

Inside Bluetooth Low Energy
Second Edition

For a listing of recent titles in the
Artech House Mobile Communications Series,

turn to the back of this book.

Inside Bluetooth Low Energy
Second Edition

Naresh Gupta

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-089-4

Cover design by John Gomes

© 2016 Artech House

All rights reserved. Printed and bound in the United States of America. No part
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Artech House cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

This book is in no way affiliated with SIG. The author is writing as an indi-
vidual interested in the technology.

10 9 8 7 6 5 4 3 2 1

To my respected parents, my dear wife, and my naughty kids.

You are always there for me, and have never doubted my dreams,
no matter how crazy they may sound.

I know I stole countless hours that I should have spent with you
in writing this book but you never complained...

vii

Contents

Preface to the First Edition xix

Preface to the Second Edition xxiii

Acknowledgments xxv

Foreword to the First Edition xxvii

 CHAPTER 1

Introduction 1

1.1 Introduction to Wireless Communication 1
1.2 Data Rates and Coverage 2

1.2.1 Wide Area Network 2
1.2.2 Metropolitan Area Network 3
1.2.3 Local Area Network 3
1.2.4 Personal Area Network 3
1.2.5 Body Area Network 3

1.3 Why Have Standards? 4
1.4 Introduction to Bluetooth and Bluetooth Low Energy 6
1.5 Applications 8

1.5.1 Finding and Alerting Devices 8
1.5.2 Proximity and Presence Detection 9
1.5.3 Health Care 10
1.5.4 Sports and Fitness Equipment 11
1.5.5 Mobile Payments 11
1.5.6 The Internet of Things (IoT) 11

1.6 Competing Technologies 13
1.6.1 ANT and ANT+	 13
1.6.2 ZigBee 13
1.6.3 Near Field Communication (NFC) 14

1.7 Summary 15
References 15

 CHAPTER 2

Background of Bluetooth 17

2.1 Introduction 17

viii Contents

2.2 Ad Hoc Networks—Why? 17
2.2.1 Printing Documents, Photos 17
2.2.2 Exchanging Business Cards, Photos, Music, Files 18

2.3 What is Bluetooth? 18
2.4 Bluetooth SIG 19
2.5 History of the Bluetooth Specification 21
2.6 IEEE 802.15 Family of Specifications 21
2.7 Bluetooth Basics 21
2.8 Bluetooth Architecture Overview 24
2.9 Basic Terminology 25

2.9.1 Host, Host Controller, and Host Controller Interface (HCI) 25
2.9.2 Device Address (BD_ADDR) and Device Name 28
2.9.3 Class of Device (CoD) 29
2.9.4 Bluetooth Clock 29
2.9.5 Protocol Data Unit (PDU) 30

2.10 Data Rates 31
2.11 Connection Setup and Topology 31
2.12 IEEE Language 33
2.13 Summary 34

References 34

 CHAPTER 3

Bluetooth Lower Layers 35

3.1 Introduction 35
3.2 Bluetooth Radio 35

3.2.1 Frequency Band and Hopping 36
3.3 Baseband Controller 37

3.3.1 Topology—Piconet and Scatternet 37
3.3.2 Time Division Duplex 38
3.3.3 Adaptive Frequency Hopping (AFH) 38
3.3.4 Master, Slave Roles and Role Switch 41
3.3.5 Channel, Transport and Links 41
3.3.6 Packet Format 48
3.3.7 Packet Types 49
3.3.8 Link Controller States 52

3.4 Link Manager (LM) 58
3.4.1 Connection Control 59
3.4.2 Security 60

3.5 Host Controller Interface (HCI) 62
3.5.1 HCI Packet Types 63
3.5.2 HCI Commands and Events 65
3.5.3 Buffers 67
3.5.4 HCI Flow Control 67
3.5.5 Connection Handle 70
3.5.6 HCI Transport Layer 70

Contents ix

3.6 Security—Secure Simple Pairing (SSP) 73
3.6.1 Passive Eavesdropping Protection 73
3.6.2 Man-in-the-Middle (MITM) Attack Protection 73
3.6.3 Association Models 74

3.7 Practical Scenarios 75
3.7.1 Inquiry 76
3.7.2 Connection Establishment 77

3.8 Summary 78
Reference 79

 CHAPTER 4

Bluetooth Upper Layers and Profiles 81

4.1 Introduction 81
4.2 Logical- Link Control and Adaptation Protocol (L2CAP) 82

4.2.1 Modes of Operation 84
4.2.2 L2CAP PDUs 84
4.2.3 L2CAP Features 85
4.3.3 L2CAP Signaling 88

4.4 Service Discovery Protocol (SDP) 89
4.4.1 Service Record, Service Attributes and Service Class 91
4.4.2 Searching and Browsing Services 93
4.4.3 SDP Transactions 94

4.5 RFCOMM 96
4.6 Object Exchange Protocol (OBEX) 98

4.6.1 OBEX Operations 99
4.7 Audio/Video Control Transport Protocol (AVCTP) 100
4.8 Audio/Video Distribution Transport Protocol (AVDTP) 100
4.9 Profiles 102
4.10 Generic Access Profile (GAP) 103

4.10.1 Bluetooth Parameters Representation 104
4.10.2 Modes 105
4.10.3 Idle Mode Procedures 106
4.10.4 Establishment Procedures 107
4.10.5 Authentication 108
4.10.6 Security 108

4.11 Serial Port Profile (SPP) 109
4.12 Headset Profile, Hands-Free Profile 110
4.13 Generic Object Exchange Profile (GOEP) 112
4.14 Object Push Profile (OPP) 113
4.15 File Transfer Profile (FTP) 114
4.16 Generic Audio/Video Distribution Profile (GAVDP) 115
4.17 Advanced Audio Distribution Profile (A2DP) 116
4.18 Audio/Video Remote Control Profile (AVRCP) 118
4.19 Summary 119

Bibliography 120

x Contents

 CHAPTER 5

Getting the Hands Wet 121

5.1 Introduction 121
5.2 Ingredients 121
5.3 Basic Bluetooth Operations 122

5.3.1 Enabling and Disabling Bluetooth 122
5.3.2 Discovering Devices 123
5.3.3 Browsing Services 123

5.4 Real World Application—Café Bluebite 124
5.4.1 Requirements Specification 124
5.4.2 High Level Design 125
5.4.3 Code 125
5.4.4 Complete Code 130

5.5 Disclaimer 132
5.6 Summary 132

Bibliography 132

 CHAPTER 6

Bluetooth Low Energy—Fundamentals 133

6.1 Introduction 133
6.2 Single Mode versus Dual Mode Devices 134
6.3 Bluetooth Smart Marks 135

6.3.1 Bluetooth Smart (Sensor-Type Devices) 136
6.3.2 Bluetooth Smart Ready (Hubs) 136

6.4 LE Fundamentals 137
6.4.1 Frequency Bands 137
6.4.2 Mostly Off Technology 138
6.4.3 Faster Connections 138
6.4.4 Reduced Functionality 138
6.4.5 Shorter Packets 140
6.4.6 Reduced Dynamic Memory Footprint 140
6.4.7 Optimized Power Consumption of Peripherals 141
6.4.8 No Need for Continuous Polling 141
6.4.9 Backward Compatibility with BR/EDR 142

6.5 LE Architecture 142
6.6 Comparison between BR/EDR and LE 143
6.7 Summary 144

Bibliography 145

 CHAPTER 7

Physical Layer 147

7.1 Introduction 147
7.2 Frequency Bands 147
7.3 Transmitter Only, Receiver Only, or Both 148

Contents xi

7.4 Output Power 149
7.5 Range 149
7.6 Modulation Characteristics 149
7.7 LE Timeline 151
7.8 Summary 151

Bibliography 152

 CHAPTER 8

Link Layer 153

8.1 Introduction 153
8.2 Overview of Link Layer States 153

8.2.1 Standby State 153
8.2.2 Advertising State (Advertiser) 154
8.2.3 Scanning State (Scanner) 155
8.2.4 Initiating State (Initiator) 155
8.2.5 Connection State (Master or Slave) 155

8.3 Device Address 155
8.3.1 Public Device Address 155
8.3.2 Random Address 156

8.4 Physical Channel 156
8.5 Channel Map 158
8.6 Adaptive Frequency Hopping 158
8.7 Events 159

8.7.1 Advertising Events 159
8.7.2 Connection Events 161

8.8 Topology 162
8.9 Packet Format 163

8.9.1 Preamble 164
8.9.2 Access Address 164
8.9.3 CRC 164
8.9.4 PDU 165

8.10 Bit Stream Processing 168
8.11 Link Layer States 170

8.11.1 Nonconnected States 170
8.11.2 Connection State 177

8.12 Link Layer Control Procedures 180
8.12.1 Connection Update Procedure 181
8.12.2 Channel Map Update Procedure 182
8.12.3 Encryption Procedure 182
8.12.4 Feature Exchange Procedure 184
8.12.5 Version Exchange Procedure 186
8.12.6 Termination Procedure 186
8.12.7 Connection Parameters Request Procedure 187
8.12.8 LE Ping Procedure 188
8.12.9 Data Length Update Procedure 188

xii Contents

8.13 Management of Link Layer Procedures 189
8.13.1 Procedure Response Timeout 189
8.13.2 Procedure Collisions 190
8.13.3 LE Authenticated Payload Timeout 190

8.14 Link Layer Privacy 1.2 190
8.14.1 Address Resolution in the Controller Instead of the Host 191
8.14.2 Better Privacy 192

8.15 Device Filtering and White List 192
8.15.1 Advertising Filter Policy 193
8.15.2 Scanner Filter Policy 193
8.15.3 Initiator Filter Policy 194

8.16 Practical Examples 194
8.17 Summary 195

Bibliography 196

 CHAPTER 9

Host Controller Interface and Commands 197

9.1 Introduction 197
9.1.1 HCI Packet Types 198
9.1.2 HCI Command Packets 198
9.1.3 HCI Event Packet 198
9.1.4 HCI ACL Data Packet 198

9.2 HCI Commands and Events 199
9.2.1 Device Setup 201
9.2.2 Controller Flow Control 202
9.2.3 Host Flow Control 203
9.2.4 Controller Information 206
9.2.5 Remote Information 206
9.2.6 Controller Configuration 207
9.2.7 Device Discovery 207
9.2.8 Connection Setup 208
9.2.9 Connection State 208
9.2.10 Physical Links 209
9.2.11 Link Information 209
9.2.12 Authentication and Encryption 210
9.2.13 Testing 211
9.2.14 Usage of White Lists 211

9.3 Practical Sequence Diagrams 213
9.3.1 Passive Scanning 214
9.3.2 Typical Sequence for Active Scanning 214
9.3.3 Connection Establishment 215
9.3.4 Setting up White list 215

9.4 Summary 215
Bibliography 216

Contents xiii

 CHAPTER 10

Logical Link Control and Adaptation Protocol (L2CAP) 217

10.1 Introduction 217
10.2 PDU and SDU 217
10.3 Basic Assumptions 218
10.4 Maximum Transmission Unit (MTU) 218
10.5 L2CAP Features 219

10.5.1 Fixed Channel Identifiers 219
10.5.2 Fragmentation and Defragmentation of Data 220
10.5.3 Channel Multiplexing 220

10.6 Data Packets 221
10.7 L2CAP Parameters 222
10.8 L2CAP Signaling 222

10.8.1 Command Reject 223
10.8.2 Connection Parameter Update Request 223
10.8.3 Connection Parameter Update Response 224
10.8.4 LE Credit-Based Connection Request 224
10.8.5 LE Credit-Based Connection Response 225
10.8.6 LE Flow Control Credit 225

10.9 Credit-Based Flow Control 226
10.10 Practical Examples 227
10.11 Summary 229

Bibliography 229

 CHAPTER 11

Security Manager (SM) 231

11.1 Introduction 231
11.2 Security in Host Instead of Controller 231
11.3 Asymmetrical Architecture 232
11.4 Security Breaches 232

11.4.1 Passive Eavesdropping 232
11.4.2 Man-in-the-Middle (MITM) (Active Eavesdropping) 233
11.4.3 Tracking 234

11.5 Pairing Methods 234
11.5.1 Just Works 234
11.5.2 Numeric Comparison 234
11.5.3 Passkey Entry 235
11.5.4 Out of Band 235

11.6 Security Properties 235
11.6.1 LE Secure Connections Pairing 235
11.6.2 Authenticated MITM Protection 236
11.6.3 Unauthenticated no MITM Protection 236
11.6.4 No Security 236

