientation, which effectively relates to the positioning of the antenna (e.g. in
smartphones).

1.4.1.3. Gateway Requirement for Internet Connectivity

In order to transfer data from a BLE-only device to the Internet, another BLE device that has
an IP connection is needed to receive this data and then, in turn, relay it to another IP device
(or to the internet).

1.4.2. Advantages of BLE

Even with the previously mentioned limitations of BLE, it has presented some significant
advantages and benefits over other similar technologies in the IoT space.

Some of these advantages include:

Lower power consumption
Even when compared to other low-power technologies, BLE achieves a lower power
consumption than its competitors. It's optimized, and less power consumed, by turning
the radio off as much as possible, in addition to sending small amounts of data at low
transfer speeds.

No cost to access the official specification documents
With most other wireless protocols and technologies, you would have to become a
member of the official group or consortium for that standard in order to access the
specification. Becoming a member of those groups can cost a significant amount (up to
thousands of dollars per year). With BLE, the major version (4.0, 4.1, 4.2, 5) specification
documents are available to download from the Bluetooth website for free.

Lower cost of modules and chipsets when compared to other similar technologies.

Last but not least, its existence in most smartphones in the market. This is probably
the biggest advantage BLE has over its competitors such as ZigBee, Z-Wave, and
Thread.



1.4.3. Applications Most Suitable for BLE

Based on the limitations and benefits we mentioned earlier, there are a number of use cases
where BLE makes the most sense:

Low-bandwidth data
For cases where a device transfers small amounts of data representing sensor data or
for controlling actuators, BLE has proven to be a suitable wireless protocol to utilize.

Device Configuration
Even in cases where BLE doesnʼt satisfy the main requirements of a system, it can still
be used as a secondary interface to configure a device before the main wireless
connection is established.
For example, some WiFi-enabled devices are adding BLE as a means to configure and
establish the WiFi connection of the device instead of using a technology such as WiFi
direct (a technology that allows two WiFi devices to connect directly without going
through a WiFi router. You can Learn more about it at its Wikipedia page here).

Using a smartphone as an interface
Small, low-power devices usually donʼt have large screens and are only capable of
displaying limited amounts of data to the end user. Due to the proliferation of
smartphones nowadays, BLE can be utilized to offer an alternate, much richer user
interface to these small devices (even if just for this sole purpose). Another by-product
benefit of using a smartphone is that the data can be relayed up to the cloud.

Personal and wearable devices
For use cases where a device is portable and can be located in areas where no other
persistent wireless connections exist (such as WiFi), BLE can be used (since itʼs a direct
peer-to-peer connection).

Broadcast-only devices
Youʼve probably heard of, and maybe seen, Beacon devices before. These devices have
one simple task: to broadcast data so other devices may discover them and read their
data. There are other technologies that have been used for this kind of application.
However, BLE is becoming more and more popular because most people carry
smartphones which already support BLE out-of-the-box.

These are all great use cases that could benefit from utilizing BLE. On the other hand, use
cases that are not (generally) suitable for BLE include:



Video streaming.

High-quality audio streaming.

Large data transfers for prolonged periods of time (if battery consumption is a concern).

1.5. Architecture of BLE

The following figure shows the different layers within the architecture of BLE. The three main
blocks in the architecture of a BLE device are: the application, the host, and the controller.

Figure 3: Architecture of BLE

In this book, weʼll focus on the upper level layers of the architecture, while briefly covering
the lower levels of the architecture. Weʼll go over each of the lower-level layers in this
chapter and then look at each of the upper layers (the Generic Access Profile, the Generic
Attribute Profile, the Attribute Protocol, and the Security Manager) each in their own



chapter.

1.5.1. Application

The application layer is use-case dependent and refers to the implementation on top of the
Generic Access Profile and Generic Attribute Profile — itʼs how your application handles data
received from and sent to other devices and the logic behind it.
This portion is the code that you would write for your specific BLE application and is
generally not part of the BLE stack for the platform which you develop. This part will not be
covered in the book, since it depends on the specifics of your application and use case.

1.5.2. Host

The host contains the following layers:

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Security Manager (SM)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI) — Host side

1.5.3. Controller

The controller contains the following layers:

Physical Layer (PHY)

Link Layer

Direct Test Mode

Host Controller Interface (HCI) — Controller side



1.5.4. Layers of the BLE Architecture

1.5.4.1. Physical Layer (PHY)

The physical layer (PHY) refers to the radio hardware used for communication and for
modulating/de-modulating the data. BLE operates in the ISM band (2.4 GHz spectrum),
which is segmented into 40 RF channels, each separated by 2 MHz (center-to-center), as
shown in the following figure:

Figure 4: Frequency spectrum and RF channels in BLE

Three of these channels are called the Primary Advertising Channels, while the
remaining 37 channels are used for Secondary Advertisements and for data transfer during
a connection. Weʼll cover these concepts in detail in the chapter titled “Advertising and
Scanning”, but letʼs briefly cover the concepts here.

Advertising always starts with advertisement packets being sent on the three Primary
Advertising Channels (or a subset of these channels). This allows the devices scanning for
advertisers to find them and read their advertisement data. The scanner can then initiate a
connection if the advertiser allows it. It can also request whatʼs called a scan request, and
if the advertiser supports this scan request functionality, it will respond with a scan
response. Scan requests and scan responses allow the advertiser to send additional
advertisement data to devices that are interested in receiving this data.

Here are some other important technical details pertaining to the Physical Radio:

It uses Frequency Hopping Spread Spectrum (FHSS), which allows the two
communicating devices to switch to randomly (agreed-on) selected frequencies for
exchanging data. This greatly improves reliability and allows the devices to avoid
frequency channels that may be congested and used by other devices in the



surrounding environment.

The transmit power levels are:
Maximum: 100mW (+20 dBm) for version >= 5, 10mW (+10 dBm) for version <= 4.2

Minimum: 0.01 mW (-20 dBm)

In older versions of Bluetooth (4.0, 4.1, and 4.2), the data rate was fixed at 1 Mbps. The
physical layer radio (PHY) in this case is referred to as the 1M PHY and is mandatory in
all versions including Bluetooth 5. With Bluetooth 5, however, two new optional PHYs
were introduced:

2Mbps PHY, used to achieve twice the speed of earlier versions of Bluetooth.

Coded PHY, used for longer range communication.

Note: Weʼll be covering these two new PHYs as well as the concept of coding in more
detail in the chapter on Bluetooth 5.

1.5.4.2. Link Layer

The link layer is the layer that interfaces with the physical layer (radio) and provides the
higher-level layers an abstraction and a way to interact with the radio (through an
intermediary level called the HCI layer which weʼll discuss shortly). It is responsible for
managing the state of the radio as well as the timing requirements necessary for satisfying
the BLE specification. It is also responsible for managing hardware accelerated operations
such as: CRC, random number generation, and encryption.

The three main states in which a BLE device operates in are:

Advertising state

Scanning state

Connected state

When a device advertises, it allows other devices that are scanning to find the device and
possibly connect to it. If the advertising device allows connections and a scanning device
finds it and decides to connect to it, they each enter into the connected state.

The link layer manages the different states of the radio, shown in the following figure:



Figure 5: Link layer states

Standby: the default state in which the radio does not transmit or receive any data.

Advertising: the state in which the device sends out advertising packets for other
devices to discover and read.

Scanning: the state in which the device scans for devices that are Advertising

Initiating: the state in which a scanning device decides to establish a connection with a
device that is advertising.

Connected: the state in which a device has an established link with another device and
regularly exchanges data with this other device. This applies to both a device that was in
the advertising state or one that was scanning for advertisements and then decided to
initiate a connection with the advertising device. In this connected state, the device that
initiates the connection is called the master, and the device that was advertising is now
called the slave.

Weʼll be covering advertising, scanning, and connected states in more detail in the later



chapters.

Bluetooth Address

Bluetooth devices are identified by a 48-bit address, similar to a MAC address. There are
two main types of addresses: Public Addresses and Random Addresses.

Public Address

This is a fixed address that does not change and is factory-programmed. It must be
registered with the IEEE (similar to a WiFi or Ethernet device MAC address).

Random Address

Since manufacturers have a choice on what type of address to use (Random vs. Public),
Random addresses are more popular since they do not require registration with the IEEE. A
random address is programmed on the device or generated at runtime. It can be one of two
sub-types:

Static Address
Used as a replacement for Public addresses.

Can be generated at boot up OR stay the same during lifetime.

Cannot change until a power cycle.

Private address
This one is also split up into two additional sub-types:

Non-resolvable Private Address:
Random, temporary for a certain time.

Not commonly used.

Resolvable Private Address:
Used for privacy.

Generated using Identity Resolving Key (IRK) and a random number.

Changes periodically (even during the lifetime of the connection).

Used to avoid being tracked by unknown scanners

Trusted devices (or Bonded, which is described later in the chapter on
Security) can resolve it using the previously stored IRK.



1.5.4.3. Direct Test Mode

Direct Test Mode (DTM) is only needed for performing RF tests and used during
manufacturing and for certification tests. This layer is beyond the scope of this book, so we
wonʼt get into it in any detail.

1.5.4.4. Host Controller Interface (HCI) Layer

The HCI layer is a standard protocol defined by the Bluetooth specification that allows the
host layer to communicate with the controller layer. These layers could exist in separate
chipsets, or they could exist in the same chipset. In this sense, it also allows interoperability
between chipsets, so a device developer can choose two Bluetooth certified devices, a
controller and a host, and be 100% confident that they are compatible with each other in
terms of communication between the host and controller layers.

In the case where the host and controller are in separate chipsets, the HCI layer will be
implemented over a physical communication interface. The three officially supported
hardware interfaces by the spec are: UART, USB, and SDIO (Secure Digital Input Output). In
the case where the two layers (host and controller) live on the same chipset, the HCI layer
will be a logical interface instead.

The job of the HCI layer is to relay commands from the host down to the controller and send
events back up from the controller to the host. Following is an example of a capture of HCI
commands, HCI events, and ATT commands being exchanged between the host and
controller layers:

Figure 6: Capture of HCI packets



Examples of the messages include: command packets, configuring the controller, requesting
actions, controlling the connection and connection parameters, event packets, command
completion and status events.

1.5.4.5. Logical Link Control and Adaptation Protocol (L2CAP) Layer

The Logical Link Control and Adaptation Protocol (L2CAP) layer acts as a protocol-
multiplexing layer. It is borrowed from the Bluetooth Classic standard, and performs the
following tasks in the case of BLE:

Takes multiple protocols from the upper layers and places them in standard BLE packets
that are passed down to the lower layers beneath it.

Handles fragmentation and recombination. It takes the larger packets from the upper
layers and splits them into chunks that fit into the maximum BLE payload size supported
for transmission. On the receiver side, it takes multiple packets and combines them into
one packet that can be handled by the upper layers.

For BLE, the L2CAP layer handles two main protocols: the Attribute Protocol (ATT) (covered
in the chapter on GATT), and the Security Manager Protocol (SMP) (covered briefly in the
chapter on Security).

1.5.4.6. Upper-level Layers

The Attribute Protocol (ATT), Generic Attribute Profile (GATT), Security Manager (SM) and
Generic Access Profile (GAP) will all be covered in detail in the following chapters.



2. BLE Peripherals and Centrals

There are a few important terms that youʼll come across while learning about BLE. Two of
the most important are: BLE central and BLE peripheral. These two terms relate to the role
of a BLE device, but they can be confusing sometimes.

Letʼs go over each of these terms in a bit more detail.

2.1. Peripherals

A peripheral device is a device that announces its presence by sending out advertising
packets and accepts a connection from another BLE device (the BLE central — which will be
explained shortly).

Another related term is a BLE broadcaster. A broadcaster is a device that sends out
advertising packets as well, but with one difference from a peripheral: the broadcaster does
not allow a connection from a central device. On the other hand, an observer device only
discovers advertising devices, but does not have the capability to initiate a connection with
the advertiser.

A typical example of an application that involves a broadcaster is in Beacon technologies.
Beacons are devices that have the sole purpose of advertising and broadcasting their
existence, while not accepting connections from other devices. They are becoming popular
in two main use cases: retail marketing and indoor location services.

For example, some department stores utilize a smartphone app that can detect Beacons in
certain locations within the store. If a customer who has the storeʼs app installed on their
smartphone (and has enabled location services) approaches a Beacon, the app displays a
special offer to the customer on their phone.

The way a Broadcaster is differentiated from a peripheral device is by the advertising
packets that get transmitted by the device. There are different types of advertising packets:
some indicate the capability to accept a connection and others are simply for broadcasting
presence. When the BLE central discovers the advertising packets of another BLE device
(whether broadcaster or peripheral), it knows whether it can initiate a connection or not
based on the type of advertising packets.



Once a peripheral gets connected to a BLE central, it also becomes known as the slave in
that connection. The central device, in this case, gets called the master. These are roles
defined within the link layer, whereas the peripheral and central roles are defined within the
GAP layer.