11.7 Cryptographic Functions 236

xiv Contents

11.7.1 Security Function e 237
11.7.2 Random Address Function ah 237
11.7.3 Confirm Value Generation Function c1 237
11.7.4 Key Generation Function s1 237
11.7.5 Security Function AES-CMAC 237
11.7.6 LE Secure Connections Confirm Value Generation Function f4 238
11.7.7 LE Secure Connections Key Generation Function f5 238
11.7.8 LE Secure Connections Check Value Generation Function f6 238
11.7.9 LE Secure Connections Numeric Comparison Value Generation
Function g2 239
11.7.10 LE Secure Connections Link Key Conversion Function h6 239

11.8 Pairing 239
11.8.1 Phase 1: Pairing Feature Exchange 239
11.8.2 Phase 2: Authentication and Encryption 242
11.8.3 Phase 3: Transport Specific Key Distribution 244

11.9 Security Manager Protocol 246
11.9.1 Commands Used During Phase 1 (Pairing Feature Exchange) 247
11.9.2 Commands Used During Phase 2 (Key Generation) 248
11.9.3 Commands Used During Phase 3 (Transport Specific
Key Distribution) 251

11.10 Practical Examples 253
11.10.1 Message Sequence for LE Legacy Pairing 253
11.10.2 Message Sequence for LE Secure Connections 255

11.11 Summary 258
Bibliography 258

 CHAPTER 12

Attribute Protocol (ATT) 259

12.1 Introduction 259
12.2 Attribute 259

12.2.1 Attribute Type 260
12.2.2 Attribute Handle 261
12.2.3 Attribute Permissions 261
12.2.4 Attribute Value 262
12.2.5 Control Point Attributes 262
12.2.6 Grouping of Attribute Handles 263
12.2.7 Atomic Operations 263

12.3 Attribute Protocol 263
12.3.1 PDU Format 264
12.3.2 Sequential Transactions 265

12.4 Methods 266
12.4.1 Request and Response Type Methods 266
12.4.2 Command Type Methods 277
12.4.3 Notification Type Methods 278
12.4.4 Indication and Confirmation Type Methods 278

12.5 Practical Examples 280

Contents xv

12.5.1 Exchange MTU 280
12.5.2 Reading Primary Services of a Device 280

12.6 Summary 284
Bibliography 284

 CHAPTER 13

Generic Attribute Profile (GATT) 285

13.1 Introduction 285

13.1.1 Profile Dependencies 285
13.1.2 GATT-Based Profile Architecture 287

13.2 Roles 292
13.3 Attributes 293

13.3.1 Attribute Caching 295
13.3.2 Attribute Grouping 296
13.3.3 Notification and Indication 296

13.4 Service Definition 297
13.4.1 Service Declaration 297
13.4.2 Include Definition 297
13.4.3 Characteristic Definition 297

13.5 Configured Broadcast 301
13.6 GATT Features 301

13.6.1 Server Configuration 301
13.6.2 Primary Service Discovery 302
13.6.3 Relationship Discovery 306
13.6.4 Characteristic Discovery 307
13.6.5 Characteristic Descriptor Discovery 312
13.6.6 Characteristic Value Read 314
13.6.7 Characteristic Value Write 318
13.6.8 Characteristic Value Notification 323
13.6.9 Characteristic Value Indication 323
13.6.10 Characteristic Descriptors 324

13.7 Timeouts 327
13.8 GATT Service 327

13.8.1 Service Changed Characteristic 328
13.9 Security Considerations 330

13.9.1 Authentication and Authorization Requirements 330
13.10 Summary 330

Bibliography 330

 CHAPTER 14

Generic Access Profile 331

14.1 Introduction 331
14.2 Roles 332

14.2.1 Broadcaster Role 332
14.2.2 Observer Role 332

xvi Contents

14.2.3 Peripheral Role 332
14.2.4 Central Role 333

14.3 Representation of Bluetooth Parameters 333
14.3.1 Bluetooth Device Address 333
14.3.2 Bluetooth Device Name 334
14.3.3 Bluetooth Passkey 334
14.3.4 Bluetooth Class of Device 334
14.3.5 Pairing—Authentication and Bonding 334

14.4 Advertising and Scan Response Data Format 335
14.4.1 Local Name (AD Type = 0x08 or 0x09) 336
14.4.2 Flags (AD Type = 0x01) 336
14.4.3 Manufacturer Specific Data (AD Type = 0xFF) 336

14.5 GAP Characteristics 337
14.5.1 Device Name Characteristic 337
14.5.2 Appearance Characteristic 338
14.5.3 Peripheral Privacy Flag Characteristic 339
14.5.4 Reconnection Address Characteristic 339
14.5.5 Peripheral Preferred Connection Parameters Characteristic 340

14.6 Operational Modes and Procedures 341
14.6.1 Broadcast Mode and Observation Procedure 341
14.6.2 Discovery Modes and Procedures 342
14.6.3 Connection Modes and Procedures 345
14.6.4 Bonding Modes and Procedures 350

14.7 Security 352
14.7.1 LE Security Mode 1 353
14.7.2 LE Security Mode 2 354
14.7.3 Secure Connections-Only Mode 354
14.7.4 Authentication Procedure 354
14.7.5 Authorization Procedure 355
14.7.6 Encryption Procedure 355
14.7.7 Data Signing 355
14.7.8 Privacy Feature 356
14.7.9 Random Device Address 357

14.8 Summary 358
Bibliography 358

 CHAPTER 15

GATT-Based Profiles 359

15.1 Introduction 359
15.2 Profile, Services, and Characteristics 359
15.3 Immediate Alert Service (IAS) 361

15.3.1 Service Declaration 361
15.3.2 Service Characteristics 361

15.4 Find Me Profile (FMP) 362
15.4.1 Roles 362

15.5 Link Loss Service (LLS) 363

Contents xvii

15.5.1 Service Declaration 363
15.5.2 Service Characteristics 363

15.6 Transmit Power Service (TPS) 364
15.6.1 Service Declaration 365
15.6.2 Service Characteristics 365

15.7 Proximity Profile (PXP) 365
15.7.1 Roles 365

15.8 Battery Service (BAS) 365
15.8.1 Service Declaration 366
15.8.2 Service Characteristics 366

15.9 Device Information Service (DIS) 366
15.9.1 Service Declaration 366
15.9.2 Service Characteristics 366

15.10 Current Time Service (CTS) 367
15.10.1 Service Declaration 367
15.10.2 Service Characteristics 367

15.11 Health Thermometer Service (HTS) 367
15.11.1 Service Declaration 367
15.11.2 Service Characteristics 367

15.12 Health Thermometer Profile (HTP) 369
15.12.1 Roles 369

15.13 Blood Pressure Service (BPS) 369
15.13.1 Service Declaration 369
15.13.2 Service Characteristics 369

15.14 Blood Pressure Profile (BLP) 370
15.14.1 Roles 370

15.15 Health, Sports and Fitness Profiles 370
15.16 Internet Protocol Support Profile (IPSP) 371

15.16.1 Service Declaration 374
15.16.2 Configuration 374
15.16.3 Profile Stack Requirements 375
15.16.4 Typical IPv6 operations 375

15.17 Other Services and Profiles 377
15.18 Practical Examples 377
15.19 Summary 380

Bibliography 380

 CHAPTER 16

Developing LE Applications 381

16.1 Introduction 381
16.2 Ingredients 382

16.2.1 Installing hcidump 382
16.2.2 Basic Bluetooth operations 384

16.3 Advertising and Scanning 388
16.4 Creating a Connection 390
16.5 GATT Operations 390

xviii Contents

16.5.1 Enable GATT Functionality on Server 390
16.5.2 Execute GATT Procedures from the Client 392
16.5.3 Reading and Writing Characteristics 398

16.6 Disconnecting 400
16.6.1 Disconnecting the GATT Connection 400
16.6.2 Disconnecting the LE Connection 401

16.7 Real-World Application—Find Lost Keys 401
16.8 Debugging LE Applications 402

16.8.1 Logging the HCI Interface 402
16.8.2 Air Sniffer 403
16.8.3 Peer Devices and Interoperability Testing 403
16.8.4 Profile Tuning Suite (PTS) 403

16.9 Disclaimer 404
16.10 Summary 404

References 404

 CHAPTER 17

Testing and Qualification 405

17.1 Introduction 405
17.2 Need for Bluetooth Qualification 405
17.3 What Is Interoperability? 406
17.4 Development Resources and Events 406

17.4.1 UnPlugFest (UPF) 406
17.4.2 Automotive Events 407
17.4.3 SIG Device Library 407
17.4.4 Profile Tuning Suite (PTS) 408

17.5 Bluetooth Qualification Program 408
17.6 Test Categories 410

17.6.1 BQTF, BRTF 410
17.6.2 BQE 410
17.6.3 Test Documents 411
17.6.4 Prequalification 412

17.7 Summary 412
Bibliography 412

Glossary of Acronyms and Important Terms 413

About the Author 417

Index 419

xix

Preface to the First Edition

The idea for writing this book was sparked by a former colleague over a cup of
coffee a couple of years ago when he said, “Naresh, why don’t you write a book
on Bluetooth Low Energy?” At that time I brushed off that idea, saying that I was
too busy in implementing Bluetooth Low Energy features and writing a book was
not a piece of cake. Later that year I kept realizing that, since the technology is very
new, the amount of available reading material is very limited and it’s not too easy
to understand the technology, especially for newbies. In the winter of 2011, I finally
decided to try my hand at explaining this technology to people who were eager to
understand but did not have a good starting point.

Objectives of This Book

This book covers the concepts of Bluetooth and Bluetooth Low Energy. It introduces
the reader to the history of the technology, terminology, use cases, architecture, and
details of how it works, along with some hands-on examples. It’s not intended to
cover everything down to the minute detail that is written in the Bluetooth specifi-
cation because that is already done well by the specification. Rather, it’s expected to
be a working companion to the specification. Instead of diving directly into the full
specification, the user can first understand the technology at a broad level from this
book and then dive deeper into the relevant sections of the specification.

This book does not assume prior knowledge of Bluetooth or other wireless pro-
tocols, though knowing them would certainly be a plus. Most of the new terminol-
ogy used in this book is also explained within this book. A lot of practical examples
are provided so that the concepts can be correlated to the real-world applications.
Some sample programs are also provided that can be used to gain understanding
and as a starting point of a full-fledged implementation. Screenshots of air logs
and message sequence charts are also provided to give a good view of how things
actually work.

It will be good if the reader is familiar with the Unix or Linux operating sys-
tems to understand the sample programs provided in this book. Some basic knowl-
edge of any scripting language would also be helpful. The commands and programs
provided in this book have been written directly on the Linux shell prompt or using
very basic features of Perl or C language. It’s expected that these programs could be
adapted easily to any other language as well.

mahmoudelhadidi
Callout
Start: 2021-05-26_0820

xx Preface to the First EditionPreface to the First Edition

Intended Audience

This book is meant for engineering students, software and hardware engineers,
architects, and engineering and business managers.

This book serves the purpose of introducing engineering students to the con-
cepts of Bluetooth and Bluetooth Low Energy. It helps them to understand the
“what” and “how” parts, including a broad view of the technology, the various
building blocks, and how they come together. It also has practical exercises to get a
first-hand feel for how the technology works. Once they understand the concepts,
users can dig into the specification for an in-depth understanding of their area of
interest.

For software engineers, hardware engineers, and architects, this book helps
them to understand the architecture of the Bluetooth Low Energy Stack and the
functionality provided by each of the layers. The book also discusses the enhance-
ments that have been made in Bluetooth Low Energy compared to previous ver-
sions of Bluetooth so that readers can appreciate why this technology leads to such
huge savings in power consumption. It guides them on setting up their own system
in a quick and efficient manner with inexpensive, easily available hardware, and
a couple of PCs running Linux. The sample programs help users understand the
“how” part of the technology. The book then builds further on the concepts by go-
ing from simple operations and programs to more complex programs that can be
used as a starting point for the reader’s own implementation.

For engineering and business managers, this book helps them to understand the
“why” part. Why should they choose this particular technology? What does it offer
them as a USP (Unique Selling Proposition)? Is it the right technology to solve their
business problem? They may not have the time to dig into the deep technical intri-
cacies of the technology before making a decision. This book aids them by quickly
introducing them to the technology and providing them sufficient information to
make an informed decision.

Prerequisite Knowledge

Bluetooth Low Energy is expected to be the next inflection point for Bluetooth tech-
nology and is expected to pave the way for billions of devices in the future. These
devices will need software and hardware implementation, a variety of applications
to realize the full potential of the devices, tools to support the implementation, tools
to test the implementation, and several more building blocks. It is expected that
many of the people who are implementing these building blocks would be exposed
directly to Bluetooth Low Energy without having previously worked on Bluetooth.

This book does not assume prior knowledge of Bluetooth or any other wire-
less technology. Rather, it has a dedicated set of four chapters to explain Bluetooth
technology before moving on to Bluetooth Low Energy technology. So it should
serve both as a good starting point to people new to Bluetooth and a good refresher
for people already familiar with Bluetooth who are seeking to understand what is
new in Bluetooth Low Energy.

The book also contains several programming examples. All programs illus-
trated in this book have been tested on a Linux system using the BlueZ protocol

Organization of This Book xxi

stack. BlueZ is the “official Linux Bluetooth protocol stack.” Support for BlueZ
can be found in many Linux distributions, and in general it is compatible with any
Linux system in the market. As far as possible, these examples are written using
very simple commands and scripts that can be executed with the bash shell. Some
familiarity with Linux and shell commands will help the reader in understanding
these programs faster.

Organization of This Book

This book is organized into five parts:

Part 1 starts with the background of wireless technologies and then introduces
Bluetooth and Bluetooth Low Energy. It then illustrates some of the use case sce-
narios of Bluetooth Low Energy and introduces some of the competing technolo-
gies. It comprises the following chapter:

Chapter 1: Introduction

Part 2 sets the ball rolling by explaining the Bluetooth technology. It serves
as a good introduction for readers who are not familiar with Bluetooth. It serves
as a refresher to readers who have some familiarity with Bluetooth but not a full
understanding of how it works. It may be skipped by people who are Bluetooth
experts. This part explains the fundamentals of Bluetooth and the architecture.
It then moves on to explaining the Bluetooth protocol stack from bottom to top,
including the profiles and use cases. Practical examples, message sequence charts,
and air sniffer logs have been provided to give a view of how each component
works and to show how the various components work together to support end-to-
end real-world scenarios. This part concludes with a practical chapter on setting up
the Bluetooth development environment and step-by-step development of a Blue-
tooth real-world application. The application, fictitiously named Café Bluebite, il-
lustrates how simple Bluetooth commands can be used to implement very powerful
uses. It comprises the following chapters:

Chapter 2: Background of Bluetooth

Chapter 3: Bluetooth Lower Layers

Chapter 4: Bluetooth Upper Layers and Profiles

Chapter 5: Getting the Hands Wet

Part 3 focuses on the lower layers of Bluetooth Low Energy. It starts with an
introduction of Bluetooth Low Energy, and then explains single- and dual-mode
devices followed by some of the fundamental concepts of Bluetooth Low Energy. It
moves on to explain the Bluetooth Low Energy architecture. Here again a bottom
to top approach is taken and the protocol stack is explained starting from the low-
est layers. During the explanation of each layer, the main enhancements (compared
to Bluetooth) are explained along with how the technology leads to drastic reduc-
tions in power consumption. This part contains a good number of sequence dia-
grams, air sniffer captures, and examples of how the various layers work together.
It comprises the following chapters:

Chapter 6: Bluetooth Low Energy—Fundamentals

xxii Preface to the First EditionPreface to the First Edition

Chapter 7: Physical Layer

Chapter 8: Link Layer

Chapter 9: Host Controller Interface and Commands

Part 4 focuses on the upper layers of Bluetooth Low Energy. It continues where
Part 3 left off and starts with a discussion of the L2CAP layer and the main differ-
ences from the L2CAP layer of prior Bluetooth versions. Security is an important
part of any wireless system and can be a major criterion behind the success or fail-
ure of any wireless technology. This part explains the Security Manager in detail
and how Bluetooth helps to prevent various possible security breaches. This part
moves on to explaining the concept of attributes and Attribute Protocol. Attribute
Protocol provides the building blocks for profiles and services that are explained in
the chapter related to Generic Attribute Profile. This part then explains the Generic
Access Profile. It is one of the basic profiles in the Bluetooth world and provides
services to all other profiles. Bluetooth Low Energy defines a very simple architec-
ture for GATT-based profiles. This part explains the GATT-based profiles in detail
along with an end-to-end explanation of what happens behind the scenes when a
profile is active. It finally includes a chapter on how to develop basic Bluetooth
Low Energy applications. This chapter starts with some basic LE operations and
then goes on to discuss the development of interesting and useful programs to
understand the different concepts that were explained earlier. Finally, it provides
some tips and tricks on how to debug LE applications. It comprises the following
chapters:

Chapter 10: Logical Link Control and Adaptation Protocol (L2CAP)

Chapter 11: Security Manager (SM)

Chapter 12: Attribute Protocol (ATT)

Chapter 13: Generic Attribute Profile (GATT)

Chapter 14: Generic Access Profile (GAP)

Chapter 15: GATT-Based Profiles

Chapter 16: Developing LE Applications

Part 5 provides an introduction to the Bluetooth testing and qualification pro-
cess. It introduces the various tools that are available from the Bluetooth SIG for
testing. It also gives an overview of the various events organized from time to time
by the Bluetooth SIG and other organizations where engineers get an opportunity
to test their implementations. Such events are very useful from an interoperability
perspective to ensure that the device works seamlessly with other devices that are
currently available in the market as well as with future devices. The overview of
qualification helps the reader to understand the mandatory requirements that any
Bluetooth device has to comply with before it can be sold in the market. It com-
prises the following chapter:

Chapter 17: Testing and Qualification

In addtion a complete glossary of acronyms and important terms is provided
to serve as a quick reference.

xxiii

Preface to the Second Edition

In the three years since the first edition of the book was published, I have received
several messages from readers commenting on the book and providing excellent
suggestions on how to improve it. I have also assimilated the new learning and
experiences that I’ve had while developing innovative technology products into this
new edition. Newer versions of the specifications have been ratified, which have in-
troduced landmark changes in how this technology can be more effective and how
it can address to a larger number of use-case scenarios.

The first edition of this book was based on Bluetooth Core Specifications 4.0.
This second edition explains the main changes introduced by Bluetooth Core Speci-
fications 4.1 and Bluetooth Core Specifications 4.2.

The most notable changes explained in this book are:

	• The Internet of Things (IoT) space has been growing exponentially. The
Bluetooth SIG has introduced a new profile called Internet Protocol Support
Profile (IPSP), which is geared towards providing IPv6 Internet connectivity
to Bluetooth devices. The Bluetooth sensors can access the Internet and send
and receive messages through gateway devices like smartphones, tablets, and
home routers. Chapter 15 introduces a new section that explains how this
works and the key technology ingredients required from various protocol
stack layers in order to make it work.

	• Faster Connections: One of the radical changes brought in by specifications
4.0 was extremely short packets in order to keep the power consumption
low. While this proved to be very useful, it also led to some constraints in sce-
narios where large amounts of data were to be transferred (i.e., in situations
like uploading log files to the Internet and firmware upgrade of the devices).
Most users don’t upgrade the firmware frequently, but when they do, they
would not expect the firmware upgrade to take several minutes. The newer
versions of the specifications introduced LE Data extensions which improved
the packet size by almost ten times in order to provide an effective increase
in the overall data throughput. Chapter 8 explains these changes in detail.

	• Enhanced Power Efficiency: New enhancements have been made to make the
devices more power efficient. For example, some of the functionality (i.e.,
address resolution of the remote devices) has been moved to lower layers
of the stack so that the upper layers need not be involved in such activities.
These are also explained in Chapter 8.

xxiv Preface to the Second EditionPreface to the Second Edition

	• Privacy Enhancements: Privacy has always been one of the key concerns with
wearable devices since tracking a wearable device (such as a watch) effec-
tively means tracking the person wearing it. Newer enhancements have been
made to enhance the privacy when wearing such devices. This is termed LE
Privacy 1.2. The details are explained in Chapters 8 and 14.

	• Enhanced Security: Bluetooth Core Specifications 4.2 introduced FIPS com-
pliant encryption and an entirely new feature called LE Secure Connections,
which is geared towards higher security. This provides much better security
as compared to what is now termed as LE Legacy Pairing. This is explained
at length in Chapter 11.

xxv

Acknowledgments

First and foremost, I would like to thank my former colleagues at ST-Ericsson. It
was a great opportunity to learn, experiment, and innovate during almost 9 years
with ST-Ericsson. Along with my team members, I would like to thank my former
supervisors, Davy Jacops and Dr. Aloknath De. Under their able guidance I was
able to grow my team from a handful of people to a reasonably large team working
on the latest evolutions in various connectivity areas.

I would like to thank my former colleague Balvinder Pal Singh for being a criti-
cal reviewer of my work. His eye for detail and out-of-the-box thinking always
amazed me. He gave several excellent suggestions to make this book much more
useful to newbies as well as Bluetooth experts.

Next, I would like to thank Frontline, in particular Tomas O’Raghallaigh, for
allowing me to use the screenshots captured from the Frontline ComProbe Protocol
Analysis System software and sharing some of the sample air logs for Bluetooth
transactions. Information about Frontline products related to Bluetooth Low En-
ergy may be found at http://www.fte.com/lowenergy.

I would also like to thank Artech House for their support during the whole
process. Special thanks to Aileen Storry for constantly reminding me of the sched-
ule and responding so promptly to my e-mails.

On the personal side, I would like to thank Ekta, my wife, for her unwavering
support. Almost all my weekends and vacation time for more than a year went into
writing, rewriting, revising, and then re-revising the book. She was always under-
standing and the one who would quietly set the 4:00 AM alarm without telling me
so that I could finish the book as soon as possible. She was also the one who moti-
vated and supported me while writing the second edtion of the book after looking
at the response that the first edition has received.

Thanks as well to Vishesh and Twinkle. I never realized before I started this
book that they have grown old enough to actually edit and put final touches to
some of the figures in this book. Thanks to them, I had to spend less time on refin-
ing the figures and could focus on getting the material organized. Thanks as well to
sweet little Onashi for not pressing the only button on my laptop that she likes—
the shutdown button. Next, I would like to thank my mother, Ms. Saroj Gupta, for
making me who I am today. She was the one who encouraged me to think big, take
on new challenges in life, and then work sincerely towards achieving them.

xxvi AcknowledgmentsAcknowledgments

My father, Mr. A. K. Gupta, is an avid computer and Bluetooth user but not
a wireless expert. For him technologies like Bluetooth should just work intuitively
without knowing the technical jargon. He read the book cover-to-cover several
times. He helped me to add sufficient background information for people new to
wireless technologies and Bluetooth to help them understand the technical jargon
and what is happening behind the scenes when they trigger a Bluetooth operation.
I would like to thank my father for his very useful comments on how to make this
book more readable and understandable for all.

Special thanks to my late father-in-law, Mr. Uttam Prakash Gupta. The most
imporant value that I learned from him was about giving back to society. He de-
voted his entire life to the betterment of society and saving the lives of thousands of
living beings. This book is my attempt to give something back to society.

xxvii

Foreword to the First Edition

Bluetooth (BT) technology has become all-pervasive, with attach rates close to one
hundred percent for mobiles and laptops. Bluetooth Low Energy (BLE) is the next
growth area that leverages on the success of BT but caters to the applications where
frequent battery charging is not an option. The lower power consumption in BLE
is not achieved by the nature of the active radio transport, but by the design of
the protocol to allow low duty cycles with burst transmission and by the use cases
envisaged.

Many features of classic BT are inherited in BLE technology, including the
broad architecture of the protocol stack. Data transfer rates for BLE technology
are below 100 kbps, and also many profiles (including object exchange and audio/
video distribution) are not offered in BLE in order to keep the power consumptions
low. On the positive side, a master device could support a large number of slave de-
vices, and the connection setup is pretty fast. Because a BLE device is in sleep mode
the majority of the time and the communication is “bursty,” the average power
consumption is reduced to significantly low levels.

This book unravels the beauty and subtlety of BLE technology and contrasts
this technology vis-a-vis classic BT technology. Naresh has been working on BT
and short-range connectivity area for close to ten years; his vast developmental
experience has a footprint throughout the book. He has a focused approach in
discussing BLE profiles, ATT, GATT, GAP, security aspects, HCI commands, de-
velopment tools, and debugging and testing mechanisms. At the same time, he has
captured well the BLE architectural aspects and reference design relating to stan-
dard specifications.