2.2. Centrals

Weʼve briefly mentioned the BLE Central, but to formally define it:

A Central is a device that discovers and listens to other BLE devices that are advertising. It
is also capable of establishing a connection to BLE peripherals (usually multiple at the same
time).

An Observer, on the other hand, is a similar type of BLE device, but one that is not capable
of initiating a connection with a peripheral device.

2.3. Observers and Broadcasters vs. Centrals and Peripherals

Letʼs go over some advantages and disadvantages of the four different types of device:
Observers, Broadcasters, Centrals, and Peripherals.

Broadcaster Peripheral Observer Central

No need for a radio
receiver

Needs both a
receiver and
transmitter

No need for a
transmitter

Needs both a
receiver and
transmitter

No bi-directional
data transfer

Supports bi-
directional data

transfer

No bi-directional
data transfer

Supports bi-
directional data

transfer

Reduced hardware,
reduced BLE

software stack

Requires the full
BLE software

stack

Reduced hardware,
reduced BLE

software stack

Requires the full
BLE software

stack

Table 2: Comparison between Observers, Broadcasters, Peripherals, and Centrals



2.4. Power Consumption and Processing Power
Considerations

BLE is asymmetrical by design. Much of the heavy lifting regarding connection management,
time management, and processing responsibilities lies on the central side. This helps reduce
power consumption and processing power requirements on the peripheral side, thus, making
it possible to integrate BLE into smaller and more resource-constrained devices (e.g.,
battery-powered devices).

A BLE central device can still be battery powered, but will usually have a relatively large
battery thatʼs rechargeable. Most commonly, in a BLE system, the central device is a
smartphone, tablet, or a computer.

A central device also supports connecting to multiple Peripherals at the same time. A typical
example of this is a smartphone that maintains a connection to a smartwatch, a smart-home
thermostat, and a fitness tracker, all at the same time.

2.5. Multi-Role BLE Devices

In some use cases, a BLE device would benefit from acting in multiple roles simultaneously.
For example, a device may want to monitor multiple sensors (peripheral devices), and at the
same time be able to advertise its presence to a smartphone to allow access to sensor data
from a mobile app interface.



Figure 7: Multiple roles in BLE

2.6. The Role of Smartphones in BLE

One of the biggest advantages of BLE over other competing low-power wireless
technologies (such as ZigBee, Z-Wave, Thread, etc.) is its existence in the majority of
smartphones in the market. Most (if not all) smartphones already included Bluetooth Classic
since the very early days, and most Bluetooth chipset vendors are now integrating BLE
support along with Bluetooth Classic in their chipsets. The result is that the vast majority of
smartphones nowadays support BLE.

Having the capability for a smartphone to interact and connect to BLE devices provides a
couple of significant advantages:

Smartphones provide a familiar user interface for consumers, offering a rich user
experience when using a mobile app to interface with a BLE device (compared to
interfacing with the BLE device directly).

Smartphones are usually connected to the Internet. This means that the data
transmitted from the BLE device can be sent up to the cloud and stored somewhere else
for later access or analysis.



2.6.1. Challenges with BLE Development on Smartphones

There are two major mobile operating systems: Android and iOS. Android introduced native
support for BLE APIs in Android 4.3 (released July 2012), while iOS provided native BLE
support a bit earlier in iOS 5 (released October 2011).

One important thing to note is that this also depends on the hardware running the operating
system. For iOS, this included all iOS devices starting with the iPhone 4s. For Android, itʼs a
completely different story: Android runs on devices manufactured by many different
vendors, so thereʼs no easy way to determine which devices first started supporting BLE.
This Android fragmentation problem introduces a big challenge with developing Android BLE
applications that behave consistently across the dozens of existing Android phones.



3. Advertising and Scanning

3.1. Generic Access Profile (GAP)

The Generic Access Profile (GAP) provides the framework that defines how BLE devices
interact with each other. This includes the following aspects:

Modes & Roles of BLE devices.

Advertisements (advertising, scanning, advertising parameters, advertising data,
scanning parameters).

Connection establishment (initiating, accepting, connection parameters)

Security.

The implementation of this framework is mandatory per the official specification, and it is
what allows two or more BLE devices to interoperate, communicate, and be able to exchange
data with each other.

We talked briefly about the advertising and scanning states of a BLE device, and we
mentioned that a BLE device always starts in the advertising state. This is the case even
when it wants to operate in the connected state most of the time. In order for two BLE
devices to discover each other, one of them has to advertise while the other scans the three
Primary Advertising channels (RF channels 37, 38, and 39) looking for advertisement
packets sent by the advertising device.

If the advertising device supports a connection and a central device discovers it, it may
choose to establish a connection. In this chapter, we will focus on these initial states:
advertising and scanning.



3.2. Advertising State

In the advertising state, a device sends out packets containing useful data for others to
receive and process. The packets are sent at a fixed interval defined as the advertising
interval.

There are 40 RF channels in BLE, each separated by 2 MHz (center-to-center), as shown in
the following figure. Three of these channels are called the Primary Advertising Channels,
while the remaining 37 channels are used for Secondary Advertisements and for data
packet transfer during a connection.

Figure 8: RF channels in BLE

Note: Since these are the three channels that a device starts by advertising on, and usually
switches between them, they are spread apart in the frequency spectrum to avoid radio
interference between a device that's advertising on one channel and another that's
advertising on a different channel. Also, the locations of these primary channels (RF
channels 37, 38, and 39) were chosen within the spectrum to avoid interference with the
most commonly used WiFi channels.

Advertisements always start with advertisement Packets sent on the three Primary
Advertising Channels (or a subset of these channels). This allows centrals to find the
advertising device (peripheral) and parse its advertisement packets. The central can then
initiate a connection if the advertiser allows it.

The central can also request whatʼs called a scan request, and if the Advertiser supports it,
it will respond with a scan response. Scan requests and responses allow the advertiser to
send additional advertising data that would not fit in the initial advertisement packet.

Note: Primary advertisement data is limited to 31 bytes. Secondary advertisement data, on



the other hand, supports up to 254 bytes of data.

As weʼve mentioned before, some devices (broadcasters) stay in the advertising state and
do not accept connections (connectionless), while others (peripherals) allow the transition to
the connected state if a central initiates a connection (connection-oriented). For example,
most Beacons stay in the advertising state during the lifetime of the device.

The main advantage of staying in the advertising state is that multiple centrals can discover
the advertising data without the need for a connection. However, the downsides are the lack
of security and the inability for the advertiser to receive data from a central (data transfer is
unidirectional).

Figure 9: Connection-oriented vs. connectionless

3.3. Scanning State

Centrals tune to the three Primary Advertising Channels one at a time. So, in order for a
central to discover a peripheral, the central has to be tuned to the same channel on which
the peripheral is advertising at that given point. To increase the possibility of this happening,
and in order to make it happen quickly, a few advertising and scanning parameters can be
adjusted.

A device that listens for advertisements, and then sends scan Requests from the advertisers
is defined to be in the active scanning mode, while a device that passively listens to
advertising packets and does not send scan requests is said to be in the passive scanning
mode.



Figure 10: Passive vs. Active Scanning

3.4. Advertising Events

An advertising event is made up of multiple advertising packets being sent on all, or a
subset of, the three Primary Advertising Channels (37, 38, and 39). There are seven types of
advertising events (think of these as the different types of advertising packets):

Connectable and Scannable Undirected Event
This type allows other devices to receive the advertisement packets, send a scan
request to the advertiser, and establish a connection with it.

Connectable Undirected Event
This type allows other devices to receive the advertisement packets and establish a
connection with the advertiser.

Connectable Directed Event
This type allows a specific device to receive the advertisement packets and establish a
connection with the advertiser.

Non-Connectable and Non-Scannable Undirected Event
This type allows other devices to receive its advertisement packets. However, it does
not allow scan requests or the establishment of a connection with the advertiser.

Non-Connectable and Non-Scannable Directed Event
This type allows a specific device to receive the advertisements without the ability to
establish a connection with the advertiser or to send scan requests.

Scannable Undirected Event



This type allows other devices to send a scan request to the advertiser to receive
additional advertisement data.

Scannable Directed Event
This type allows a specific device to send a scan request to the advertiser to receive
additional advertisement data.

3.5. Advertising Parameters

The different advertising parameters are:

Advertising Interval
The most important parameter related to advertisements is the advertising interval.
The advertising interval value ranges all the way from 20 milliseconds up to 10.24
seconds in small increments of 625 microseconds. The advertising interval greatly
impacts battery life and should be chosen carefully. Itʼs recommended to choose the
longest advertising interval that provides a balance between fast connectivity and
reduced power consumption.



Advertising/Scan Response Data
Letʼs take a look at what fields are usually included in an advertisement packet, and
what the packet format looks like. Note that scan responses share the same format.

Figure 11: Advertising data packet format
(Source: Bluetooth 5 specification document)

The advertising data follows a format for organizing data similar to TLV (Type-Length-
Value) used in data communications, except that the length comes before the type. The
advertising data goes into the PDU portion of the BLE packet and contains the following:

Length: The length of the data that follows the length value itself (includes the AD Type
as well as the AD Data).

Advertising Data Type (AD Type): The type of advertisement data included in this
specific TLV.

Advertising Data: The actual value of the advertisement data.

Advertising Data (AD) types are defined in the Bluetooth Core Specification Supplement
document (not the Core Specification document).

Some of the most commonly used AD Types:



Local Name: contains the device name that is read by scanners that discover the
advertising device.

Tx Power Level: transmit power level, defined in units of dBm.

Flags: multiple one-bit boolean (a binary variable, having two possible values: TRUE [1]
or FALSE [0]) flags, including:

Limited Discoverable Mode

General Discoverable Mode

BR/EDR Not Supported

Simultaneous LE and BR/EDR to Same Device Capable (controller)

Simultaneous LE and BR/EDR to Same Device Capable (host)

Note: BR/EDR refers to Bluetooth Basic Rate/Enhanced Data Rate (i.e. Bluetooth
Classic).

Service Solicitation: a list of one or more UUIDs indicating what services are supported
and exposed by the deviceʼs GATT server. This helps central devices learn the available
services (explained in a later chapter) exposed by a device before establishing a
connection.

Appearance: this defines the external appearance of the device according to the
Bluetooth Assigned Numbers. These include appearances such as phone, heart rate
sensor, key ring and many more.
If you cannot find an appearance that fits the nature of your device, you can use the
UNKNOWN APPEARANCE value.

3.6. Scanning Parameters

The three main scanning parameters are:

Scan Type: Passive vs. Active Scanning.

Scan Window: indicates how long to be scanning for advertisements.

Scan Interval: indicates how often to scan for advertisements.

The scanner will listen for the complete scan window at every scan interval, and in each



scan window it will listen on a different Primary Advertising Channel. Scan window and scan
interval are configurable aspects of a scannerʼs behavior.

Figure 12: Scanning parameters



4. Connections

In order for two BLE devices to connect to each other, the following steps need to occur:

The peripheral needs to start advertising and send out connectable advertisement
packets.

The central device needs to be scanning for advertisements while the peripheral is
advertising.

If the central happens to be listening on an advertising channel that the peripheral is
advertising on, then the central device discovers the peripheral. It is then able to read
the advertisement packet and all the necessary information in order to establish a
connection.

The central then sends a CONNECT_IND packet (also known as a connection request
packet).

The peripheral always listens for a short interval on the same advertising channel after it
sends out the advertising packet. This allows it to receive the connection request packet
from the central device — which triggers the forming of the connection between the two
devices.

After this occurs, the connection is considered created, but not yet established. A
connection is considered established once the device receives a packet from its peer
device. After a connection becomes established, the central becomes known as the master,
and the peripheral becomes known as the slave. The master is responsible for managing the
connection, controlling the connection parameters, and the timing of the different events
within a connection.

4.1. Connection Events

During what's called a connection event, the master and slave alternate sending data
packets to each other until neither side has more data left to send. Here are a few aspects of
connections that are very important to know:

A connection event occurs periodically and continuously until the connection is closed
or lost.



A connection event contains at least one packet sent by the master.

The slave always sends a packet back if it receives a packet from the master

If the master does not receive a packet back from the slave, the master will close the
connection Event — it resumes sending packets at the next connection Event.

The connection Event can be closed by either side.

The starting points of consecutive Connection Events are spaced by a period of time
called the connection interval.

Figure 13: The connection interval and connection events

4.2. Connection Parameters

The parameters that define connections are:

Connection interval
The Connection Interval value ranges between 7.5 milliseconds - 4.0 seconds in



increments of 1.25 milliseconds. It is set by the central device in the connection request
packet. The central may take into account the Peripheral Preferred Connection
Parameters (PPCP), which is a way for the peripheral to inform the central of a set of
parameters that it prefers. In the end, though, it is up to the central whether to respect
these values or ignore them.

Slave Latency
The slave latency parameter allows the peripheral to skip a number of consecutive
connection Events and not listen to the central at these connection events without
compromising the connection. This allows the peripheral to sleep for longer periods of
time, potentially reducing power consumption. The slave latency value defines the
number of connection events it can safely skip.