The book serves as a practical guide to promising BLE technology that is
well-suited for sensors, actuators, and other small devices with ultra low power
consumption. BT 4.0 with low energy technique paves the way for BT connected
devices and the Internet of Things. Opening a garage wirelessly, receiving alerts
to watch for incoming calls, or finding lost keys (and even cats)—any of these
applications could easily be built with BLE technology. The book provides many
such application examples and the underlying working principles so that practicing
engineers could learn how to build innovative applications on BT-smart and smart-
ready devices.

xxviii Foreword to the First EditionForeword to the First Edition

It has been a pleasure for me to pen this foreword to this book on BLE au-
thored by Naresh. This is particularly so, as I hired Naresh to build the Bluetooth
team, and the team increased both in mandate and strength under my guidance in
ST-Ericsson, where I was serving as Country Director until recently. Naresh and his
colleagues have filed three patents from their inventive work. A good deal of this
material has also been presented as classroom lectures to Masters degree students
at Jaypee University, as well as at the Indian Institute of Technology-Delhi, where I
served as Adjunct Professor. I sincerely believe that this timely book will immensely
help students and engineers alike to get a holistic view of this promising technology.

Aloknath De, Ph.D.
Fellow-Indian National Academy of Engineering

1

C H A P T E R 1

Introduction

1.1 Introduction to Wireless Communication

Wireless communication involves any form of communication without using wires.
Information may be transferred between two or more points that are not physically
connected. The distance between the points could be as short as a few centimeters
or meters like in the case of near field communication and remote controls to as
long as thousands of kilometers in the case of Global Positioning System (GPS) and
deep space communications.

Wireless communication has existed for ages. In early days people used smoke
signals to communicate over long distances and pass encoded messages. Carrier
pigeons were used to deliver written messages. These were also forms of wireless
communication and were used much before wired communication was invented.

In modern times, wireless communication is found almost everywhere. We are
surrounded by devices like mobile phones, remote controls, wireless keyboards,
headsets, FM radios, satellite television, broadcast television, cordless phones,
sports equipment, wireless toys, GPS units, key fobs, smartcards, and many more.
All these devices use wireless communication to exchange data.

Wireless communication has changed the dynamics of how people work and
how they communicate. People no longer needed to be constrained by wires to
exchange information. Some of the major benefits that wireless communications
provide include the following:

	• Mobility: The communication is not restricted by the length of the wires.
Wireless devices can be easily moved around offering users the flexibility to
move while still being connected.

	• Convenience: It is much more convenient to use devices like remote controls,
cordless phones, and keyboards compared to their wired counterparts. Users
are freed up from clumsy wires that hamper movement.

	• Almost zero setup time: In most cases, setting up a wireless device involves
just switching it on and using it. There are no cables to set up.

2 IntroductionIntroduction

	• Reduced cost: No cost for setting up expensive cabled infrastructure. For
example, in many countries the mobile connections have now surpassed the
landline connections because of reduced infrastructure costs.

	• Connectivity in remote areas: It is much easier to provide connectivity in
remote areas like deserts, oceans, forests, and remote villages using wire-
less technologies compared to building wired infrastructures. In many cases,
wired infrastructures may not be even feasible.

	• Enhanced productivity: Wireless communication improves productivity for
a mobile workforce by providing the possibility to stay connected to the
workplaces while on the move. Workers, students, and professionals can
stay connected and work at their convenience thus enhancing productivity.

	• Newer possibilities: Wireless communication makes possible scenarios like
deep space communication, satellite navigation, location-based services,
and communication in remote locations, which are not possible with wired
communication.

	• Safety and security: Wireless communications makes emergency services like
E911 possible where users can seek help from any remote location and can
be tracked and assisted in case of emergency.

	• No compromises on speed: Wireless communications offer almost equivalent
and sometimes higher speeds compared to the wired counterparts.

1.2 Data Rates and Coverage

Wireless technologies find applications in various scenarios involving data transfer
rates ranging from a few kilobits per second (Kbps) to several gigabits per second
(Gbps). At the lower end of the data rate spectrum are technologies like NFC, Blue-
tooth Low Energy, Zigbee, radio frequency identification (RFID), and ANT that
offer data rates in the range of few hundred Kbps or less. At the higher end there
are technologies like wireless USB, WiFi, and ultrawideband (UWB) that may offer
data rates in the range of several hundred Mbps to even few Gbps.

Figure 1.1 shows the typical data range and coverage of various wireless tech-
nologies. Each technology is suited to a particular set of applications that need
specific data rates and coverage areas.

Wireless (and wired) technologies can be classified into several categories de-
pending on the distances over which these are used. Some of these categories are
outlined below.

1.2.1 Wide Area Network

A wide area network (WAN) covers a broad geographical distance that can range
from a few kilometers to thousands of kilometers. This includes technologies such
as GSM (originally Groupe Spécial Mobile, also referred to as Global System
for Mobile Communications), general packet radio service (GPRS), 3G, and code
division multiple access (CDMA).

1.2 Data Rates and Coverage 3

1.2.2 Metropolitan Area Network

A metropolitan area network (MAN) covers a smaller area than a WAN. Typi-
cally this could be a small town or a metropolis. This includes technologies like
Worldwide Interoperability for Microwave Access (WiMAX) that cover several
kilometers.

1.2.3 Local Area Network

A local area network (LAN) typically covers distances in the range of a few hundred
meters. This can be a building, a campus, and so forth. This includes technologies
such as WiFi.

1.2.4 Personal Area Network

A personal area network (PAN) encompasses communication between personal
devices like mobile phones, PDAs, remote controls, keyboards, printers, and cam-
eras. The range of PANs is typically a few meters. This includes technologies like
Infrared Data Association (IrDA), Bluetooth, Wireless Universal Serial Bus (USB),
Near Field Communication (NFC), and Zigbee.

1.2.5 Body Area Network

A body area network (BAN) encompasses communication between devices that
are supposed to be carried or worn by people. These include devices like mobile
phones, headsets, watches, and fitness equipment like blood pressure and heart rate
sensors. This includes technologies like Bluetooth, RFID, NFC, and ANT.

Figure 1.1 Typical data rates and coverage of various wireless technologies.

1 Gbps

100 Mbps

 100 Kbps

0.01m 0.1m 1m 10m 100m 1km 10km 100km 1000km

 Coverage

D
at

a
ra

te

NFC

Bluetooth

 WiFi

Ultra Wideband

Infrared

3G

GSM
Bluetooth

Low Energy

GPS, Satellite
Communication

10 Mbps

1 Mbps

4 IntroductionIntroduction

1.3 Why Have Standards?

Industry standards play a vital role in research and development, worldwide adop-
tion, standardization of products, ensuring interoperability of products from one
vendor to another and protection from patent infringement. Several organizations
have come together to form task forces and standards bodies to contribute to the
development of the standards and ensure their wide acceptance.

Standards help the consumer by driving down prices by helping to build an
ecosystem of companies that contribute to the innovation, mass manufacturing of
the products, and a fair competition amongs suppliers. Consumers don’t get bound
to one single supplier and can have flexibility to choose a vendor based on price
versus feature comparison.

Standards also help in ensuring worldwide regulatory compliance. This is es-
pecially true in the wireless world since wireless products may contain transmitters
and there might be regulatory restrictions on the frequencies on which transmis-
sions are allowed.

There are several organizations which are working on defining standards and
regulations. Some of these organizations are mentioned below. The information
presented here about these organizations has been picked up from the Web site of
the respective organizations. For details, see the references.

3rd Generation Partnership Program (3GPP) [1]
	• 3GPP unites six telecommunications standard development organizations:

Association of Radio Industries and Businesses (ARIB); Alliance for
Telecommunications Industry Solutions (ATIS);China Communications
Standards Association (CCSA); European Telecommunications Standards
Institute	 (ETSI); Telecommunications Technology Association (TTA); and
Telecommunication Technology Committee (TTC). These organizational
partners provide their members with a stable environment to produce the
highly successful “Reports and Specifications” that define 3GPP technologies.

Bluetooth Special Interest Group (SIG) [2]
	• Bluetooth SIG is a privately held, not-for-profit trade association. The main

tasks for Bluetooth SIG are to publish Bluetooth specifications, administer
the qualification program, protect the Bluetooth trademarks, and evangelize
Bluetooth wireless technology.

European Commission for Standardization	(CEN) [3]
	• CEN was officially created as an international nonprofit association based

in Brussels on October 30, 1975. CEN is a business facilitator in Europe,
removing trade barriers for European industry and consumers. Its mission is
to foster the European economy in global trading, the welfare of European
citizens, and the environment. Through its services it provides a platform for
the development of European Standards and other technical specifications.

1.3 Why Have Standards? 5

European Telecommunications Standard Issue (ETSI) [4]
	• ETSI produces globally applicable standards for information and communi-

cations technologies (ICT), including fixed, mobile, radio, converged, broad-
cast, and Internet technologies.

Federal Communications Commission (FCC) [5]
	• The FCC regulates interstate and international communications by radio,

television, wire, satellite, and cable in all 50 states, the District of Columbia
and U.S. territories.

International Electrotechnical Commission 	(IEC) [6]
	• The IEC is the world’s leading organization that prepares and publishes

international standards for all electrical, electronic, and related technolo-
gies. Over 10,000 experts from industry, commerce, government, test and
research labs, academia, and consumer groups participate in IEC standard-
ization work.

Institute of Electrical and Electronics Engineers		(IEEE) [7]
	• IEEE is the world’s largest professional association dedicated to advancing

technological innovation and excellence for the benefit of humanity. IEEE
and its members inspire a global community through IEEE’s highly cited
publications, conferences, technology standards, and professional and edu-
cational activities.

International Organization for Standardization (ISO) [8]
	• The ISO is the world’s largest developer of voluntary international standards.

International standards give state-of-the-art specifications for products, ser-
vices, and good practice, helping to make industry more efficient and effec-
tive. Developed through global consensus, they help to break down barriers
to international trade.

International Telecommunications Union (ITU) [9]
	• The ITU is the United Nations specialized agency for information and com-

munication technologies (ICTs). They allocate global radio spectrum and
satellite orbits, develop the technical standards that ensure networks and
technologies seamlessly interconnect, and strive to improve access to ICTs to
underserved communities worldwide.

6 IntroductionIntroduction

Wi-Fi Alliance [10]
	• The Wi-Fi Alliance is a global nonprofit organization with the goal of driving

adoption of high-speed wireless local area networking.

Near Field Communication (NFC) Forum [11]
	• The Near Field Communication Forum was formed to advance the use of

NFC technology by developing specifications, ensuring interoperability
among devices and services, and educating the market about NFC technology.

ZigBee Alliance [12]
	• ZigBee Alliance is an open, nonprofit association of members that has cre-

ated a thriving global ecosystem of a growing family of innovative, reliable,
and easy-to-use ZigBee standards.

1.4 Introduction to Bluetooth and Bluetooth Low Energy

Bluetooth is a global standard for short-range, low-power, low-cost, small-form-
factor wireless technology that allows devices to communicate with each other over
radio links. It originated as a cable replacement technology mainly to replace the
serial data cables that connect various devices. Over the years, the use cases have
grown to exchanging files between PCs, mobiles, listening to music, printing docu-
ments, browsing, taking mobile calls on Bluetooth headsets and car kits, and several
more.

Today the attach rate of Bluetooth is almost 100% for mobile phones, tablets,
and laptops. Bluetooth is also widely used in wireless headsets, speakers, cameras,
car kits, gaming consoles, and peripherals like keyboards, mouses, printers, and
scanners.

Bluetooth Low Energy (also referred to as LE) is one of the latest enhancements
to the Bluetooth technology that was added as a part of Bluetooth 4.0 specification.
As the name suggests, it is aimed at “ultra” low power devices. This technology
was known as Wibree and Ultra Low Power (ULP) in the past. The terms Bluetooth
Low Energy and LE will be used interchangeably in this book to refer to Bluetooth
Low Energy.

Bluetooth Low Energy extends the low power feature of Bluetooth even fur-
ther. Devices compliant with this standard are expected to consume very low power
so that they can operate for months or even years on coin cell or smaller batteries
without the need of recharging or replacing batteries. This is very useful in appli-
cations where it may be difficult to recharge frequently and longer battery life is
important. Data communication is generally in short bursts that do not need to be
very frequent. It is best suited for devices that do not require high throughput or
streaming of data.

1.4 Introduction to Bluetooth and Bluetooth Low Energy 7

As per ABI research [16]:

… In the first 10 years of its life (up to 2010) cumulative shipments of Bluetooth
enabled devices reached 5 billion. Growth has been largely driven by its use in mo-
bile phones and accessories. This market is still growing overall but it will start to
plateau out over the next five years…

…The introduction of Bluetooth v4.0, with low energy as its pivotal enabler, will
drive a second wave of Bluetooth enabled device shipment growth. The market is
expected to achieve cumulative shipments over 20 billion by 2017…

Some of the key features of Bluetooth Low Energy are:

	• Ultra low power, which enables months or even years of operation on coin
cell or smaller batteries;

	• Small size;

	• Low cost;

	• Short range;

	• Faster connections (link setup time reduced to 3 ms);

	• Small chunks of data;

	• Infrequent transfers;

	• Secure;

	• Interoperable.

Bluetooth Low Energy finds a wide variety of applications including the
following:

	• Internet of Things;

	• Health care devices such as thermometers, blood pressure monitors, and glu-
cose meters;

	• Sports and fitness equipment such as smart watches, pedometers, GPS loca-
tors, and heart rate monitors;

	• Home automation;

	• Home entertainment, remote controls, wireless keyboards;

	• Smart energy (meters and displays);

	• Advertisements;

	• Mobile payments;

	• Automotive devices such as vehicle tire pressure sensors, motion sensors,
temperature sensors, and pollution sensors;

	• Security.

8 IntroductionIntroduction

What is the Internet of Things?

More and more devices are being embedded with sensors and have the ability to
communicate. This enables a network of devices that can identify themselves, col-
lect data, and also communicate with each other. The Internet of Things is the next
radical transformation in the communications era where the gadgets talk to each
other without any need for human intervention.

Some examples are smart energy meters that report electricity and gas usage to the
utility company, vending machines with cellular modems to update inventory and
pricing, vehicle fleet management systems that report location of all vehicles in the
fleet to a central server, and so forth.

One of the key advantages that LE has over other similar technologies is that
it will be able to build onto the existing Bluetooth infrastructure, especially smart-
phones, tablets, and laptops. At present the attach rate of Bluetooth to these devic-
es is almost 100%. Once these devices get upgraded to use LE chips, they can act as
gateways to the LE sensors. A wide variety of use cases can be enabled with a very
low incremental cost for the end user. Therefore, LE is expected to be a significant
contributor to the overall wireless sensor market.

The Bluetooth 4.0 core specification [13] that introduced enhancements related
to LE was released in July 2010. Since then several devices have hit the market and
several more are already being developed and announced. This has also opened up
several requirements for both hardware and software developers. Newer devices
and uses are being developed that will need both hardware implementation and
software applications.

The Bluetooth 4.2 core specification was introduced in December 2014. It in-
troduced several useful features:

	• Connectivity to the Internet;

	• Higher security;

	• Higher throughput;

	• Further reduction in power consumption.

1.5 Applications

This section describes some possible real-world uses of LE.

1.5.1 Finding and Alerting Devices

LE can be used to find misplaced devices. Some example scenarios are:

1.5 Applications 9

1. If the remote control of a home appliance or car keys is misplaced, they can
be found from a mobile device. The user will press a button on the mobile
and the misplaced device will start giving an audio or visual alert. For ex-
ample it may start beeping or an LED on it may start flashing.

2. The microwave oven or washing machine will send an alert to the mobile
phone or wrist watch once the food is cooked or the clothes are washed.

This is shown in Figure 1.2.

1.5.2 Proximity and Presence Detection

LE can be used to detect the presence or absence of a device and take actions ac-
cordingly. It can also be used to detect when the device is moving away from a
predefined range. Some example scenarios are (see Figure 1.3):

Figure 1.2 Finding and alerting devices.

Car keys

TV remote

Mobile
Microwave

Food is ready!

Where are the keys?

Figure 1.3 Proximity and presence detection.

Person has
reached

home/office

1. Open the Garage.
2. Unlock the house.
3. Switch on the AC

Out of
range

(stolen?)

1. Raise panic alarm
 on both mobile
 and watch.
2. Lock mobile. Mobile

Car keys

Watch

10 IntroductionIntroduction

1. As soon as a car comes close to the garage the car keys will automatically
instruct the garage door to open without the need to press any buttons.

2. While a person parks the car, the devices in the home will detect his or her
presence and automatically take some action. The lights could be switched
on and temperature control (air conditioner or heater) could be activated.

3. As soon as a person leaves the home the lights would switch off, the doors
would lock, and the temperature control would adjust automatically.

4. If a person is in a crowded place and his or her mobile is stolen, as the thief
runs away with the mobile device, the distance from the owner would in-
crease. In this situation, both the owner’s watch and the mobile would start
raising an alarm and the mobile would lock itself. If the owner is lucky, the
thief may panic, throw the mobile down, and run away! At least automati-
cally locking the mobile will ensure that the sensitive data stored on the
mobile is not misused.

1.5.3 Health Care

One of the major markets intended for LE is the health care domain. Some applica-
tions in this area are (see Figure 1.4):

1. Health care devices like thermometers, heart rate monitors, glucose moni-
tors, and scales can take measurements and send the data to the smart-
phone or laptop. The smartphone or laptop can perform some analysis
of the data like historical trends and alert the user if any parameters are
beyond the prescribed limits. It may also send the data through Internet to
the doctor.

2. The health care devices can be programmed to take measurements at vari-
ous intervals depending on the condition of the patient. These can also be
programmed to report data in various units (like Celsius or Fahrenheit).

Figure 1.4 Health care.

Mobile

Data

Weighing
machine

Thermometer

Internet

Data

Data
Glucose
meter

1.5 Applications 11

1.5.4 Sports and Fitness Equipment

LE can be used in several sports and fitness applications. Some example applica-
tions are (see Figure 1.5):

1. Wearable heart rate monitors to monitor the heart rate during cardio
exercises.

2. Pedometers and speedometers to track the exercise done.
3. GPS locators enabled with LE sensors to provide information on the speed,

distance traveled, current location, etc.

1.5.5 Mobile Payments

LE can be used be used in electronic wallet applications for making mobile pay-
ments. Some example scenarios are (see Figure 1.6):

1. The user could walk into a store and select merchandise to buy. Instead of
using a credit card to make payments, the user could use the LE-enabled
mobile phone. The mobile phone would establish a secure link with the re-
tail terminal in the shop for PIN verification, and so forth. The verification
and acceptance of the financial transaction could be cloud-based.

1.5.6 The Internet of Things (IoT)

Specifications 4.1 and 4.2 introduced several changes geared towards enabling IoT.
These allow, for example, a use case where a smart sensor can access the internet
through a router and can send or receive data. An example of this is shown in Fig-
ure 1.7. This enables new use cases, such as:

Figure 1.5 Sports and fitness equipment.

Mobile

Data

Pulse meter
embedded in
watch

Speedometer

GPS enabled
shoes

12 IntroductionIntroduction

	• Devices like blood pressure sensors, watches, and thermometers are con-
nected to the Internet through the Smartphone, which acts as gateway and
can send and receive data.

	• The devices can also communicate with each other within the Bluetooth
network.

Figure 1.6 Mobile payments.

Mobile

Secure link for
PIN verification

Point of Sale (POS)
retail terminal

Cloud

Verification and
acceptance of
the financial
transaction

Figure 1.7 The Internet of Things.

1.6 Competing Technologies 13

1.6 Competing Technologies

There are many other wireless technologies that are competing in the same space as
Bluetooth Low Energy. Each of these technologies has its own pros and cons and
some of the uses overlap with those of Bluetooth Low Energy. Some of these tech-
nologies are briefly mentioned here. This information has been picked up from the
respective Web sites of the relevant technologies (see the references).

The intention here is not to compare technologies but to introduce these tech-
nologies to the reader so that details of these technologies can be looked up in the
references. There are already some good resources on the Internet that provide an
in-depth comparison of these technologies both from a technical perspective as well
as from a commercial perspective.

1.6.1 ANT and ANT+

ANT™ [16] is a proven ultra-low power (ULP) wireless protocol that is responsible
for sending information wirelessly from one device to another in a robust and flex-
ible manner. With millions of deployed nodes, ANT is perfectly suited for any kind
of low data rate sensor network topologies—from peer-to-peer or star, to practical
mesh—in personal area networks (PANs) that are well-suited for sports, fitness,
wellness, and home health applications. ANT is a practical solution for local area
networks (LANs) in homes and industrial automation applications.

ANT is specifically designed for wireless sensor networks (WSNs) that require:

	• Ultra low power (runs on a coin cell for years of operation);

	• Highly resource optimized (fits into a compact-sized memory);

	• Network flexibility and scalability (self-adaptive and able to do practical
mesh network;

	• Easy to use with low system cost (operates independently with a single chip).

ANT+ represents an interoperability function that can be added to the base
ANT protocol. This facilitates collection, automatic transfer, and tracking of sen-
sor data. ANT+ is finding applications in sports and wellness equipment like heart
rate monitors, sports watches, bikes, temperature sensors, and so forth.

1.6.2 ZigBee

ZigBee is a standards-based wireless technology designed to address the unique
needs of low-cost, low-power wireless sensor and control networks in just about
any market. Since ZigBee can be used almost anywhere, is easy to implement, and
needs little power to operate, the opportunity for growth into new markets, as well
as innovation in existing markets, is limitless. Here are some facts about ZigBee
from the ZigBee Web site:

14 IntroductionIntroduction

	• With hundreds of members around the globe, ZigBee uses the 2.4-GHz radio
frequency to deliver a variety of reliable and easy-to-use standards anywhere
in the world.

	• Consumer, business, government, and industrial users rely on a variety of
smart and easy-to-use ZigBee standards to gain greater control of everyday
activities.

	• With reliable wireless performance and battery operation, ZigBee gives peo-
ple the freedom and flexibility to do more.

	• ZigBee offers a variety of innovative standards smartly designed to help peo-
ple be green and save money.

1.6.3 Near Field Communication (NFC)

NFC technology makes life easier and more convenient for consumers around the
world by making it simpler to make transactions, exchange digital content, and
connect electronic devices with a touch. A standards-based connectivity technol-
ogy, NFC harmonizes today’s diverse contactless technologies, enabling current and
future solutions in areas such as:

	• Access control;

	• Consumer electronics;

	• Health care;

	• Information collection and exchange;

	• Loyalty and coupons;

	• Payments;

	• Transport.

NFC provides a range of benefits to consumers and businesses, such as:

	• Intuitive: NFC interactions require no more than a simple touch.

	• Versatile: NFC is ideally suited to the broadest range of industries, environ-
ments, and uses.

	• Open and standards-based: The underlying layers of NFC technology follow
universally implemented ISO, ECMA, and ETSI standards.

	• Technology-enabling: NFC facilitates fast and simple setup of wireless tech-
nologies such as Bluetooth and Wi-Fi.

	• Inherently secure: NFC transmissions are short-range (from a touch to a few
centimeters).

	• Interoperable: NFC works with existing contactless card technologies.

	• Security-ready: NFC has built-in capabilities to support secure applications.

1.7 Summary 15

1.7 Summary

Wireless technologies have become an important part of our lives. Depending on
the application requirements, wireless technologies offer ample choice in terms of
data rates and coverage. There are several standard bodies that help in developing
specifications for these technologies.

Bluetooth Low Energy finds applications in several fields. It builds onto the
existing ecosystem of Bluetooth devices and addresses use cases where ultra-low
power consumption is needed. These include scenarios where it may be difficult
to replace or recharge the batteries. LE devices are expected to work for several
months to several years without need of a recharge.

References

[1] 3GPP Web site, http://3gpp.org.
[2] Bluetooth SIG Web site, http://www.bluetooth.org.
[3] CEN Web site, http://www.cen.eu.
[4] ETSI Web site, http://www.etsi.org.
[5] FCC Web site, http://www.fcc.gov.
[6] IEC Web site, http://www.iec.ch/.
[7] IEEE Web site, http://www.ieee.org.
[8] ISO Web site, http://www.iso.org.
[9] ITU Web site, http://www.itu.int/.

[10] WiFi Alliance Web site, http://wi-fi.org.
[11] NFC Forum Web site, http://www.nfc-forum.org.
[12] ZigBee Web site, http://www.zigbee.org/.
[13] Bluetooth Core Specification 4.0, http://www.bluetooth.org.
[14] Bluetooth Profiles Specifications from the Bluetooth Web site.
[15] ANT Web site, http://www.thisisant.com/.
[16] “Bluetooth Smart Will Drive Cumulative Bluetooth Enabled Device Shipments to 20 Billion

by 2017,” ABI Research Web site, www.abiresearch.com.

17

C H A P T E R 2

Background of Bluetooth

2.1 Introduction

This chapter provides a brief background of the Bluetooth technology and explains
some of the commonly used concepts and terminology. It may be skipped if the
reader is well versed with the Bluetooth technology.

2.2 Ad Hoc Networks—Why?

In today’s world, with the advent of the “always connected” devices and “on the
move” users, users expect devices to seamlessly connect to each other and exchange
information without the need to install drivers, upgrade software, figure out cable
connections, lookup configurations on centralized servers or even read user manu-
als. Information is the key in this connected world and the ability to quickly ex-
change that information across various kinds of devices has become more of a
necessity than a luxury.