For example, if the slave latency is set to three, then the peripheral may skip three
consecutive connection events, but it then needs to wake up the radio and listen to the
central a to listen — and respond — at every connection event.

Supervision Timeout
The supervision timeout is used to detect a loss in connection. It is defined as the
maximum time between two received data packets before the Connection is
considered lost. Its value ranges between 100 milliseconds - 32 seconds in
increments of 10 milliseconds. Another condition for this timeout value is:

𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡 > (1 + 𝑐𝑜𝑛𝑛𝑆𝑙𝑎𝑣𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦) * 𝑐𝑜𝑛𝑛𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 * 2

The one exception — where the supervision timeout does not apply — is after a
connection is created, but not yet established. In this case, the master will consider the
connection to be lost if it does not receive the first packet from the slave within:

6 * 𝑐𝑜𝑛𝑛𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

Data Length Extension (DLE)
This is a setting that can be enabled or disabled. It allows the packet size to hold a
larger amount of payload (up to 251 bytes vs. 27 when disabled). This feature was
introduced in version 4.2 of the Bluetooth specification.

Maximum Transmission Unit (MTU)
MTU stands for Maximum Transmission Unit and is used in computer networking to



define the maximum size of a Protocol Data Unit (PDU) that can be sent by a specific
protocol. The Attribute MTU (ATT_MTU as defined by the specification) is the largest
size of an ATT payload that can be sent between a client and a server.

The effective ATT_MTU gets determined by the minimum value of the maximum
ATT_MTU values that the master and slave support. For example, if a master supports
an ATT_MTU of 100 bytes and the slave responds that it supports an ATT_MTU of 150
bytes, then the master will decide that the ATT_MTU to be used for the connection from
thereon is 100 bytes.

Note: To achieve maximum throughput, make sure you enable DLE (that is, if you are
running Bluetooth 4.2 or greater). This reduces the packet overhead and any
unnecessary header data that gets transmitted with smaller packets.

4.3. Channel Hopping

As we discussed at the beginning of this chapter, there are 37 RF channels utilized for
transmitting data packets during a connection. However, not all 37 channels are necessarily
used during a connection. The used channels are defined by the channel map, which is
included in the connection request packet sent by the central to the peripheral to initiate a
connection. For each connection event, the data packets will be sent on a different channel
within the channel map.

The sequence of channels used for each of the connection events is determined by the
channel map as well as another value called the hop increment. The hop increment — like
the channel map — is also included in the connection request packet. The combination of
the channel map and hop increment determines which channel gets used at each
connection interval.



Figure 14: Channel map and hop increment

There are two channel selection algorithms used within BLE: channel selection algorithm
#1, and channel selection algorithm #2. Covering the details of these algorithms is outside
the scope of this book. To learn more about these algorithms and how they work, refer to the
Bluetooth specification document (version 5.0 | Vol 6, Part B, Section 4.5.8.2).

4.4. White List & Device Filtering

BLE supports device filtering for procedures related to: the advertising state, the scanning
state, and the initiating state (for establishing connections).

A white list is a list of addresses and address types of specific devices. It is used for
determining which peer devices a particular device is interested in. An entry for an
anonymous device address type allows matching all advertisements sent with no address.

Device Filtering gets processed at the link layer in the controller (the lower layer of the
Bluetooth stack), which saves time and overhead from being performed at the host (the
upper layer of the stack). However, the host is responsible for configuring the white list.

Hereʼs a list of the different white list filter policies that apply to each of these states:



Advertising State Filter Policy (peripheral side)
This filter policy defines how the advertiser processes both scan and connection
requests. The different configurations include:

Process scan and connection requests only from devices in the white list.

Process scan and connection requests from all devices (white list not used).

Process scan requests only from devices in the white list, while processing
connection requests from all devices.

Process connection requests only from devices in the white list, while processing
scan requests from all devices.

Scanning State Filter Policy (central side)
This filter policy defines how the scanner processes advertising packets. The different
configurations include:

Process advertising packets from all devices (white list not used).

Process advertising packets only from devices in the white list.

Initiating State Filter policy (central side)
This filter policy defines how a connection initiator processes advertising packets. The
different configurations include:

Process and initiate a connection to all devices listed in the white list.

Process and initiate a connection only to a device specified by the host.

Notice that itʼs not an option to process and connect to a connectable advertising
device that's not in the white list.



5. Services and Characteristics

Before explaining what services and characteristics are, we first need to cover two very
important concepts: the Generic Attribute Profile (GATT) and the Attribute Protocol (ATT).

GATT stands for Generic Attribute Profile. To understand what GATT is, we first need to
understand the underlying framework for GATT: the Attribute Protocol (ATT). The GATT only
comes into play after a connection has been established between two BLE devices.

Authorʼs note: If you find GAP and GATT and ATT a confusing set of similar acronyms…
donʼt blame me… Iʼm just the messenger! That said, itʼs important to keep them straight!

5.1. Attribute Protocol (ATT)

ATT defines how a server exposes its data to a client and how this data is structured. There
are two roles within the ATT:

Server:
This is the device that exposes the data it controls or contains, and possibly some other
aspects of server behavior that other devices may be able to control. It is the device that
accepts incoming commands from a peer device, and sends responses, notifications
and indications.

For example, a thermometer device will behave as a server when it exposes the
temperature of its surrounding environment, the unit of measurement, its battery level,
and possibly the time intervals at which the thermometer reads and records the
temperature. It can also notify the client (defined later) when a temperature reading has
changed rather than have the client poll for the data waiting for a change to occur.

Client:
This is the device that interfaces with the server with the purpose of reading the
serverʼs exposed data and/or controlling the serverʼs behavior. It is the device that
sends commands and requests and accepts incoming notifications and indications.  In
the previous example, a mobile device that connects to the thermometer and reads its
temperature value is acting in the Client role.

The data that the server exposes is structured as attributes. An attribute is the generic term

mahmoudelhadidi
Oval

mahmoudelhadidi
Callout
Start: 2022-11-05_1000?

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



for any type of data exposed by the server and defines the structure of this data. For
example, services and characteristics (both described later) are types of attributes.
Attributes are made up of the following:

Attribute type (Universally Unique Identifier or UUID)
This is a 16-bit number (in the case of Bluetooth SIG-Adopted Attributes), or 128-bit
number (in the case of custom attribute types defined by the developer, also
sometimes referred to as vendor-specific UUIDs).

 For example, the UUID for a SIG-adopted temperature measurement value is 0x2A1C
SIG-adopted attribute types (UUIDs) share all but 16 bits of a special 128-bit base UUID:

00000000-0000-1000-8000-00805F9B34FB

The published 16-bit UUID value replaces the 2 bytes in bold in the base UUID.

A custom UUID, on the other hand, can be any 128-bit number that does not use the
SIG-adopted base UUID. For example, a developer can define their own attribute type
(UUID) for a temperature reading as:

F5A1287E-227D-4C9E-AD2C-11D0FD6ED640

One benefit of using a SIG-adopted UUID is the reduced packet size since it can be
transmitted as the 16-bit representation instead of the full 128-bit value.

Attribute Handle
This is a 16-bit value that the server assigns to each of its attributes — think of it as an
address. This value is used by the client to reference a specific attribute, and is
guaranteed by the server to uniquely identify the attribute during the life of the
connection between two devices. The range of handles is 0x0001-0xFFFF, where the
value of 0x0000 is reserved.

Attribute Permissions
Permissions determine whether an attribute can be read or written to, whether it can be
notified or indicated, and what security levels are required for each of these
operations. These permissions are not defined or discovered via the Attribute Protocol
(ATT), but rather defined at a higher layer (GATT layer or Application layer).

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



The following figure shows a logical representation of an Attribute:

(Octets are equivalent to bytes)

Figure 15: Logical representation of an attribute
(Source: Bluetooth 5 specification document)

5.2. Generic Attribute Profile (GATT)

Now that weʼve covered the concept of attributes, weʼll go over three important concepts in
BLE that you will come across very often:

Services

Characteristics

Profiles

These concepts are used specifically to allow hierarchy in the structuring of the data
exposed by the Server. Services and characteristics are types of attributes that serve a
specific purpose. Characteristics are the lowest level attribute within a database of
attributes. Profiles are a bit different and are not discovered on a server — we will explain
them later in this chapter.

The GATT defines the format of services and their characteristics, and the procedures that
are used to interface with these attributes such as service discovery, characteristic reads,
characteristic writes, notifications, and indications.

GATT takes on the same roles as the Attribute Protocol (ATT). The roles are not set per
device — rather they are determined per transaction (such as request ⟷ response,
indication ⟷ confirmation, notification). So, in this sense, a device can act as a server
serving up data for clients, and at the same time act as a client reading data served up by
other servers (all during the same connection).

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Polygonal Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



5.3. Services & Characteristics

5.3.1. Services

A service is a grouping of one or more attributes, some of which are characteristics. Itʼs
meant to group together related attributes that satisfy a specific functionality on the server.
For example, the SIG-adopted battery service contains one characteristic called the battery
level.

A service also contains other attributes (non-characteristics) that help structure the data
within a service (such as service declarations, characteristic declarations, and others).

Hereʼs what a service looks like:

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



Figure 16: Profiles, Services, and Characteristics
(Source: Bluetooth 5 specification document)



From the figure, we can see the different attributes that a service is made up of:

One or more include services

One or more characteristics
Characteristic properties

A characteristic value

Zero or more characteristic descriptors

An include service allows a service to refer to other services for purposes such as extending
the included service. There are two types of services:

Primary Service: represents primary functionality of a device.

Secondary Service: provides auxiliary functionality of a device and is referenced
(included) by at least one other primary service on the device (it is rarely used and wonʼt
be referenced in this book).

5.3.2. Characteristics

A characteristic is always part of a service and it represents a piece of information/data that
a server wants to expose to a client. For example, the battery level characteristic represents
the remaining power level of a battery in a device which can be read by a client. The
characteristic contains other attributes that help define the value it holds:

Properties: represented by a number of bits and which defines how a characteristic
value can be used. Some examples include: read, write, write without response,
notify, indicate.

Descriptors: used to contain related information about the characteristic Value. Some
examples include: extended properties, user description, fields used for subscribing to
notifications and indications, and a field that defines the presentation of the value such
as the format and the unit of the value.

Understanding these concepts is important, however, as an application developer youʼll
probably interface with APIs provided by the chipset or mobile operating system SDK that
abstract out many of these concepts.

For example, you may have an API for enabling notifications on a certain characteristic that
you can simply call (you donʼt necessarily need to know that the stack ends up writing a

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



value of 0x0001 to the characteristicʼs Client Characteristic Configuration Descriptor
(CCCD) on a server to enable notifications).

Itʼs important to keep in mind that while there are no restrictions or limitations on the
characteristics contained within a service, services are meant to group together related
characteristics that define a specific functionality within a device.

For example, even though itʼs technically possible — it does not make sense to create a
service called the humidity service that includes both a humidity characteristic and a
temperature characteristic. Instead, it would make more sense to have two separate
services specific to each of these two distinct functionalities (temperature reading, and
humidity reading).

Itʼs worth mentioning that the Bluetooth SIG has adopted quite a few services and
characteristics that satisfy a good number of common use cases. For these adopted
services, specification documents exist to help developers implement them along with
ensuring conformance and interoperability with this service.

If a device claims conformance to a service, it must be implemented according to the service
specification published by the Bluetooth SIG. This is essential if you want to develop a
device that is guaranteed to be connectable with third-party devices from other vendors.
The Bluetooth SIG-adopted services make the connection specification “pre-negotiated”
between different vendors.

You can find the list of adopted services here, and their respective specifications here.
Adopted characteristics can be found here.

5.4. Profiles

Profiles are much broader in definition than services. They are concerned with defining the
behavior of both the client and server when it comes to services, characteristics and even
connections and security requirements. Services and their specifications, on the other hand,
deal with the implementation of these services and characteristics on the server side only.

Just like in the case of services, there are also SIG-adopted profiles that have published
specifications. In a profile specification, you will generally find the following:

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle



Definition of roles and the relationship between the GATT server and client.

Required Services.

Service requirements.

How the required services and characteristics are used.

Details of connection establishment requirements including advertising and connection
parameters.

Security considerations.

Following is an example of a diagram taken from the Blood Pressure Profile specification
document. It shows the relationship between the roles (server, client), services, and
characteristics within the profile.

Figure 17: Blood pressure profile
(Source: Blood Pressure Profile specification document)

The roles are represented by the yellow boxes, whereas the services are represented by the
orange boxes. You can find the list of SIG-adopted profiles here.

5.5. Example GATT

Letʼs look at an example of a GATT implementation. For this example, weʼll look at an
example GATT.xml file thatʼs used by the Silicon Labs Bluetooth Low Energy development
framework (BGLib).



Figure 18: GATT.xml example from Silicon Labs sample application

 In this XML, youʼll notice the following:

There are two services defined:
Generic Access Profile (GAP) service with UUID: 0x1800 (SIG-adopted service).