There are many applications where the user wants to bring devices close to
each other and expects them to exchange data conveniently without going through
lengthy setup procedures. The faster the setupdata exchangetear down cycle,
the better is the user experience.

A wireless ad hoc network may be defined as follows:

A wireless ad hoc network is a decentralized type of wireless network. The network
is termed as ad hoc because it does not rely on a preexisting infrastructure, such as
routers in wired networks or access points in wireless networks like WiFi.

Some of the real world scenarios of an ad hoc network are described below.

2.2.1 Printing Documents, Photos

Consider the scenario where a user took some photos using a camera and wants to
get them printed. The most convenient scenario would be to just select the printer
and send the document or photo to it without the need of connecting any cables or
installing any printer drivers. This is shown in Figure 2.1.

18 Background of BluetoothBackground of Bluetooth

2.2.2 Exchanging Business Cards, Photos, Music, Files

Suppose a person meets a friend at a train station and they need to exchange phone
numbers, e-mail addresses and other contact information. They may also decide
to exchange some other things like photos, music, or some other files before their
trains arrive and they go their respective ways. In such a scenario, an ad hoc tech-
nology is needed to quickly establish a connection and send information at a high
data rate. Besides high data rate, the ad hoc technology also needs to be secure
since they are using it in a public place and they want to ensure that their sensitive
information is not received by others.This is shown in Figure 2.2.

2.3 What is Bluetooth?

Bluetooth is a global standard for short range, low power, low cost, small form fac-
tor wireless technology that allows devices to communicate with each other over
radio links. It originated as a cable replacement technology mainly to replace the
serial data cables that connect various devices. Over the years its uses have grown
to exchanging files between PCs, mobile devices, listening to music, printing docu-
ments, browsing, taking mobile calls on Bluetooth headsets and car kits, and several
more.

Today the attach rate of Bluetooth is almost 100% for mobile phones, tablet
and laptops. Bluetooth is also widely used in wireless headsets, speakers, cam-

Figure 2.1 Printing documents, photos.

PrinterPhotos taken on
the mobile phone
or documents
downloaded from
the Internet

Print photos/documents

Figure 2.2 Exchanging business cards, photos, music, files.

Mobile phone

Exchange business cards

Mobile phone

Send photos, music, files

2.4 Bluetooth SIG 19

eras, car kits, gaming consoles, and peripherals like keyboard, mouse, printer and
scanner

Some of the key features of Bluetooth are:

	• Ad hoc;

	• Small Size;

	• Low Cost;

	• Low Power;

	• Short Range;

	• Secure;

	• Interoperable;

	• Global Standard;

	• Ease-of-use;

	• Does not require line of sight;

	• Does not suffer from interference from obstacles like walls;

	• Can co-exist with other wireless technologies;

	• Big set of profiles already available to address real world scenarios.

Bluetooth is also termed as a Wireless Personal Area Network (WPAN) tech-
nology. As explained in Chapter 1, a Personal Area Network (PAN) is used for
communication among personal devices like laptops, PCs and mobile phones. The
communication may be done over wired buses like USB, Firewire, or plain old se-
rial cables. A WPAN uses a wireless media to connect the personal devices such
as mobile phones, PDAs, tablets and accessories. There are several wireless tech-
nologies like IrDA, Bluetooth, Wireless USB, NFC, and ZigBee which are used for
WPANs.

2.4 Bluetooth SIG

The Bluetooth Special Interest Group (SIG) is a privately held, not-for-profit asso-
ciation. Bluetooth SIG does not make, manufacture, or sell Bluetooth products. The
main tasks of the Bluetooth SIG are:

	• Publish Bluetooth specifications.

	• Administer the qualification program.

	• Evangelize Bluetooth wireless technology.

The Bluetooth technology originated at Ericsson labs in Sweden in 1994. At
that time Ericsson began a study to examine alternatives to cables that linked mo-
bile phones with accessories.

The Bluetooth SIG was formally established by the following five founding
members in February 1998:

20 Background of BluetoothBackground of Bluetooth

	• Ericsson;

	• Intel;

	• IBM;

	• Nokia;

	• Toshiba.

Over the years, several companies have signed up for the Bluetooth SIG mem-
bership. Currently the Bluetooth SIG membership surpasses 16,000 companies.
The membership is open to all companies that wish to develop, market, and pro-
mote Bluetooth products.

The Bluetooth SIG offers two levels of membership to new member companies,
plus promoter membership for companies represented on the Board of Directors.

	• Adopter membership (Free): This provides access to Bluetooth resources and
specifications to build Bluetooth products and license to use the Bluetooth
word mark and logos.

	• Associate membership (Annual fee): This provides early access to Bluetooth
specifications which are still under development along with the opportunity
to contribute to the specifications by joining working groups and commit-
tees. This membership also provides discounts on qualification fees, tools,
trainings and more.

The Bluetooth SIG currently has seven promoter-level companies:

	• Apple;

	• Ericsson;

	• Intel;

	• Lenovo;

	• Microsoft;

	• Nokia;

	• Toshiba.

The Bluetooth SIG holds regular round tables and hosts mailing lists, working
groups, discussion forums, and UnPlugFests where the members can contribute
to the specifications, submit errata, and test their devices for any interoperability
issues.

The UnPlugFests (UPFs) are events organized by the Bluetooth SIG three times
a year where the members can register, bring their products, and test them against
products from other vendors.

Besides Bluetooth specifications, the SIG also provides Test Specifications
which include test cases to test the Bluetooth stack and profiles. It also provides
a tool called PTS (Profile Tuning Suite) which can be used to test the Bluetooth
implementation in an automatic fashion. The test results of this tool can be used as
direct evidence of compliance when the product is to be qualified.

2.5 History of the Bluetooth Specification 21

The Bluetooth SIG also has a full-fledged qualification program which can be
used to qualify a product before going to the market.

The Bluetooth Testing and Qualification will be covered in detail in Chapter 17.

2.5 History of the Bluetooth Specification

The word Bluetooth came from a Danish Viking and King, Harald Blåtand (Blue-
tooth in English). He united and controlled large parts of Norway and Denmark
into one single kingdom during the 10th century. This probably provided the inspi-
ration of the name Bluetooth—uniting a wide variety of devices from computing
and communications domains.

The Bluetooth specification has evolved significantly in the last several years.
Some of the major enhancements that each version added are mentioned in Table
2.1.

2.6 IEEE 802.15 Family of Specifications

IEEE 802.15 is a working group of the IEEE 802 standards committee that specifies
WPAN standards. It includes seven Task Groups (TGs):

1. TG 1: Bluetooth.
2. TG 2: Coexistence for WPANs.
3. TG 3: High Rate WPAN: 11 Mbps to 55 Mbps.
4. TG 4: Low Rate WPAN: 20 kbps to 250 kbps.
5. TG 5: Mesh Networking.
6. TG 6: BAN (Body Area Networks).
7. TG 7: Visible Light Communication.

Versions 1.1 and 1.2 of Bluetooth were ratified as IEEE802.15.1-2002 and
IEEE802.15.2-2005 specifications. Since then, the Bluetooth standard has evolved
independently.

2.7 Bluetooth Basics

One of the first uses of Bluetooth was to replace cables between devices such as
mobile phones, laptops, headphones, printers, fax machines, keyboard, mouse, and
a host of other devices. Besides providing data channels, Bluetooth also provides
voice channels allowing wireless connections between the mobile phones and head-
sets and car kits.

Bluetooth supports ad hoc networks. This means that it does not rely on any
pre-existing infrastructure such as routers in wired networks or access points in
wireless networks. The devices can dynamically come close to each other and ex-
change data and go out of range.

Bluetooth supports a maximum distance of 100 meters though typically it is
used for much shorter distances. The specification provides support for different

22 Background of BluetoothBackground of Bluetooth

Table 2.1 Evolution of Bluetooth Specification
Specification
Version

Release
Date Key features of the version

1.0 and 1.0a Jul 1999 These were the very first versions of the Bluetooth specification. The primary
objective was to replace the serial cables with a wireless link.

1.0b Dec 1999 This version added minor updates to fix some of issues.

1.1 Feb 2001 Bluetooth was ratified as IEEE 802.15.1-2002 standard.

1.2 Nov 2003 This release of the Bluetooth standard added new facilities including the following:
	• Adaptive Frequency Hopping (AFH) was introduced to provide better resistance

to interference in noisy environments.
	• Extended Synchronous Connection Oriented (eSCO) links were added to pro-

vide better voice quality.
This was also ratified as IEEE 802.15.1-2005. This was the last version issued by
IEEE and after that Bluetooth technology evolved independently.

2.0 + EDR Nov 2004 This release of the Bluetooth standard introduced enhancements to the throughput
using Enhanced Data Rates (EDR).
The previous versions of the standard supported a throughput up to 721 kbps.
This version increased it to 2.1 Mbps. This made it more suitable for applications
that required fast data transfers like file transfer, browsing, printing, etc.

2.1 + EDR Jul 2007 This version brought in several enhancements and added SSP (Secure Simple Pair-
ing) to both simplify the pairing mechanism and to improve security.

3.0 + HS Apr 2009 This version provided a significant increase in throughput by introducing the sup-
port for multiple radios. This was referred to as Alternate MAC/PHY (AMP).
The supported maximum throughput went up to 24 Mbps. The rationale, very
briefly, was that several devices like Laptops, Mobile phones and Tablets have both
Bluetooth and 802.11 chips on them. This version of the specification allowed
connection using Bluetooth and then moving on to the 802.11 chip to achieve high
speed data transfers.

4.0 Jun 2010 This version went into a completely different direction compared to the previous ver-
sions. While in the previous versions the main focus was to introduce new features
and enhance the throughput, this version addressed the markets where the need was
not of high throughput but of ultra-low power. This was referred to as Bluetooth
Low Energy (LE).

4.1 Dec 2013 This version enhanced the Bluetooth Low Energy feature by allowing an LE device
to act as both a hub and an end point. This was useful in Internet of Things, where
devices could exchange data with each other. It also provided support for coexis-
tence with LTE (4G) since LTE may occupy frequencies that are close to or have har-
monics near those of Bluetooth. It also provided support for additional topologies in
order to make the technology applicable for newer use case scenarios.
The main notable changes done in this version were to put in the “Reliable BLE
Packet Support by introducing the LE L2CAP Connection Oriented channels” to
carry the short LE packets and add more reliability.
Another notable feature is called Privacy 4.1, wherein the private addresses are
scrambled during connection so that any eavesdropper has a lesser chances of cap-
turing the information.

4.2 Dec 2014 This version further enhanced the Bluetooth Low Energy feature by allowing sensors
to access the Internet, further lowering energy requirements and boosting security
and privacy. One of the shortcomings of the previous version was that the packet
size was smaller, and therefore the maximum throughput was lower, which made it
unsuitable for applications that required high throughput, even if for a short dura-
tion of time. This version increased the packet capacity by ten times leading to a data
throughput increase of 2.5 times.
Comparing the specifications of 4.2 to 4.1, there are also an increased security pro-
cedure and power preserving security procedure. This power-preserving security
procedure offloads most of the key management to the controller.
On 4.2 dual-mode devices, there is also a provision of pairing only once with the
remote device, irrespective of the authentication mode used by the device.

2.7 Bluetooth Basics 23

power levels for Bluetooth radios so that the appropriate combination of power
consumption and distance can be selected based on the application that the device
is intended for.

Originally Bluetooth supported a maximum data rate of 721 kbps. This is re-
ferred to as Basic Rate (BR). The Bluetooth 2.0+EDR specification added support
for data rates up to 2.1 Mbps. This is referred to as Enhanced Data Rate (EDR).
The Bluetooth 3.0+HS (High Speed) specification enhanced it even further to 24
Mbps.

The Bluetooth technology uses the license free 2.4 GHz ISM band for its radio
signals. ISM stands for Industrial, Scientific, and Medical radio band. This band
is globally unlicensed and can be used in any country without asking for prior
permissions.

Since the ISM radio band is an unlicensed band, it is used by other devices
including WiFi devices, and remote control toys. There is also a possibility of inter-
ference from devices like microwaves in this band. To combat interference, Blue-
tooth uses a Frequency Hopping Spread Spectrum (FHSS) mechanism. Instead of
using a constant frequency to send and receive data, the communicating devices use
a set of frequencies and hop rapidly from one frequency to another using a pseudo
random pattern.

Bluetooth SIG mandates the devices to undergo qualification before being
launched in the market. The purpose of the Bluetooth qualification program is to
promote interoperability and enforce compliance to the specification. It is a neces-
sary prerequisite to obtain the Bluetooth intellectual property license and use the
Bluetooth logos. This program is one of the key reasons behind the success of the
Bluetooth technology. When a user buys a device from one vendor, he or she is as-
sured that the device will work well with devices from other vendors.