Cable Replacement service with UUID: 0bd51666-e7cb-469b-8e4d-
2742f1ba77cc (a custom or vendor-specific service).

The Generic Access Profile service is mandatory per the spec, and it includes the
following mandatory characteristics:

Name with UUID 0x2a00 and value: Bluegiga CR Demo.

Appearance with UUID 0x2a01 and value 0x4142.
Appearance value definitions can be found here.
Note: the creation and inclusion of this Service is usually handled by the chipsetʼs
SDK, and usually APIs are provided to simply set the Name and Appearance values.

The Cable Replacement service has one characteristic named data
The data characteristic has a UUID: e7add780-b042-4876-aae1-112855353cc1



It has both writes and indications enabled.

5.6. Attribute Operations

There are six different types of attribute operations. They are:

Commands: sent by the client to the server and do not require a response (defined
below).

Requests: sent by the client to the server and require a response. There are two types
of requests:

Find Information Request

Read Request

Responses: sent by the server in response to a request.

Notifications: sent by the server to the client to let the client know that a specific
characteristic value has changed. In order for this to be triggered and sent by the server,
the client has to enable notifications for the characteristic of interest. Note that a
notification does not require a response from the client to acknowledge its receipt.

Indications: sent by the server to the client. They are very similar to notifications, but
require an acknowledgment to be sent back from the client to let the server know that
the indication was successfully received.

Note: Notifications and indications are exposed via the Client Characteristic
Configuration Descriptor (CCCD) attribute. Writing a “1” to this attribute value enables
notifications, whereas writing a “2” enables indications. Writing a “0” disables both
notifications and indications.

Confirmations: sent by the client to the server. These are the acknowledgment packets
sent back to the server to let it know that the client successfully received an indication.

5.6.1. Flow Control and Sequence of Attribute Operations

Requests are sequential in nature and require a response from the server before a new
request can be sent. Indications have the same requirement: a new indication cannot be sent

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Oval

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight



before a confirmation for the previous indication is received by the server.

Requests and indications, however, are mutually exclusive in terms of the sequence
requirement. So, an indication can be sent by the server before it responds to a request that
it had received earlier.

Commands and notifications are different, and do not require any flow control — they can be
sent at any time. Because of this — and because a server or client may not be able to handle
these packets (due to buffer or processing limitations) — they are considered unreliable.
When reliability is a concern, requests and indications should be used instead.

5.6.2. Reading Attributes

Reads are requests by nature since they require a response. There are different types of
reads. Here we list the two most important ones:

Read Request: a simple request referencing the attribute to be read by its handle.

Read Blob Request: similar to the read request but adds an offset to indicate where the
read should start, returning a portion of the value. This type of read is used for reading
only part of a characteristicʼs value.

5.6.3. Writing To Attributes

Writes can be either commands or requests. Here are the most common types of writes:

Write Request: as the name suggests, this requires a response from the server to
acknowledge that the attribute has been successfully written to.

Write Command: this has no response from the server.

Queued Writes (atomic operation behavior): these are classified as requests and
require a Response from the server. They are used whenever a large value needs to be
written and does not fit within a single message. Instead of writing parts of the value
and risking someone else reading the incorrect (partial) value, two types of write
requests are used to make sure the operation completes safely:

One or more Prepare Write Requests: each includes an offset at which the sent
value should be written within the attribute value. The sent values are also referred
to as prepared values, and they get stored in a buffer on the server side — not

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Rectangle

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Oval

mahmoudelhadidi
Line

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Line

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight

mahmoudelhadidi
Highlight



written to the attribute yet. This operation requires a response from the server.

One Execute Write Request: used to request from the server to either execute or
cancel the write operation of the prepared values. It requires a response from the
server and once a response has been received from the server, the client can now
be sure that the attribute holds the complete value it sent to the server.

5.6.4. Exchange MTU Request

The server and the client agree on a common value that is used for both data transfer
directions. The client is the side that sends this exchange MTU request packet, and can only
send it once per connection (per the Bluetooth specification, version 5.0, Vol 3, Part F,
Section 3.4.2.1).

The server then responds with an exchange MTU response packet indicating the ATT_MTU it
can support. The agreed-on value then becomes the minimum of the ATT_MTU values
exchanged between the client and server.

Itʼs important to know that different BLE stacks have different maximum values of ATT_MTU
that they can support.

5.7. Designing your GATT

5.7.1. General Guidelines

While GATT is a pretty flexible framework, there are a few general guidelines to follow when
designing it and creating the services and characteristics within it. Following are some
recommendations:

Make sure to implement the following mandatory service and its characteristics:
Generic Access Profile (GAP) service.

Name and Appearance characteristics within the GAP service.

One thing to keep in mind is that vendor SDKs usually do not require you to explicitly
implement this service, but rather they provide APIs for setting the name and
appearance. The SDK then handles creating the GAP service and setting the
characteristics according to the user provided values.

mahmoudelhadidi
Oval

mahmoudelhadidi
Oval

mahmoudelhadidi
Callout
End:2022-11-05_1235 Start:2022-11-06 0945



Utilize the Bluetooth SIG-adopted profiles, services, and characteristics in your design
whenever possible. This has the following benefits:

You get the benefit of reducing the size of data packets involving UUIDs for services
and characteristics (including advertisement packets, discovery procedures, and
others) — since 16-bit UUID values are used instead of 128-bit values.

Bluetooth chipset and module vendors usually provide implementations of these
profiles, services, and characteristics in their SDKs — reducing development time
considerably.

Interoperability with other third-party devices and applications, allowing more
devices to interface with your device and provide a richer user experience.

Group characteristics that serve related functionality within a single service.

Avoid having services with too many characteristics. A good separation of services
makes it faster to discover certain characteristics and leads to a better GATT design
thatʼs modular and user-friendly.

In the next chapter, we'll go over a practical example showing how to design the GATT for a
BLE home automation system.



6. GATT Design Exercise

Designing the GATT for your BLE device can be a challenge. To make this task easier, let's go
through a complete exercise of designing the GATT for a simple BLE home automation
system.

The home automation system is a hypothetical one, but one that will help you better
understand the steps taken in designing the GATT of a real-life application, rather than some
other generic, abstract system. Here's a diagram showing the different elements of the
home automation system and how they interact with each other.

Figure 19: BLE home automation project example

The system consists of multiple elements (devices). Some of these are off-the-shelf
components that we don't have control over, while others are devices whose firmware we do
have control over and to which we will design their GATT structure.



6.1. General System Description

Letʼs go ahead and describe the main user scenarios of the system:

v. The homeowner can use the remote control to turn on/off the Bluetooth lightbulb.

w. The homeowner can monitor changes in the temperature and humidity of the
environment sensor.

x. The homeowner is notified of the battery levels of the remote control, Bluetooth
lightbulb, and environment sensor.

6.2. System Elements

Now, let's go over the different elements within the system.

v. Gateway
The gateway will act as a BLE central when communicating with all the other devices
except the smartphone, where it will act as a peripheral. We have control over this
device and we will be designing its GATT.
The commands for controlling the Bluetooth lightbulb will be routed from the remote
control through the gateway and to the Bluetooth lightbulb.

w. Remote Control
The remote control is a device that will act as a peripheral only, and one that we will be
designing the GATT for.

x. Environment Sensor
This is an off-the-shelf device over whose GATT design we have no control, so we will
simply be interested in reading the data from it (temperature and humidity readings).

y. Bluetooth Lightbulb
This is another off-the-shelf device over whose GATT we have no control.

z. Smartphone
This is also another existing device over whose GATT we have no control.

6.3. GATT Design

Letʼs go through the GATT design process, step-by-step:



6.3.1. Step 1: Documenting the Different User Scenarios and Data Points

Even though the GATT is usually more focused on the peripheral role (since a peripheral is
usually the server exposing the data), the central can still act as the server in some cases for
specific data points it needs to expose. Also, since we are designing both sides of the
system (peripheral and central on the gateway), it helps to think in terms of what needs to
happen from each side since this could affect some aspects of the system and GATT design.

6.3.1.1. Gateway

The gateway device acts in both the central and peripheral role. Each of these roles are used
to enable communication with different devices within the system. The main purpose of the
gateway is to act as a central device to read data from multiple peripherals. It then exposes
this information via the peripheral role to another central device (the smartphone) that is
able to relay this data to a cloud server.

Letʼs go through the user scenarios from the gatewayʼs perspective for each of the central
and peripheral roles.

Peripheral Role

The remote control notifies the gateway when specific buttons are pressed to turn
on/off the Bluetooth lightbulb.

The following data points within the system need to be reported up to a cloud server via
the gateway. These data points get exposed as a GATT Server in the peripheral role to
the central device (the smartphone) that has an Internet connection (which allows it to
relay this data up to the cloud server).

Environment sensor temperature reading

Environment sensor humidity reading

Bluetooth lightbulb status (on/off)

Individual battery levels for the environment sensor, Bluetooth lightbulb, and the
remote control.

Central Role

The gateway device needs to read some of the data exposed by devices within the system
and get notified of other data points exposed by these devices.



6.3.1.2. Remote Control

The remote control provides one main function: turning the Bluetooth lightbulb on or off. It
acts strictly in the peripheral role and needs to expose the following data points:

On button press: the gateway needs to be notified of this event when it occurs.

Off button press: the gateway needs to be notified of this event when it occurs.

Battery level: the gateway needs to be able to read this data and be notified when it
changes.

6.3.2. Step 2: Define the Services, Characteristics, and Access
Permissions

The next step is to group the characteristics into meaningful groups (services) based on
their functionalities and define the access permissions for each of these characteristics.

6.3.2.1. Gateway

We have one GATT Server for the gateway, and it exists for the peripheral role. By looking at
the data points (characteristics) we listed previously, we can group them into the following
services:

Environment Sensor Service:
Environment sensor temperature reading characteristic: "Temperature".
Access permissions: Read, notify.

Environment sensor humidity reading characteristic: "Humidity".
Access permissions: Read, notify.

Battery level characteristic: "Battery Level".
Access permissions: Read, notify.

Playbulb Service:
Light status characteristic: "Light Status".
Access permissions: Read, notify.

Battery level characteristic: "Battery Level".
Access permissions: Read, notify.

Remote Control Service:
Battery level characteristic: "Battery Level".



Access permissions: Read, notify.

In addition to these services, it is mandatory (per the Bluetooth specification) to implement
the following service:

GAP service:
Name characteristic: the device name.
Access: Read.

Appearance characteristic: a description of the device.
Access: Read.

6.3.2.2. Remote Control

We have one GATT server for the remote control. We can define the following services and
characteristics:

GAP service (mandatory):
Device name characteristic: "Device Name".
Access permissions: Read.

Appearance characteristic.
Access permissions: Read.

Battery service:
Battery level characteristic : "Battery Level".
Access: Read, notify.

Button service:
On button characteristic: "On Button Press".
Access permissions: Notify.

Off button characteristic: "Off Button Press".
Access permissions: Notify.

6.3.3. Step 3: Re-use Bluetooth SIG-Adopted Services & Characteristics

6.3.3.1. Gateway

The environment sensor, Bluetooth lightbulb, and remote control services are all custom
services, since there are no SIG-adopted ones that can be utilized for them. We have three



devices for which we need to expose the battery level, so we can reuse the SIG-adopted
battery level characteristic. We will reuse it for each device within each device's service in
the gateway GATT. Weʼll also re-use the mandatory GAP service.

6.3.3.2. Remote Control

For the remote control, we can reuse both the battery service and the mandatory GAP
service.

6.3.4. Step 4: Assign UUIDs to Custom Services and Characteristics

For any custom services and characteristics within the GATT, we can use an online tool to
generate UUIDs such as the Online GUID Generator.

A common practice is to choose a base UUID for the custom service and then increment the
3rd and 4th Most Significant Bytes (MSB) within the UUID of each included characteristic.

For example, we could choose the UUID:

00000001-1000-2000-3000-111122223333

for a specific service and then

0000000[N]-1000-2000-3000-111122223333, (where N > 1) for each of its characteristics.

The only restriction for choosing UUIDs for custom services and characteristics is that they
must not collide with the Bluetooth SIG base UUID:

XXXXXXXX-0000-1000-8000-00805F9B34FB

However, following the previously mentioned common practice makes it a bit easier to relate
services and their characteristics to one another.

The following tables list the services and characteristics along with their UUIDs for each of
the gateway and remote control devices:



Table 3: Gateway GATT design

Table 4: Remote control GATT design

6.3.5. Step 5: Implement the Services and Characteristics Using the
Vendor SDK APIs

Each platform, whether it's an embedded or mobile one, has its own APIs for implementing
services and characteristics. This is left to the reader to implement for the specific platform
they choose for their BLE device or application.



7. Bluetooth 5

Bluetooth 5 focuses on broadening the range of Internet of Things (IoT) applications that can
utilize BLE. It brings us twice the speed, four times the range, and eight times the advertising
capacity.

Letʼs go over the list of new features introduced by Bluetooth 5 (from the Bluetooth
specification document):

New features added in version 5:

CSA 5 features (Higher Output Power)

Slot Availability Mask (SAM)

2 Msym/s PHY for LE

LE Long Range

High Duty Cycle Non-Connectable Advertising

LE Advertising Extensions

LE Channel Selection Algorithm #2

In this chapter, weʼll focus on the most important of these changes:

2 Msym/s PHY for LE (2x the speed)

LE Long Range (4x the range)

LE Advertising Extensions (8x the Advertising capacity)

To learn more about the other new features introduced in Bluetooth 5 and not covered in this
chapter, refer to the Bluetooth 5 specification document.

Note: Msym/s (Megasymbols per second) is used here instead of Mbps because it refers to
the actual radio transmission capability. In some cases (as we will see for the Coded PHY),
multiple symbols will be used to represent a single bit, therefore reducing the Mbps rate. In
the remainder of this chapter, we will be using "M" for short in place of "Msym/s".



7.1. Twice the Speed, Four Times the Range

Recall that a PHY refers to the physical radio. The Bluetooth specifications before Bluetooth
5 allowed a single PHY, operating at 1 MSym/sec.

As weʼve mentioned previously, Bluetooth 5 introduced two new (optional) PHYs:

v. 2M PHY:
Used to achieve twice the speed of earlier versions of Bluetooth. It offers a couple of
extra benefits as well:

Reduced power consumption, since the same amount of data is transmitted in less
time, thus reducing radio-on time.

Improvement of wireless coexistence because of the decreased radio-on time.

One downside to using the 2M PHY is that it has the potential of reducing the range, as
the higher speed results in a decrease in radio sensitivity on the receiving end. Another
is that the use of the 2M PHY is restricted to the secondary advertisement and data
channels. Itʼs important to note that this new PHY represents a hardware change, so
older chipsets and modules may not support it.

w. Coded PHY:
Used to achieve four times the range of earlier versions of Bluetooth. The obvious
benefit of using the coded PHY is increased range, with two trade-offs:

Higher power consumption: due to the fact that weʼre transmitting multiple
symbols to represent one bit of data, resulting in longer radio-on time to transmit
the same amount of data.

Reduced speeds: due to the fact that more bits are needed to transmit the same
amount of data (125 kbps or 500 kbps, depending on the coding scheme used —
explained below).

Ranges as far as 800 meters line-of-sight have been recorded while testing with the
coded PHY. This makes it possible to use BLE in applications such as ones that
require communication with a device hundreds of meters away.

The data rates we discussed above define the rate at which the radio transmits raw data.
When it comes to the application data rate — in terms of how much bandwidth your



application can utilize — these numbers are reduced.

This is due to mandatory (time) gaps in between packets (150 microseconds, per the
Bluetooth specification), packet overhead, as well as some other requirements defined by
the specification (for specific use cases such as responses and confirmation packets).

As an example, in the case of the 2M PHY, one can achieve a maximum application data rate
of around 1.4 Mbps.

7.1.1. 2M PHY

At the application level, you do not need to know much about the low-level details of this
PHY, other than setting it when you want to achieve higher speeds. But keep in mind that
using this PHY potentially reduces the range.

Another restriction that was mentioned above is that the 2M PHY is not allowed in primary
advertisements. There are two ways to utilize this mode:

Secondary advertisements (extended advertising mode) are used and sent on the 2M
PHY, which allow a connection on that PHY from the central device.

Advertising on the primary or secondary channels using the 1M or the coded PHY. A
connection is then established, and either side can request a PHY update to use the 2M
PHY during the connection.

One important thing to note is that the link between a peripheral and a central can be
asymmetric, meaning that the packets from the peripheral can be sent using the 1M PHY,
while packets from the central can be sent using the 2M PHY.

7.1.2. Coded PHY

As mentioned earlier, Bluetooth 5 achieves the longer range compared to earlier versions of
Bluetooth by introducing the new coded PHY. So, what does coding mean? And how does it
help achieve a longer range of communication?

It achieves this by utilizing a telecommunications technique called Forward Error Correction
(FEC). FEC allows the receiver to recover the data from errors that occur due to noise and
interference. It accomplishes this by introducing redundancy in the data being transmitted,



using a specific algorithm. So, instead of requiring retransmission of data when an error
occurs, the receiver can recover the originally transmitted data by utilizing the redundancy in
the data.

There are two coding schemes used by the coded PHY:

S = 2, where 2 symbols represent 1 bit therefore supporting a bit rate of 500 kbps.

S = 8, where 8 symbols represent 1 bit therefore supporting a bit rate of 125 kbps.

7.2. Eight Times the Advertising Capacity

7.2.1. Extended Advertisements

Bluetooth 5 introduced the concept of secondary advertising channels which allow the
device to offload data to advertise more data than whatʼs allowed on the primary
advertisement channels. Advertisements that are transmitted only on the primary
advertisement channels are called legacy advertisements, whereas advertisements that
start by transmission on the primary channels and then continue on the secondary channels
are called extended advertisements.

In the case of extended advertisements, the advertisement packets sent on the primary
advertisement channels provide the information necessary to discover the offloaded
advertisements that are sent on the secondary advertisement channels. These are utilized
for sending significantly more data (8x) than legacy advertisements allow (up to 255 bytes
vs. 31 bytes). They are also useful in reducing congestion on the three primary advertising
channels.

Advertisement packets sent on the secondary advertisement channels can use any of the
three PHYs (1M PHY, 2M PHY, or coded PHY), whereas the primary advertisement channels
can only use the coded PHY or the original 1M PHY. This means that a central must use the
1M PHY or coded PHY when initially searching for peripherals that are sending out
advertising packets.



7.2.2. Periodic Advertisements

Think of the following use case: we have multiple temperature sensors distributed in a
building. The temperature readings from these sensors change over time, and they need to
be distributed along with other data (location, time of reading, etc.) to multiple devices that
pass this data up to the cloud.

We could potentially use extended advertisements since we may have more data than would
fit into the legacy advertisement packet (31 bytes), but that means the centrals will have to
be looking for advertisements all the time, potentially consuming a lot of power (especially if
the advertisement data does not change often).

Instead, we could utilize a new feature that was introduced in Bluetooth 5: periodic
advertisements. Periodic advertisements are a special case of extended advertisements
and allow a central to “synchronize” to a peripheral that is sending these extended
advertisements at a fixed interval. This helps reduce power consumption when the
advertisements are sent periodically at longer intervals, while allowing multiple centrals to be
synchronized to the same peripheral.

The way periodic advertisements work is by transmitting advertising packets on the primary
advertisement channels, which hold information (e.g., time offset, PHY, etc.) to help locate
the extended advertisement packet. That packet, in turn, contains fields that define the data
needed to synchronize to the periodic advertisement packets — similar to how connections
are synchronized using a channel map, hop increment, the selected PHY, etc.

7.3. More on Extended Advertisements

Extended advertisements utilize the Secondary Advertisement Channels, which are the
same channels used by data packets transmitted during a connection between two devices.
Extended advertisements are not considered part of the advertisement events we talked
about previously (also called legacy advertisements), which occur on the primary
advertising channels (37, 38, and 39).

Extended advertisements are used to “offload” data that would otherwise exist on the
Primary Advertising Channels — also called auxiliary packets. Offloading is accomplished
by first advertising on the primary channel data values that point to an auxiliary packet on
the secondary channel. The advertisement packets sent on the primary channels contain the



PHY channel and the offset to the start time of the extended advertisement packet.

Another important aspect is that extended advertisements can use any of the three PHYs
(1M PHY, 2M PHY, or the coded PHY), whereas primary advertisement packets can only be
sent using the 1M PHY or the coded PHY.

Since non-Bluetooth 5 devices are not able to discover extended advertisements, it is
recommended that peripherals also use an advertising set (additional advertisements) with
legacy advertising PDUs for older central devices to be able to discover these peripherals.

Hereʼs a diagram showing an example of extended advertising:

Figure 20: Extended advertising
(Source: Bluetooth 5 specification document)



The periodic advertising mode allows two or more devices to communicate in a connection-
less manner. The peripheral device sends out synchronization information along with the
other extended advertisement data allowing another device to become synchronized with
this peripheral. This synchronization allows devices to receive the peripheral deviceʼs
extended advertisements at regular, deterministic intervals.

Hereʼs a diagram showing an example of periodic advertising:

Figure 21: Periodic advertising
(Source: Bluetooth 5 specification document)



8. Security

Security has become one of the most voiced concerns about IoT systems. With all the
headline news that mention hacks and vulnerabilities discovered in many IoT products, it has
become one of the major concerns for manufacturers and developers of IoT devices.

In this chapter, we will:

Go over the different security concerns.

Take a look at the security measures that BLE provides.

Cover Privacy concerns.

8.1. Security Concerns

Some of the most common security concerns with any system include:

Authentication: Authentication is proof that the other side is who they claim they are.
So if youʼre connecting to a BLE device, you want to be sure that you are actually
connecting to the device of interest — and not some other malicious device thatʼs
pretending to be that device.

Integrity: Integrity ensures us that the data received is free from corruption and
tampering by unauthorized devices.

Confidentiality: Confidentiality is concerned with making sure the data is not readable
by unauthorized users or devices.

Privacy: Privacy is concerned with how private the communication is, and whether a
third party is able to track our device — especially by its Bluetooth address.

These are some general concerns related to security that apply to any system. The
importance of each one of these concerns depends on the application and use case of the
product.

8.1.1. Types of Attacks

Based on the above mentioned concerns, there are different types of attacks that a
malicious device or person may implement. Some of these include:



Passive Eavesdropping: This describes when a malicious device listens in on the
communication between two devices, and is able to understand the data — usually by
gaining access to the encryption key in the case the data is encrypted.

Active Eavesdropping: This is also known as a Man-In-The-Middle (MITM) attack. In
this attack, the malicious device impersonates both devices (the peripheral and the
central). It could then intercept the communication between them, route it so they do
not realize that the attack is happening, and possibly even injecting data into the
packets.

Privacy and Identity Tracking: In this attack, devices and users are tracked by the
Bluetooth address — possibly revealing their location and correlating it with their
behavior.

8.2. Security in BLE

Security in BLE is handled by the security manager (SM) layer of the architecture. It is
shown in the following diagram:



Figure 22: Security manager (SM) in the architecture of BLE

The security manager defines the protocols and algorithms for generating and exchanging
keys between two devices. It involves five security features:

Pairing: the process of creating shared secret keys between two devices.

Bonding: the process of creating and storing shared secret keys on each side (central
and peripheral) for use in subsequent connections between the devices.

Authentication: the process of verifying that the two devices share the same secret
keys.

Encryption: the process of encrypting the data exchanged between the devices.
Encryption in BLE uses the 128-bit AES Encryption standard, which is a symmetric-key
algorithm (meaning that the same key is used to encrypt and decrypt the data on both
sides).

Message Integrity: the process of signing the data, and verifying the signature at the
other end. This goes beyond the simple integrity check of a calculated CRC.



The Bluetooth specification has evolved over time to provide stronger security measures.
This is especially true for BLE, which introduced the concept of LE Secure Connections
(LESC) in version 4.2. LESC utilizes the Elliptic-curve Diffie-Hellman (ECDH) protocol during
the pairing process (covered later in this chapter), which makes the communication much
more secure compared to the methods used in earlier versions of Bluetooth.

Bluetooth 4.2 also introduced the term legacy connections, which collectively refers to the
pairing methods defined by the earlier specification versions. Itʼs important to note, though,
that legacy connections are still supported in Bluetooth 4.2 and later. Weʼll cover the
differences between these methods in the upcoming sections.

The Security Manager addresses the different security concerns as follows:

Confidentiality via encryption.

Authentication via pairing & bonding.

Privacy via resolvable private addresses.

Integrity via digital signatures.

In BLE, the master device is the initiator of security procedures. The slave (responder) may
request the start of a security procedure by sending a security request message to the
master, but it is up to the master to then send the packet that officially starts the security
process.

To better understand how security works in BLE, we need to understand two important
concepts: pairing and bonding. But first, letʼs review a sequence diagram showing the
security process:



Figure 23: The different phases of the security process in BLE

Pairing is the combination of Phases 1 and 2. Bonding is represented by Phase 3 of the
process. One important thing to note is that Phase 2 is the only phase that differs between
LE Legacy Connections and LE Secure Connections.

8.2.1. Pairing and Bonding

Pairing is a temporary security measure that does not persist across connections. It has to
be initiated and completed each time the two devices reconnect and would like to encrypt
the connection between them. In order to extend the encryption across subsequent
connections, bonding must occur between the two devices.



Letʼs go over the different phases in more detail:

8.2.1.1. Phase One

In this phase, the slave may request the start of the pairing process. The master initiates the
pairing process by sending a pairing request message to the slave, which then responds
with a pairing response message. 