A summary of the key features of Bluetooth are provided in Table 2.2.

Table 2.2 Summary of Key Features
Connection Type Frequency Hopping Spread Spectrum

Spectrum 2.4 GHz ISM Band. Regulatory range: 2400–2483.5 MHz.

Frequency Hopping 1600 hops per second across 79 RF channels. The channels are sepa-
rated by 1 MHz.

Modulation Gaussian Frequency Shift Keying (GFSK).

Maximum Output Power 1 mW to 100 mW.

Transmit Power Nominal = 0dBm. Goes up to 20 dBm with power control.

Receiver Sensitivity -70 dBm at 0.1% Bit Error Rate

Maximum Data Rate 721.2 kbps for Basic Rate.

2.1 Mbps with Enhanced Data Rate (BT Spec 2.0+EDR).

24 Mbps with High Speed (BT Spec 3.0+HS).

Typical Range 10 m to 100 m.

Topology Up to 8 devices in a piconet including 1 Master and up to 7 Slaves.

Voice Channels 3

Data Security: Authentication Key 128 bit key.

Data Security: Encryption Key 8-128 bits (configurable).

Applicability Does not require line of sight.

Intended to work anywhere in the world since it uses unlicensed band.

24 Background of BluetoothBackground of Bluetooth

2.8 Bluetooth Architecture Overview

Bluetooth has a layered architecture. The high-level architecture of Bluetooth is
show in Figure 2.3. At a very broad level, the Bluetooth architecture comprises the
following components going from bottom to top:

	• Lower Layers or Controller: These are the layers responsible for performing
low level operations like discovering devices in the vicinity, making connec-
tions, exchanging data packets, security, low power modes, etc. This func-
tionality is generally implemented in a Bluetooth chip and it is also referred
to as a Bluetooth Controller.

	• Upper Layers: These layers make use of the functionality provided by the
lower layers to provide more complex functionality like serial port emula-
tion, transferring big chunks of data by splitting them into smaller pieces and
reassembling them, streaming music, etc.

	• Profiles: The profiles can be considered to be vertical slices through the pro-
tocol stack. They provide information on how each of the protocol layers
come together to implement a specific usage model. Profiles help to guar-
antee that an implementation from one vendor works properly with imple-
mentation from another vendor. So they form the basis for interoperability
and logo requirements. The profiles need to be tested and certified before a
device can be sold in the market. A device can support one or more profiles
at the same time.

	• Bluetooth Application: This is the entity that generally performs the tasks
of an MMI (Man Machine Interface) so that the user can make use of the
Bluetooth functionality. Some examples of this are:

•	 Selecting a file and then transferring it on Bluetooth;

•	 Searching for Bluetooth devices in the vicinity and displaying the results;

•	 Pressing a button on the headset to make a connection;

•	 Browsing the files and folders of a remote device on Bluetooth.

One of the strong points of the Bluetooth technology is that it tries to reuse
things are already available instead of specifying everything from scratch. It picks

Figure 2.3 High-level Bluetooth architecture.

Applications

These layers generally
execute on the Bluetooth
chip.

These layers generally
execute on the host which
could be a mobile phone,
tablet, or a laptop.

Profiles

Host (upper layers)

Controller (lower layers)

Protocol stack

2.9 Basic Terminology 25

up some components from existing standards, adapts them as needed, and then
defines only the core components that are needed for Bluetooth operations. The
protocols can be broadly grouped into two categories: Core Protocols and Adopted
Protocols.

The protocols that are defined from scratch by the Bluetooth SIG are referred
to as core protocols. Some examples are L2CAP, Link Manager and SDP (these will
be explained in detail later).

The protocols that are adopted from other standard bodies are referred to as
adopted protocols. Some examples are:

	• RFCOMM: This protocol is adopted from European Telecommunications
Standards Institute (ETSI) standard 07.10.

	• OBEX: This protocol is adopted from the IrOBEX protocol which is defined
by the Infrared Data Association (IrDA).

	• TCS-BIN: Used for the Telephony protocols.

	• IEEE 11073-20601: Used for the MCAP protocol for health applications.

	• IrMC: Used for SYNC profile.

	• HID profile: This is adopted from USB HID (used in wired keyboard, mice
and gaming devices).

The adopted protocols help to re-use existing specifications instead of reinvent-
ing the wheel. The existing specifications are established and are proven to work
well. In many cases, even the existing software can be re-used to a large extent in-
stead of writing the software from scratch. This helps in speedier implementations.

The detailed Bluetooth architecture is shown in Figure 2.4. The adopted pro-
tocols are shown with shaded rectangles and core protocols are shown with plain
rectangles. The profiles are shown by rectangles with dashed boundaries. The pro-
tocol stacks and profiles will be covered in further details in the next two chapters.

2.9 Basic Terminology

This section introduces some of the basic terminology used in Bluetooth. Familiar-
ity with these terms will help in a better understanding of the further chapters.

2.9.1 Host, Host Controller, and Host Controller Interface (HCI)

Based on the device on which the Bluetooth functionality is implemented, the Blue-
tooth architecture can be considered to be split into two broad logical parts as
shown in Figure 2.5.

The Host is a logical entity that executes the upper layers of the Bluetooth
protocol stack along with the profiles and applications. It includes the following:

1. The Protocol stack layers above the Host Controller Interface—L2CAP,
RFCOMM, SDP, AVDTP, AVCTP, and BNEP layers.

2. The profiles like GAP, SDAP, GOEP, OPP, FTP, A2DP, AVRCP, and HF.
3. The MMI applications which interact with the user.

26 Background of BluetoothBackground of Bluetooth

Typically the Host software executes on an application processor or
microcontroller.

The Controller is a logical entity that that executes the lower layers of the pro-
tocol stack. It includes all layers below the Host Controller Interface—Radio, Link
Manager, and Baseband. Typically the Controller functionality is embedded in a
Bluetooth chip that is attached to the Host.

The Host Controller Interface (HCI) provides a communication interface be-
tween the Host and the Controller. Physically this may run on top of an interface
like UART, RS-232, USB or SD. The set of packets that can be exchanged on this

Figure 2.5 Host, Host Controller, and Host Controller Interface.

Host

Controller(s)

The Host executes the upper
layers of the protocol stack,
profiles and applications

The Controller(s) executes the
lower layers of the protocol
stack including radio, link
manager, and baseband.

HCI

Figure 2.4 Detailed Bluetooth architecture.

Link Manager Protocol (LMP)

Host Controller Interface (HCI)

Bluetooth radio

L2CAP

SDP RFCOMM

Baseband controller (also known as link controller)

AVDTP AVCTP

OBEX

A
V
R
C
P

G
A
V
D
P

A
2
D
P

G
O
E
P

F
T
P

O
P
P

S
D
A
P

Adopted
protocols

 Profiles Core
protocols

2.9 Basic Terminology 27

interface is defined by the Bluetooth specification. One of the strong points of the
Bluetooth specification as compared to few other standards is a well-defined inter-
face layer between the host and the wireless controller. It allows independent and
parallel development of the host and controller and ensures compatibility of a host
from one vendor with a controller from a different vendor.

The HCI interface is optional and may be omitted in implementations where
the host and the controller are tightly coupled with each other and run on the same
processor. If this interface is omitted, then the upper layers interact directly with
the lower layers.

Let us consider a few scenarios to understand this well. These scenarios are
shown in Figure 2.6.

Figure 2.6 Scenarios depicting Host, Controller, and HCI.

Scenario 1: PC attached with a Bluetooth USB dongle

Scenario 2: Smart phone or Tablet

PC: The Host entity executes
on the PC

USB Cable: The HCI Interface is
provided through the USB interface

Bluetooth Dongle: The Contoller
is the Bluetooth chip in USB Dongle

Application Processor: The Host
entity executes on the Application Processor

UART: The HCI Interface is provided
through the UART interface

Bluetooth Chip: The Controller
executes on the Bluetooth Chip

Microcontroller: The Host entity
executes on the microcontroller
in the mouse.
The HCI interface is omitted.

Microcontroller: The Controller entity
also executes on the microcontroller
in the mouse

Scenario 3: Bluetooth mouse or audio headset

28 Background of BluetoothBackground of Bluetooth

Scenario 1: PC attached with a Bluetooth USB dongle
In this scenario:

	• The Host entity executes on the PC (The Bluetooth software running on the
PC Operating System).

	• The Controller entity executes on the Bluetooth chip that resides inside the
Bluetooth USB Dongle.

	• The Host Controller interface is provided through the USB interface.

Scenario 2: Smart phone or Tablet
In this scenario:

	• The Host entity executes on the Phone’s application processor.

	• The Controller entity executes on the Bluetooth chip that is mounted on the
Phone’s PCB.

	• The Host Controller interface is provided through the UART (or some other)
connection on the PCB between the application processor and Bluetooth
chip.

Scenario 3: Bluetooth mouse or audio headset
In this scenario:

	• Both the Host and the Controller entities run on a single microcontroller.

	• The Host Controller interface is omitted and the upper layers of the stack
interact directly with lower layers of the stack.

Prior to the Bluetooth 3.0 + HS specification, a Bluetooth system could have
only one Host and one Controller. From the Bluetooth 3.0 + HS specification on-
wards, a system can have one host and multiple controllers. Two types of con-
trollers are defined by Bluetooth 3.0 + HS specification: Primary controller and
Secondary controller. A system can have only one Primary controller and may have
zero or more Secondary controllers.

The Primary controller may support BR/EDR only, LE only or a combination
of BR/EDR + LE functionality.

The Secondary controllers support one or more Alternate MAC/PHY (AMP)
controllers. These AMP controllers help in increasing the throughput up to 24
Mbps by using the 802.11 transport layer instead of the classic Bluetooth transport
layer for high speed data transfers.

2.9.2 Device Address (BD_ADDR) and Device Name

Each BR/EDR controller has a globally unique 48-bit Bluetooth Device Address,
also referred to as BD_ADDR. This address is used to identify the device. It is simi-
lar to an Ethernet MAC address, and is in fact, administered by the same organiza-
tion, IEEE.

2.9 Basic Terminology 29

BD_ADDR consists of two fields:

1. 24-bit company id assigned by IEEE Registration authority. This is called
Organizationally Unique Identifier (OUI) [24 most significant bits].

2. 24-bit unique number assigned by the company to each controller. [24 least
significant bits].

The Bluetooth device name is a friendly name that can be assigned to a device.
Unlike the BD_ADDR, this can be changed by the user or application and provides
an easy mechanism to identify and remember a device. It is possible (though not
desirable) for several devices to have the same name. This device name is generally
fetched from the remote device to identify it.

2.9.3 Class of Device (CoD)

The Class of Device is a 24-bit value used to indicate the capabilities of the local
device to remote devices. This is returned as one of the parameters when searching
for Bluetooth devices in the vicinity.

The CoD field has a variable format. The format is indicated using the Format
Type field within the CoD. The length of the Format Type field is variable and it
ends with two bits different from ‘11’.

In format #1 of the CoD, the bits are assigned as follows:

	• Format Type field: Two bits: 00.

	• 11-bits to indicate a high level generic category of service class. These bits are
assigned as a bit mask so that more than one service class category bit can be
enabled at the same time. Currently 7 categories are defined.

	• 11 bits to define the device type category and other device specific character-
istics. This is further divided into:

•	 5 bits to denote the Major class.

•	 6 bits to denote the Minor class.

The details on the Class of Device can be looked up in the Assigned Numbers
document on the Bluetooth SIG website in the baseband section.Some of the com-
monly used values of Class of Device are shown in Figure 2.7.

2.9.4 Bluetooth Clock

The Bluetooth clock refers to the native clock of the Bluetooth device that is derived
from the free running system clock. Each Bluetooth controller has its own clock
that is started when the device is powered on.

The Bluetooth clock is used to synchronize with other devices. Since each de-
vice may have a different absolute value of the clock, the clock offset values are
used for synchronization instead of the absolute value of the clock. When these
offsets are added to the native clock on each of the Bluetooth devices, mutually
synchronized clocks are obtained.

30 Background of BluetoothBackground of Bluetooth

Clock offsets are very important in a Bluetooth network since all timings are
based on these clocks. The worst case accuracy required for the reference crystal
oscillator that drives the Bluetooth clock is +/- 20 ppm (Parts Per Million). This
means that in a million ticks, the clock cannot drift by more than 20 ticks com-
pared with a fully accurate reference clock.

The Bluetooth clock is different from a Real Time Clock (RTC) which is used
to maintain the time of the day. The RTC generally runs even when the system is
switched off. For example the RTC is used to provide the current time in laptops,
PCs, and mobile phones.