The pairing request and pairing response messages represent an exchange of the features
supported by each device, as well as the security requirements for each device. Each of
these messages include the following:

Input Output (IO) capabilities: display support, keyboard support, yes/no input
support.

Out-Of-Band (OOB) method support.

Authentication requirements: includes MITM protection requirement, bonding
requirement, secure connections support.

Maximum encryption key size that the device supports.

The different security keys each device is requesting to use.

The information exchanged between the two devices in this phase determines the pairing
method used. Hereʼs a table showing the different combinations of the exchanged IO
capabilities (on the two pairing devices) and the resulting pairing method chosen:



Figure 24: IO Capabilities Lookup Table
(Source: Bluetooth 5 specification document)

8.2.1.2. Phase Two

As mentioned previously, phase two differs based on which method is used: LE secure
connections or LE legacy connections.

Letʼs explain how this phase differs between the two methods:

Legacy Connections:
In legacy connections, there are two keys used: the temporary key (TK) and the short
term key (STK). The TK is used along with other values exchanged between the two
devices to generate the STK.

Secure Connections:
In secure connections, the pairing method does not involve exchanging keys over the
air between the two devices. Rather, the devices utilize the ECDH protocol to each
generate a public/private key pair. The devices then exchange the public keys only, and
from that generate a shared secret key called the long term key (LTK).

The advantage of using ECDH is that it prevents eavesdroppers from figuring out the
shared secret key — even if they capture both public keys. To learn more about ECDH



and how it works, refer to its Wikipedia page here. Iʼve also found that this video
explains it very well.

8.2.1.3. Phase Three

Phase three represents the bonding process. This is an optional phase thatʼs utilized to
avoid the need to re-pair on every connection to enable a secure communication channel.

The result of bonding is that each device stores a set of keys that can be used in each
subsequent connection and allows the devices to skip the pairing phase. These keys are
exchanged between the two devices over a link thatʼs encrypted using the keys resulting
from phase two.

8.2.2. Pairing methods

Legacy Connections and Secure Connections each have different Pairing Methods. Some of
the Methods share the same name, but the process and the data exchanged differs among
them. The Pairing Method that gets used is determined based on the features exchanged
between the two devices in Phase One.

8.2.2.1. LE Legacy Connections (All Bluetooth versions)

As we mentioned earlier, in legacy connections a short term key (STK) is generated from
the temporary key (TK) and two randomly generated values.

Just Works:
In this method, TK is set to 0. For obvious reasons, this method is the least secure of all
methods (amongst all Bluetooth versions).

Out of Band (OOB):
In this method, the TK is exchanged between the two devices over a technology other
than BLE — near field communication (NFC) being the main one. This method can
make the pairing process much more secure, especially if the non-BLE technology used
provides stronger security. This is the most secure method of the legacy pairing
methods.

Passkey:
In this method, the TK is a six-digit number that is transferred between the devices by
the end-user. For example, it may be entered manually into one of the devices. The



challenge here is that the devices need to have some minimal IO capabilities such as a
display and keyboard entry methods, so its use may be limited.

8.2.2.2. LE Secure Connections (Bluetooth version 4.2 and later)

Just Works:
In this method, the public keys for each device along with other generated values get
exchanged between the two devices over BLE.

Out of Band (OOB):
In this method, the values are exchanged over a medium other than BLE. If the used
medium is secure, then this makes the connection more secure.

Passkey:
In this method, an identical six-digit number is used. The six-digit number could either
be entered by the user into each device, or one of the devices will generate it for the
user to manually enter it into the other device.

Numeric Comparison:
This method works the same as the just works method described above but adds an
extra step at the end. This extra step allows protection from MITM attacks. This is the
most secure pairing method of all methods.

Note: Security in BLE is a vast subject that cannot be fully covered in this book. You can
learn more about the different pairing methods and how each of them works in more detail
by reviewing message sequence diagrams provided in the Bluetooth 5 specification
document (Vol 3, Part H, Appendix C. page 2364).

8.3. Privacy

Privacy is another major concern for users and it has to be taken seriously. Each Bluetooth
device has an address, and if careful measures are not put in place, this address can be
used to track users. Fortunately, BLE provides a privacy feature to safeguard against such
vulnerabilities.

A device can use a frequently changing private address for its Bluetooth address that only
trusted devices can resolve. A trusted device in this case is a bonded device. The random
private address is generated using a key called the identity resolving key (IRK), which is
exchanged between two bonded devices during phase three. This way, the peer device has



access to the IRK and can resolve the random address.

8.4. An Overview of the Different Security Keys

There are a number of keys and variables used during the different security procedures.
Letʼs go over them one by one.

Temporary Key (TK):
Generation of the temporary key (TK) depends on the pairing method chosen. The TK
gets generated each time the pairing process occurs. The TK is used in legacy
connections only.

Short Term Key (STK):
This key is generated from the TK exchanged between the devices. The STK gets
generated each time the pairing process occurs and is used to encrypt the data
throughout the current connection. The STK is used in legacy connections only.

Long Term Key (LTK):
This key gets generated and stored during phase three of the security process in legacy
connections and during phase two in LE secure connections. It gets stored on each of
the two devices that are bonded, and used in subsequent connections between the two
devices.

Encrypted Diversifier (EDIV) and Random Number (Rand):
These two values are used to create and identify the LTK. They also get stored during
the bonding process.

Connection Signature Resolving Key (CSRK):
Used to sign data and verify the signature attached to the data at the other end. This
key is stored on each of the two bonded devices.

Identity Resolving Key (IRK):
Used to resolve random private addresses. This key is unique per device, so the
masterʼs IRK will get stored on the slave side, and the slave's IRK will be stored on the
master side.



8.5. Security Modes and Levels

There are two security modes in BLE: Security mode 1 and security mode 2. Security mode
1 is concerned with encryption whereas security mode 2 is concerned with data signing.

Here are the different levels for each mode:

Security Mode 1

Level 1: No security (no authentication and no encryption)

Level 2: Unauthenticated pairing with encryption

Level 3: Authenticated pairing with encryption

Level 4: Authenticated LE secure connections pairing with encryption

Security Mode 2

Level 1: Unauthenticated pairing with data signing

Level 2: Authenticated pairing with data signing

A link is considered authenticated or unauthenticated based on the pairing method used.
Looking back at the table listed under the section on pairing phase one we can see that for
each entry, it lists whether the method is considered authenticated or unauthenticated.

A link between two devices operates in one security mode only but can operate at different
levels within that mode (different characteristics may require different levels of security). For
example:

One characteristic may require Level 1 (no security) for read access.

The same characteristic may require level 3 for write access.

Another characteristic may require level 4 for both read and write access.

8.6. What Triggers Security on a Connection?

There are a number of operations that trigger security on a connection, some of which are:

The master sends a pairing request, which results in the slave sending a pairing



response.

The slave sends a security request, to which the master responds with a pairing request.
This results in the slave sending a pairing response.

A client accesses a characteristic on the server which requires a specific security level,
triggering a pairing — and possibly bonding the two devices.

For example, if the notification permissions on a specific characteristic are configured to
require security, then when a unsecured client attempts to enable notifications, an
insufficient authentication response message will be sent from the server indicating
that a certain level and mode of security are required for the operation to be completed.

Two previously bonded devices connecting to each other — which triggers encryption
using the previously distributed Keys.

Note: iOS does not allow requiring special permissions, such as pairing, authentication, or
encryption to discover services and characteristics. Instead, it requires that the server only
restrict access or permissions to characteristics in order to trigger pairing. This is according
to the iOS Bluetooth guidelines document that can be downloaded here.



9. An Introduction to Bluetooth Mesh

The introduction of the BLE standard came in 2010 to address the rapid growth of use cases
in the Internet of Things (IoT) field including sensors, wearables, medical devices, etc.
However, one thing that BLE lacked since the beginning is the capability of supporting a
many-to-many topology (often referred to as a mesh network), where multiple BLE devices
can send each other messages and relay messages to other devices within a network. This
all changed in July 2017 when the Bluetooth SIG released the Bluetooth mesh standard.

In this chapter, we'll be going over the most important concepts to get you started on the
path of learning Bluetooth mesh.

9.1. Basics of Bluetooth Mesh

The goal of Bluetooth mesh is to increase the range of BLE networks and add support for
more industrial applications that utilize BLE technology.

Before the release of Bluetooth mesh, BLE supported only two topologies:

One-to-one: when two BLE devices are connected to each other.

One-to-many: when BLE devices stay in the advertising state such as in Beacons.

With Bluetooth mesh, a new topology is introduced for BLE networks: devices can now
operate in a many-to-many topology.



Here's a diagram showing each of these topologies:

Figure 25: Topologies in BLE

There are two main benefits of a mesh network:

Extended range
Since nodes can relay messages to far away nodes via the nodes in between them, this
allows a network to extend its range and expand the reach of devices.

Self-healing capabilities
Self-healing refers to the fact that there is no single point of failure. If a node drops
from the mesh network, the other nodes can still participate and send messages to one
another. However, this is only partially true for Bluetooth mesh since it has different
types of nodes within the network, some of which other nodes may depend on. We will
cover the different types of nodes later in this chapter.

Here are a few important notes regarding Bluetooth mesh:

Bluetooth mesh supports all BLE versions (back to the original version 4.0) and requires
no hardware changes. It does, however, require a software update to devices already in
the field in order to support the standard.

Bluetooth mesh is a separate standard from BLE and has its own specification
documents, which can be found at this link.

Bluetooth mesh version 1.0 does not support any of the Bluetooth 5 features such as
advertising extensions and the coded PHY. This may very well change in future versions.



9.2. Architecture of Bluetooth Mesh

Bluetooth mesh builds on top of BLE. It specifically utilizes the advertising state of BLE
devices. Devices within a Bluetooth mesh network do not connect to each other like
traditional BLE devices do. Rather, they use the advertising and scanning states to relay
messages to each other. There is one exception to this in a special device that can be part of
the mesh network (which we'll cover in the section on "Node Types").

Figure 26: Bluetooth mesh architecture

Here's a description for each of the layers within the architecture of Bluetooth mesh (starting
with the bottom layer):

v. Bluetooth Low Energy layer
As we mentioned before, Bluetooth mesh builds on top of BLE, so it requires a full BLE
stack to be running on the device. It utilizes the advertising and scanning states for
sending and receiving messages between devices within the mesh network. It also
supports the connected state and GATT for special devices called proxy nodes.

w. Bearer layer
The bearer layer defines howA the different mesh packets (Protocol Data Units or
PDUs) are handled. There are two types of bearers of Bluetooth mesh bearers:

Advertising bearer: this bearer utilizes the advertising and scanning states of BLE
devices.

GATT bearer: this bearer utilizes the connection state of BLE devices. It allows non-



mesh supporting devices to interact with the mesh network via GATT operations.
This is accomplished via a special node called the proxy node.

x. Lower transport layer
This layer handles two main tasks:

Segmentation of packets from the layer above (upper transport layer)

Reassembly of packets from the layer below (bearer layer)

y. Upper transport layer
This layer is Responsible for the following functionalities:

Encryption

Decryption

Authentication

Transport control messages (heartbeat, friendship, etc.)

z. Access layer
This layer defines how the application uses the upper transport layer. It handles the
following tasks:

Application data format

Encryption and decryption

Data verification

~. Foundation Models layer
This layer is concerned with the network configuration and network management
models.

�. Models layer
This layer addresses the implementation of models including behaviors, messages,
states, and state bindings.

9.3. Core Concepts and Terminologies

Let's go over some of the most important concepts and terminologies in Bluetooth mesh.

9.3.1. Nodes

Devices that are part of a Bluetooth mesh network are called nodes. Devices that are not
part of the network are called unprovisioned devices. Once an unprovisioned device gets
provisioned, it joins the network and becomes a node.



9.3.2. Elements

A node may contain multiple parts which can be controlled independently. For example, a
light fixture may contain multiple lightbulbs which can be turned on/off independently. These
different parts of a single node are referred to as elements.

Figure 27: Elements in Bluetooth mesh

9.3.3. States

Elements can be in various conditions, represented by state values. For example, on and off
are states of a lightbulb within a light fixture. A change from one state to another is called a
state transition. This can be instantaneous, or it can occur over time, after what's called a
transition period. When a state change occurs, it is likely to cause a change in the behavior
of an element.

Some states may be bound to each other, meaning that a change in one state triggers a
change in the other. There may be two or more states bound to each other. Let's take for
example a light dimmer: it will likely have a level state as well as an on/off state. If the level
state value changes to zero, it will trigger the on/off state to transition to off. If the level
value changes from zero to a non-zero value, then that triggers the on/off state to transition
to on.

9.3.4. Properties

Properties add some context to a state value. For example, defining that a temperature value
is an outdoor or indoor temperature. There are two types of properties:

Manufacturer property: provides read-only access



Admin property: provides read-write access

9.3.5. Messages

In Bluetooth mesh, all communications within the network are message-oriented, and nodes
send messages to control or relay information to each other. Messages are the mechanism
by which operations on nodes are invoked. If a node needs to report its status, it also sends
it via a message. A given message type represents an operation on a state or collection of
multiple state values.

There are three types of messages in Bluetooth mesh, each of which is defined by a unique
opcode (operation code):

A GET message: a message to request the state from one or more nodes.

A SET message: a message to change the value of a given state.

A STATUS message: A status message is used in different scenarios:
Sent in response to a GET message, containing the state value.

Sent in response to an acknowledged SET message.

Sent independently of any message to report the element's status. One example is
a message that's triggered by a timer running on the element sending this message.

Some messages require an acknowledgment message to be sent by the receiver of the
original message. An acknowledgment message serves two purposes:

Confirmation of receipt of the message.

Return of data related to the message received.

In the case where a response to the message is not received by the sender, or an
unexpected response is received, the sender may resend the message. Multiple
acknowledged messages received by a node do not affect the behavior (itʼs as if the
message was received once).

9.3.6. Addresses

Messages in a Bluetooth mesh network must be sent to and from an address. There are
three types of addresses:



Unicast Address: an address that uniquely identifies a single node assigned during the
provisioning process (which we'll cover shortly).

Group Address: an address used to identify a group of nodes. A group address usually
reflects a physical grouping of nodes such as all nodes within a specific room. A group
address could either be:

Defined by the Bluetooth SIG, also referred to as a SIG-Fixed Group Address. These
include All-proxies, All-friends, All-relays, and All-nodes group addresses.

Dynamic Group Address, which is defined by the user via a configuration
application.

Virtual Address: an address that may be assigned to one or more elements, spanning
one or more nodes. This acts as a label and takes the form of a 128-bit UUID with which
any element can be associated. Virtual addresses are likely to be preconfigured at the
time of manufacturing.

9.3.7. Publish-Subscribe

The way messages are exchanged in a Bluetooth mesh network is via the publish-subscribe
pattern. From Wikipedia's page on the publish-subscribe pattern:

In software architecture, publish–subscribe is a messaging pattern where senders
of messages, called publishers, do not program the messages to be sent directly to
specific receivers, called subscribers, but instead categorize published messages into
classes without knowledge of which subscribers, if any, there may be. Similarly,
subscribers express interest in one or more classes and only receive messages that are
of interest, without knowledge of which publishers, if any, there are.

Publishing is the act of sending a message. Subscribing is a configuration used to allow
select messages to be sent to specific addresses for processing. Typically, messages are
addressed to group or virtual addresses.

Hereʼs an example of a mesh network in a home thatʼs composed of 6 light switches and 9
light bulbs. The network utilizes the publish-subscribe method to allow nodes to send
messages to each other.



Figure 28: Publish-subscribe example
(Source: "Bluetooth mesh networking - An Introduction for Developers")

Nodes may subscribe to multiple addresses, such as light #3 in this example, which is
subscribed to both the kitchen and the dining room group addresses. Also, multiple nodes
may publish to the same address: such as switches #5 and #6 in this example. These two
switches control the same group of lights which are located in the garden.

The benefit of using group or virtual addresses is that adding or removing nodes does not
require reconfiguration of nodes.

9.3.8. Managed Flooding

Many mesh networks use routing mechanisms to relay messages across the network. The
other extreme is to flood the network with the messages being relayed without consideration
of the optimal routes these messages need to take to reach their perspective destinations.
Bluetooth mesh uses a technique that's a compromise of both of these techniques. This
technique is referred to as managed flooding.

Managed flooding relies on broadcasting messages to all nodes within range of the sender
node, with a few added optimizations:



Messages have a TTL assigned
TTL stands for time-to-live, which limits the number of hops a message can take across
multiple nodes within the mesh network. A value of zero indicates that a message has
not been relayed and should not be relayed. This means that a node can send a
message to other nodes which are in its direct radio range and indicate that the
receiving node(s) should not relay the message.

If a message is sent with a TTL ≥ 2, then each time it is relayed, the TTL value gets
decremented. A TTL value of 1 means that the message may have been relayed at least
once, but that it should not be relayed again.

Messages are cached
Message caching is required by all nodes and requires that messages received that
already exist in the cache get immediately discarded.

Heartbeat messages are sent periodically
Heartbeat messages are used to indicate to other nodes that the sender is alive and
active within the network.

Friendship
Friendship refers to the relationship between two nodes. These two node types are:

A low-power node, or LPN, conserves power and is not able to receive mesh
messages all the time. This node spends most of its time with the radio turned off.

A live-powered node called the friend node, which can serve as a proxy for the
LPN. The friend node caches messages for the LPN to save power, so that the LPN
can stay asleep most of the time and only wake up occasionally. When the LPN
wakes up, it polls the friend node to read the cached messages and sends any
messages it needs to send to the mesh network.

9.3.9. Models

Another important term defined in Bluetooth mesh is the concept of a model. A model
defines some or all functionality of a given element.

There are three categories of models:



Server model: is a collection of states, state transitions, state bindings, and messages
which an element containing the model may send or receive.

Client model: does not define any states; rather, it defines only messages such as the
GET, SET and STATUS messages sent to a server model.

Control model: contains both a server and client model allowing communication with
other server and client models.

Models can be extended to include additional functionality instead of modifying the original
model. A model that is not extended is called a root model.

9.3.10. Scenes

The final concept we want to cover is the concept of scenes in a Bluetooth mesh network. A
scene is a stored collection of states and is identified by a 16-bit number which is unique
within the mesh network.

Scenes allow triggering one action to set multiple states of different nodes. They can be
triggered on-demand or at a specified time. For example, a scene may be configured to set
the temperature of a room to 72 degrees, the living room lights to a certain brightness level,
and the window blinds to close.

9.4. Node Types

All types of nodes can send and receive mesh messages. However, optional features give
particular nodes special capabilities. Here are the different types of nodes with optional
features enabled:

Relay nodes

Proxy nodes

Friend nodes

Low power nodes

A node may support none, some, or all of these optional features, which may be enabled or
disabled at any time. For example, a single node may have the features of a relay node,
proxy node, and friend node, all at the same time.



9.4.1. Relay Nodes

A relay node is one that supports the relay feature. This means it can retransmit messages
that are broadcast by other nodes. This enables extending the reach of these messages and
allows them to traverse the entire network beyond the reach of the original transmitting
node.

9.4.2. Proxy Nodes

To allow communication with a mesh network from a non-mesh-supported BLE device, a
special type of node called a proxy node can be utilized. A proxy node acts as an
intermediary and utilizes GATT operations to allow other nodes outside of the mesh network
to interface and interact with the network.

The protocol used in this case is called the proxy protocol, which is intended to be used
with a connection-enabled device (using GATT).

The protocol is built on top of GATT and allows a device to read and write proxy protocol
PDUs from GATT characteristics exposed by the proxy node. The proxy node performs the
translation between proxy protocol PDUs and mesh PDUs.

For example, this allows a smartphone that does not implement the Bluetooth mesh protocol
to interact with a mesh network via a proxy device through GATT operations.

Figure 29: Proxy node



9.4.3. Friend Nodes and Low Power Nodes

A friend node and a low power node (LPN) are closely related to each other. In fact, in order
for a low power node to participate in a Bluetooth mesh network, it requires a friendship
relationship with another node, called the friend node.

Here are how these two types of nodes work together:

Low power nodes usually have limited power supply such as batteries, so they need to
conserve energy by keeping the radio off as often as possible.

Low power nodes may be concerned with sending messages more than receiving them.
Take for example, a temperature sensor powered by a coin cell battery. It may need to
send the temperature reading once per minute whenever that reading is above or below
a set limit. If the user decides to change the threshold limit, then that gets sent in a
message to the temperature sensor. In order for the sensor to not miss this threshold
configuration message, it needs to be on all the time, meaning it will consume a lot of
power.

To solve the problem mentioned in the previous point, the concept of a friend node is
introduced. A friend node lets the low power node stay asleep longer.

Friend nodes make this possible by caching messages that are destined to the low
power node. The low power node, at its control, wakes up and polls the friend node for
these cached messages. When it polls for the messages, it also sends any messages it
needs to relay to the network to its friend node.

The relationship between a friend node and a low power node is known as “friendship".

Friendship is key to allowing power-constrained nodes to participate in a mesh network
while keeping their power consumption optimized.



Figure 30: Friend nodes and low power nodes

9.5. The Provisioning Process

The provisioning process is one of the most important concepts in Bluetooth mesh. It is
used for adding devices to the mesh network. A device that gets added to the network is
called a node, and the device used to add a node to the network is called the provisioner
(usually a tablet, smartphone, or a PC).

This process involves five steps:

9.5.1. Step 1: Beaconing

Step 1 involves whatʼs called beaconing, where the unprovisioned device announces its
availability to be provisioned by sending the mesh beacon advertisements in the
advertisement packets. This is a new type of advertisement data type introduced in the
Bluetooth mesh standard. A common way to trigger this process is via a defined sequence of
button presses on the unprovisioned device.

9.5.2. Step 2: Invitation

When the provisioner discovers the unprovisioned device via the beacons that were sent, it
sends an invitation to this unprovisioned device. This uses a new type of PDU introduced in
Bluetooth mesh called the provisioning invite PDU.



The unprovisioned device then responds with information about its capabilities in a
provisioning capabilities PDU, which includes:

The number of elements the device supports.

The set of security algorithms supported.

The availability of its public key using an Out-of-Band (OOB) technology.

The ability of this device to output a value to the user.

The ability of this device to allow a value to be input by the user.

Figure 31: Invitation step in provisioning

9.5.3. Step 3: Public Key Exchange

Security in Bluetooth mesh involves the use of a combination of symmetric and asymmetric
keys such as the Elliptic-curve Diffie-Hellman (ECDH) algorithm. In ECDH, public keys are
exchanged between the provisioner and the device to be provisioned. This is done either
directly over BLE or via an out-of-band (OOB) channel.

Figure 32: Public Key Exchange step in provisioning



9.5.4. Step 4: Authentication

The next step is to authenticate the unprovisioned device. This usually requires an action by
the user by interacting with both the provisioner and the unprovisioned device. The
authentication method depends on the capabilities of both devices used.

In one case, called the output OOB, the unprovisioned device could output a random single-
or multiple-digit number to the user in some form, such as blinking an LED a number of
times. That number is then input into the provisioning device via some input method. Other
cases include an input OOB, where the number is generated by the provisioner and entered
into the unprovisioned device, a static OOB, or no OOB at all.

Regardless of the authentication method used, the authentication also includes a
confirmation value generation step and a confirmation check step.

9.5.5. Step 5: Provision Data Distribution

After authentication is complete, each device derives a session key using their private key
and the public key sent to it from the other device. The session key is then used to secure
the connection for exchange of additional provisioning data, including the network key
(NetKey), a device key, a security parameter known as the IV index, and a unicast address
which is assigned to the provisioned device by the provisioner. After this step, the
unprovisioned device becomes known as a node.

9.6. Security in Bluetooth mesh

The first important note regarding security in Bluetooth mesh is that it is mandatory. This is
compared to BLE where itʼs optional and left to the developer to decide whether to include it
or not.

Here are some of the basics of security in Bluetooth mesh:

All mesh messages are encrypted and authenticated

Network security, application security, and device security are all handled
independently.

Security keys can be changed during the life of the mesh network



Due to the separation of security between the network, application, and device levels, there
are three types of security keys (each addressing a specific concern):

Network key (NetKey)
Possession of this shared key makes the device part of the network (also known as a
node). There are two keys derived from the NetKey: the network encryption key and
the privacy key. Possession of the NetKey allows a node to decrypt and authenticate up
to the network layer, allowing the relay of messages, but no application data
decryption.

Application Key (AppKey)
This is a key that's shared between a subset of nodes within a mesh network, normally
those that participate in a common application. For example, a lighting system AppKey
would be shared between light switches and light bulbs, but not with a thermostat or a
motion sensor.
An AppKey is used to decrypt and authenticate messages at the application level, but it
is only valid within one mesh network, not across multiple networks.

Device Key (DevKey)
This is a device-specific key that's used during the provisioning process for securing
communication between the unprovisioned device and the provisioner.

9.6.1. Node Removal

One major concern with a mesh network is gaining access to a network via a discarded or
removed device that used to be part of the network. This can be accomplished via gaining
physical access to the keys stored within the device (often referred to as a trash can
attack).

In order to protect against such an attack, Bluetooth mesh defines a procedure for removal
of a node where the device is added to a blacklist and the keys are refreshed. This process
distributes new network keys, applications keys, and other relevant data to all nodes,
except those in the blacklist.

9.6.2. Privacy

Another concern is privacy. The way privacy is addressed in Bluetooth mesh is via the use of
a privacy key thatʼs used to obfuscate the message header.



The privacy key is derived from the network key (NetKey). For example, the source address
could be obfuscated to prevent tracking of a device via its address.

9.6.3. Replay Attacks

The last security topic we want to cover is replay attacks. A replay attack is when one or
more messages are stored and replayed later by a malicious device.

Bluetooth mesh provides protection against replay attacks by:

Utilizing a sequence number (SEQ). Elements increment the SEQ value every time they
publish a message. A node, receiving a message from an element which contains a SEQ
value that's less than or equal to the one in the last valid message, will discard it (since it
is likely that it relates to a replay attack).

Using an incrementing IV index, which is an additional value that also gets validated
when a message is received.

9.7. Summary

In this chapter, we went over the most important concepts in Bluetooth mesh. This served as
a short introduction to this new Bluetooth standard. To learn more about the details of
Bluetooth mesh, refer to its specification documents which can be found here.



10. Glossary of Terms

2M PHY: a mode introduced in Bluetooth 5 in which the radio transmits data at a rate of 2
Megasymbols/second.

Active Eavesdropping: a special case of man-in-the-middle (MITM) attacks, in which the
attacker makes independent connections with the victims and relays messages between
them to make them believe they are talking directly to each other over a private connection,
when in fact the entire conversation is controlled by the attacker.

Advertising: the link layer state in which the device is sending out advertising packets for
other BLE to discover it.

AES CCM: an authenticated encryption algorithm designed to provide both authentication
and confidentiality.

Application: the top level of the BLE architecture which implements the particular use case
of the BLE device.

ATT (Attribute Protocol): a simple protocol for devices to list attributes that allow different
operations such as write and read.

Attribute: a generic term for any type of data exposed by a BLE server. It also defines the
structure of this data.

Authentication: the process or action of verifying the identity of a user, device, or process.

Auxiliary Packets: this is the same as the secondary advertisement packets.

Beacon: a BLE device that broadcasts advertisement packets for the sole purpose of being
discovered by other BLE devices. Usually, a beacon does not enter the connected state.

BLE: Bluetooth Low Energy.

Bluetooth Classic: a short range wireless technology focused on streaming applications
such as audio streaming.

Bluetooth Lightbulb: a lightbulb that contains a BLE radio and acts as a BLE peripheral



allowing other BLE devices to interact with it (defined in chapter 6: "GATT Design Exercise").

Bluetooth Low Energy: a short range wireless technology focused on low-power and low-
bandwidth applications.

Bluetooth mesh: a new Bluetooth specification that builds on top of BLE and allows BLE
devices to form a many-to-many network topology.

Bluetooth stack: software that refers to an implementation of the Bluetooth protocol.

Bonding: a process where the information from the pairing process is stored on the devices
so that the pairing process does not have to be repeated every time the devices reconnect
to each other.

BR/EDR: Basic Rate/Enhanced Data Rate (Bluetooth Classic).

Broadcaster: a BLE device that sends out advertising packets and does not allow other BLE
devices to connect to it.

Central: a BLE device (usually a smartphone/tablet/PC) that listens for peripheral devices
that are advertising. It is also capable of connecting to peripherals, and is responsible for
managing the connection via its various parameters.

Channel Hopping: the act of rapidly switching between different frequencies, using a
pseudorandom frequency-selection algorithm agreed on by the transmitter and receiver.

Characteristic: a container for a piece of user data, usually coupled with metadata
describing it (such as being writeable, readable, its description, etc.).

Coded PHY: a mode introduced in Bluetooth 5 in which the radio transmits data at the
original rate of 1 Megasymbols/second, while adding data redundancy (multiple symbols per
bit of data) as a method to increase error detection and recovery at the receiving end.

Commissioning: the process by which a device (which is installed, is complete, or near
completion) is tested to verify if it functions according to its design objectives or
specifications.

Confidentiality: the state of keeping or being kept secret or private.



Configuration: the process by which a device's behavior is altered via one or more
parameters.

Connection: the link layer state in which the device is connected to another BLE device,
exchanging data regularly with this other device.

Controller: the lower layers of the BLE architecture. It is primarily responsible for interfacing
with the radio and provides a standard interface for the host.

CSRK (Connection Signature Resolving Key): a security key used to sign transmitted data
and to verify signatures on received data.

Data Length Extension: a feature that allows a BLE device to send packets with payloads of
up to 251 bytes of application data, while in the connected state.

Device Address: a 48-bit number that identifies a BLE device.

DTM (Direct Test Mode): a mode for performing RF tests, used during manufacturing and
for certification tests of BLE devices.

EDIV (Encrypted Diversifier): a value used along with the RAND (Random Number) in the
process of creating and identifying the LTK (Long Term Key).

Element State: the representation of the condition of an element within a Bluetooth mesh
node device.

Element: a constituent part of a node device in a Bluetooth mesh network that can be
controlled independently of other parts of the same node.

Embedded device: a device that contains a special-purpose computing system, usually
without a (or with a minimal) user interface.

Encryption: the process of converting information or data into a code, especially to prevent
unauthorized access.

Environment Sensor: a BLE peripheral device that collects data about the surrounding
environment via a set of embedded sensors (defined in chapter 6: "GATT Design Exercise").

Extended Advertisements: a feature introduced in Bluetooth 5 by which a BLE device sends



out advertising packets on the secondary channels.

FHSS (Frequency Hopping Spread Spectrum): a method of transmitting radio signals by
rapidly switching between different frequencies, using a pseudorandom frequency-selection
algorithm agreed on by the transmitter and receiver.

Filter Policy: a set of rules that defines which devices are approved or unapproved in an
operation.

FN (Friend Node): a special type of node in a Bluetooth mesh network that caches
messages for certain Low Power Nodes within the network. It also handles accepting
messages to be sent from the LPN and relays it to other nodes within the Bluetooth mesh
network.

Friendship: a term that describes the relationship between a FN and an LPN in a Bluetooth
mesh network.

GAP (Generic Access Profile): the layer responsible for managing connections,
advertisements, discovery and security features.

Gateway: a device that acts as both a BLE peripheral and a central connecting to multiple
other peripheral devices (defined in chapter 6: "GATT Design Exercise").

GATT (Generic Attribute Profile): a basic data model that allows devices to discover, write,
and read elements.

HCI (Host Controller Interface): the standard protocol that allows a controller to interface
with a Hhst (within the same chipset or across different ones).

Hop Increment: an integer value that defines the increment applied to a channel number to
indicate the next channel to be used during data transmission.

Host: a collection of the upper layers of the BLE architecture. It is responsible for providing
an interface to the application layer for interacting with the controller.

Identity Tracking: the act of tracking a device by a known identifier or address of that
device.

IEEE (Institute of Electrical and Electronics Engineers): an association dedicated to serving



professionals involved in all aspects of the electrical, electronic, and computing fields and
related areas of science and technology.

Initiating: the link layer state in which the device is listening for advertising packets from a
specific device(s) and responding to these packets to initiate a connection with another
device.

Integrity: internal consistency or lack of corruption in digital data.

IO (Input Output): the communication between an information processing system, such as a
computer, and the outside world, possibly a human or another information processing
system.

IoT (Internet of Things): the network of physical devices, vehicles, home appliances, and
other items embedded with electronics, software, sensors, actuators, and connectivity,
enabling these devices to connect and exchange data.

IRK (Identity Resolving Key): a security key used to resolve BLE random private addresses.

ISM band: radio bands (portions of the radio spectrum) reserved internationally for the use
of radio frequency (RF) energy for industrial, scientific and medical purposes other than
telecommunications.

L2CAP (Logical Link Control and Adaptation Control): the layer within the BLE architecture
that acts as a protocol-multiplexing layer and handles fragmentation and recombination of
packets.

LE Legacy Connections: the security features originally defined by the first BLE
specification (Bluetooth version 4.0).

Legacy Advertisements: advertisement packets that exist in all versions of BLE and are sent
on the primary advertising channels (channels 37, 38, and 39).

LESC (LE Secure Connections): an enhanced security feature introduced in Bluetooth
version 4.2. It uses a Federal Information Processing Standards (FIPS) compliant algorithm
called Elliptic Curve Diffie Hellman (ECDH) for key generation.

Link Layer: a layer within the BLE architecture that defines the different states a BLE device
can operate in.



Low-bandwidth data transfer: transmission of small amounts of data that does not utilize
the full capacity of a network connection.

LPN (Low Power Node): a special type of node in a Bluetooth mesh network that needs to
conserve power by turning off the radio as much as possible.

LTK (Long Term Key): a security key used in both LE Secure Connections and LE Legacy
Connections to encrypt the communication between two BLE devices throughout a
connection.

Managed flooding: a term used to describe the technique used by Bluetooth mesh that's a
compromise of flooding the whole network with messages and routing the messages to
specific nodes within the network.

Many-to-many: a network topology where multiple devices are able to communicate directly
with one another, without the need to communicate via a special node within the network.

Master: a role within the link layer that initiates a connection and controls the timings of data
transmissions.

Message Integrity: the validity of a transmitted message, indicating that the message has
not been tampered with or altered.

MITM (man-in-the-middle) attack: the act of secretly relaying and possibly altering the
communication between two parties who believe they are directly communicating with each
other.

MTU (Maximum Transmission Unit): the size of the largest protocol data unit (PDU) that
can be communicated in a single network unit (packet).

Network Topology: the way in which different elements in a network are interrelated or
arranged.

Node: a device that is part of a Bluetooth mesh network.

Observer: a BLE device that scans for advertising BLE devices, but is not capable of
connecting to these devices.

One-to-many: a network topology where one device connects with multiple devices at the



same time.

One-to-one: a network topology where two devices communicate directly with each other.

OOB (Out-of-Band): refers to a communication medium other than BLE, used for
exchanging security keys between two BLE devices to secure the communication channel.

Packet: a formatted unit of data carried by a network. A packet consists of control
information and user data, which is also known as the payload.

Pairing: the process by which two BLE devices exchange device information so that a secure
link can be established.

Passive Eavesdropping: secretly or stealthily listening to the private conversation or
communications of others without their consent.

Payload: the user data portion of a packet.

PDU (Protocol Data Unit): information that is transmitted as a single unit among peer
entities in a network.

Periodic Advertisements: a special case of extended advertisements that allows a central to
synchronize to a peripheral that is sending extended advertisements at a fixed interval.

Peripheral: a BLE device that sends out advertising packets and allows other BLE devices
(specifically Centrals) to connect to it.

PHY (Physical Layer): the layer that represents the physical circuitry responsible for
transmitting and receiving radio packets.

Primary Advertisements: advertising packets that are sent on one of the primary
advertising channels in BLE (channels 37, 38, and 39).

Primary Service: a BLE service that provides the primary functionality of a device.

Privacy: the state or condition of being free from being observed or disturbed by other
entities.

Provisioner: a special device within a Bluetooth mesh network that is responsible for



allowing new devices to join the network and become a node.

Provisioning process: the process by which new devices are approved and configured to
join a Bluetooth mesh network.

Proxy node: a special type of node in a Bluetooth mesh network that can interact with both
mesh-compatible devices via mesh messages, and with non-mesh-compatible devices via
GATT operations.

Public Address: a factory-programmed device address that does not change and must be
registered with the IEEE.

Publish-Subscribe: a messaging pattern where senders of messages, called publishers, do
not program the messages to be sent directly to specific receivers, called subscribers, but
instead categorize published messages into classes without knowledge of which
subscribers, if any, there may be.

Rand (Random Number): a random number used along with the EDIV (Encrypted Diversifier)
in the process of creating and identifying the LTK (Long Term Key).

Random Address: a device address that is programmed on the device or generated at
runtime.

Remote Control: a BLE peripheral device that's used to control a Bluetooth lightbulb via
button presses (defined in chapter 6: "GATT Design Exercise").

Replay attack: an attack that occurs when one or more messages are stored and replayed
later by a malicious device.

Scanning: the link layer state in which the device is looking for BLE devices that are in the
advertising state.

Secondary Advertisements: advertising packets that are sent on one of the secondary
advertising channels in BLE (channels 1-36).

Secondary Service: a BLE service that adds auxiliary functionality to a device and is
referenced from at least one primary service.

Security Key: the alphanumeric key that's used to decrypt or encrypt data which could be



exchanged between two BLE devices.

Self-healing: a network in which devices can still communicate with each other if one of the
nodes drops off the network.

Service: a collection of one or more characteristics and the relationships to other services,
representing specific functionality of a device.

Slave: a role within the link layer that accepts a connection from a master and abides to its
timing requirements.

SM (Security Manager): the layer within the BLE architecture that defines the methods of
pairing and key distribution between two BLE devices.

Standby: the link layer state in which the device is not sending any BLE packets (not
advertising, scanning, initiating, or connected to another BLE device).

STK (Short Term Key): a security key used in LE Legacy Connections during the pairing
phase to encrypt the communication between two BLE devices.

TK (Temporary Key): a security key used in LE Legacy Connections during the pairing phase
to create the Short Term Key (STK).

TTL (Time-to-live): a value which limits the number of hops a message can take across
multiple nodes within the mesh network.

UUID (Universally Unique Identifier): a 128-bit number used to uniquely identify a device in
a network, or entity within a device.

White List: a list containing information about devices that are viewed with approval within a
network.