2.9.5 Protocol Data Unit (PDU)

The term PDU is used to refer to information that is exchanged between two enti-
ties in a network. This information is in the form of data packets. Some examples
of PDUs are:

1. The packets that are sent by the lower layers of one Bluetooth device to the
lower layers of the peer Bluetooth device.

2. The packets that are sent by the upper layers (For example L2CAP) of the
protocol stack to the corresponding layers of protocol stack on the peer
Bluetooth device.

Figure 2.7 Class of device.

Headset

Laptop

Smartphone

Service Classes: Networking, capturing, telephony, object transfer
Major Class: Computer
Minor Class: Laptop (This could also be desktop or server)

Service Classes: Telephony
Major Class: Phone
Minor Class: Smartphone (This could also be cellular or cordless)

 Service Classes: Audio
Major Class: Audio/Video
Minor Class: Wearable headset (This could also be Hands-Free device or headphones)

Minor class (6-bits) 00

Format Type: Format #1

Service class (11-bits) Major class (5-bits)

2.10 Data Rates 31

2.10 Data Rates

The data rates supported by Bluetooth have been enhanced in a major way along
with evolutions of the specification.Prior to version 2.0, data rates of up to 721.2
kbps were supported. This is referred to as Basic Rate (BR).

The Bluetooth 2.0+EDR specification added support for enhanced data rates
which enhanced the throughput to 2.1 Mbps. This is referred to as Enhanced Data
Rate (EDR).

Several different packet types are defined by the specification with each packet
type providing support for different data rates. These will be discussed in detail in
the next chapter.

The term BR/EDR is often used together to refer to a system supporting Basic
and Enhanced Data Rates and to distinguish it from a system that supports LE
(Bluetooth Low Energy). This term is used extensively in the specification and will
also be used in this book.

The Bluetooth 3.0+HS specification added support for using Alternate MAC/
PHY (AMP) with which the maximum throughput was increased to 24 Mbps.

The Bluetooth 4.0 (LE) specification did not add any further data rates. Rather
the focus of this specification was on reducing the current consumption to enable
Low Energy devices. In fact the LE system is designed for uses and applications for
lower data rates and smaller packet sizes. The maximum throughput in LE as per
specifications 4.0 is 305 Kbps though in practice the applications send data at a
much lower rate to conserve battery power.

While specifications 4.0 provided support for a majority of use-case scenarios
for devices, there were certain scenarios in which these devices needed a higher
throughput, even if it was for a shorter duration of time. For example, if the firm-
ware of the device were to be upgraded, it would take a huge amount of time (and
thus energy) to upgrade the firmware. The specifications 4.2 addressed this by
increasing the packet size from 27 bytes to 251 bytes. This led to an increase in the
maximum data rate from 305 Kbps to 800 Kbps.

2.11 Connection Setup and Topology

This section briefly introduces the connection setup procedure and Bluetooth to-
pologies. These will be explained in detail in subsequent chapters.

If two devices need to communicate, then they may take the following steps:

1. One of the devices, say device B, needs to be in a mode where it can be
“seen” or discovered by other devices. It is said to become discoverable.

2. The second device, say device A can search for devices in the vicinity. This
is called inquiry. During the inquiry process, it will locate device B.

3. In order to make a connection, the device B needs to allow other devices to
connect to it. So it needs to become connectable.

4. Device A, can now create a connection to device B. This process is called
paging.

5. Once the connection is created, device A is said to become the Master and
device B is said to become the Slave and the devices are said to be connected.

32 Background of BluetoothBackground of Bluetooth

a. Connection means that device A is able to receive the packets sent by
device B and vice versa. This means that they are synchronized on the
frequencies that they will use for transmission and reception.

6. When the devices don’t need the connection any more, they disconnect.
Either the Master or the Slave can initiate the disconnection.

These steps are shown in Figure 2.8.
Bluetooth communication is based on the following two network topologies

1. Piconet;
2. Scatternet (Combination or two or more piconets).

A piconet is the smallest unit of Bluetooth communication. It consists of one
Master and up to seven Slaves. So in Figure 2.8, device A and device B are said to
form a piconet at step 4. Another example of piconet is shown in Figure 2.9.

Figure 2.8 Steps during making a connection.

Step 1: Device B becomes
discoverable

Step 2: Device A does an
inquiry to find devices
in vicinity Step 3: Device B becomes

connectable

Step 4: Device A pages device B

Step 5: Device A and B are connected.

 Step 6: The devices disconnect when they
don’t need the connection anymore.

Slave
Master

2.12 IEEE Language 33

A scatternet is formed when two or more piconets come together by sharing a
device. Scatternets help to extend the number of Bluetooth devices that can com-
municate with each other. They allow more than seven devices to communicate
with each other. A scatternet is shown in Figure 2.10 where S7 is shared between
the two piconets.

2.12 IEEE Language

The Bluetooth SIG has adopted section 13.1 of the IEEE Standard Style Manual
(Ref [3]). This dictates the use of words like “shall”, “should”, “may”, and “can”
in the documentation. Understanding of this usage is very important when reading
the specifications documents. A brief overview of the IEEE word usage is shown in
Table 2.3

Figure 2.9 Piconet.

S3

S7

…
S1

S2

M

Figure 2.10 Scatternet.

S1

S2
S3

S7

S1

S2

M M

34 Background of BluetoothBackground of Bluetooth

2.13 Summary

Bluetooth technology has come a long way since it originated in the Ericsson labs
as a cable replacement technology. While previous evolutions of this technology fo-
cused more on feature and throughput enhancements, the latest version, LE, focuses
on drastic reductions in the power consumption.

The Bluetooth protocol stack follows a layered architecture. It borrows some
of the protocols that are already available and only defines the protocols related to
core Bluetooth functionality.

Bluetooth supports ad hoc networking where up to seven devices can simulta-
neously talk to each other. These devices are said to form a piconet. Bluetooth also
provides flexibility to increase this number by forming a scatternet which combines
two piconets.

This chapter introduced some of the basic concepts of Bluetooth. The next two
chapters will cover the Bluetooth lower layers and Bluetooth upper layers.

References

[1] Bluetooth Core Specification 4.0 http://www.bluetooth.org.
[2] Assigned Numbers Specification: https://www.bluetooth.org/Technical/AssignedNumbers/

home.htm
[3] IEEE Standards Style Manual (http://standards.ieee.org/guides/style/)

Table 2.3 IEEE Word Usage (Adopted from Bluetooth Core Specification)
Shall is required to – used to define requirements.

The word shall is used to indicate mandatory requirements that shall be followed
in order to conform to the specification and from which no deviation is permitted.

Must is a natural consequence of – used only to describe unavoidable situations

The word must shall not be used when stating mandatory requirements. Must is
used only to describe unavoidable situations and is seldom appropriate for the text
of a specification.

Will it is true that – only used in statements of fact

The word will shall not be used when stating mandatory requirements. The term
will is only used in statements of fact.

Should is recommended that – used to indicate that among several possibilities one is
recommended as particularly suitable, but not required.

The word should is used to indicate that among several possibilities one is recom-
mended as particularly suitable without mentioning or excluding others.

May is permitted to – used to allow options

The word may is used to indicate a course of action that is permissible within
the limitations of the specification. This is generally used when there is a single,
optional attribute described, but multiple alternatives may be cited.

Can is able to – used to relate statements in a causal fashion

The term can is used for statements of possibility and capability, whether material,
physical, or casual. The term can equals is able to.

Is is defined as – used to further explain elements that are previously required or
allowed

Note <informational text ONLY>

35

C H A P T E R 3

Bluetooth Lower Layers

3.1 Introduction

The layered architecture of the Bluetooth protocol stack was introduced in the
previous chapter. This chapter covers the lower layers of the Bluetooth protocol
stack including the Bluetooth Radio, Baseband Controller, Link Manager and Host
Controller Interface. These are shown in the bottom half of Figure 3.1.

The Host Controller Interface specification is common for BR/EDR and LE. So
the Host Controller Interface will be explained in detail in this chapter for both BR/
EDR and LE. Only a few LE specific parts will be explained in Chapter 9.

 Some scenarios on how these layers come together to implement certain practi-
cal uses are shown toward the end of this chapter.

3.2 Bluetooth Radio

Bluetooth Radio operates in the 2.4 GHz ISM band. It uses a frequency hopping
mechanism with 79 channels to combat interference. A Time Division Duplex
(TDD) scheme is used for full duplex transmission.

This layer is responsible for the following primary tasks:

1. Transmission and Reception of packets: This includes modulation and de-
modulation of the packets. Two modulations modes are defined:
a. Basic Rate: This mode uses a shaped binary FM modulation mecha-

nism and is designed to minimize complexity of the transceiver. It pro-
vides a gross air data rate of 1 Mbps.

b. Enhanced Data Rate: This mode uses Phase Shift Keying (PSK) Modu-
lation and supports higher data rates. The gross air data rate sup-
ported is 2 Mbps or 3 Mbps.

2. Support appropriate power class: Three power classes are defined by the
Bluetooth specification based on the maximum output power. A higher
value of maximum output power leads to a longer range. The device can
support the power class most appropriate to its intended use:
a. Power Class 1: Maximum output power of 100 mW.

36 Bluetooth Lower LayersBluetooth Lower Layers

b. Power Class 2: Maximum output power of 2.4 mW.

c. Power Class 3: Maximum output power of 1 mW.

3.2.1 Frequency Band and Hopping

Bluetooth uses the globally unlicensed 2.4 GHz ISM band for communication.
Bluetooth divides the frequency band into 79 channels. Each channel is 1 MHz

wide. To combat interference, the Bluetooth devices change channels up to 1600
times per second. So even if there is noise on one channel, the next transmission is
on a different channel which may be noise free.

Figure 3.1 Lower layers in Bluetooth protocol stack.

Link Manager Protocol (LMP)

Host Controller Interface (HCI)

Bluetooth radio

L2CAP

SDP RFCOMM

Baseband Controller (also known as link controller)

AVDTP AVCTP

OBEX

Profiles

 Core
protocols

 Adopted
protocols

 Profiles

Lower layers

What is ISM?

ISM stands for Industrial, Scientific and Medical radio band. Besides 2.4 GHz,
these bands include frequencies in the range of 13.560 MHz, 27.120 MHz, 5.8
GHz, 24.125 GHz and several more. These bands are reserved internationally and
do not require any special license to operate.

ISM bands are shared by several devices including Remote control toys, cordless
phones, near field communication, wireless LAN, etc. Some microwave ovens also
generate interference in these bands. Since these bands may be shared by many
devices, different wireless technologies employ different mechanisms to combat
interference.

3.3 Baseband Controller 37

The pattern of changing the channels is pseudo-random so that all devices
which are communicating with each other know which frequency to hop to next.

The frequencies of various channels are derived from the formula:

 f(k) = 2402 + k MHz, k = 0, …, 78

This is called frequency hopping. The set of devices that communicate with
each other follow the same hopping pattern so that they can listen to data sent by
the other devices. This set of devices is referred to as a piconet which is the funda-
mental unit of communication in Bluetooth. Piconet will be explained in detail in
the next section.

3.3 Baseband Controller

The Baseband controller (also referred to as the Link Controller) performs the fol-
lowing major functions:

1. Management of physical channels and links for single or multiple links.
2. Selection of the next hopping frequency for transmitting and receiving

packets.
3. Formation of piconet and scatternet.
4. Formation of packets and then giving them to the Bluetooth radio for

transmission.
5. Inquiry and Inquiry Scan.
6. Connection and Page Scan.
7. Security (including data encryption).
8. Power management (including low power modes).

3.3.1 Topology—Piconet and Scatternet

Bluetooth supports both point-to-point connections and point-to-multi-point con-
nections. In point-to-point connection, the physical channel is shared by two de-
vices while in point-to-multi-point connection it is shared by multiple devices.

The piconet is the smallest unit of communication in Bluetooth. Two or more
devices sharing the physical channel are said to form a piconet. It is characterized
by one Master and up to seven active Slaves. All the devices are synchronized to
each other in terms of clock and frequency hopping pattern. This common piconet
clock is the same as Master’s clock and frequency hopping pattern is determined by
Bluetooth device address (BD_ADDR) and clock of the Master.

Several piconets may co-exist in proximity with each other without interfering
with each other. This is because each piconet will have its own Master and thus
its own frequency hopping pattern. The chances of two pseudo random frequency
hopping patterns which are hopping on 79 different frequencies to select the same
frequency for next transmission are quite remote.

A scatternet is formed when two piconets share a device. The shared device
participates in the two piconets in a Time Division Multiplexing manner. So it

38 Bluetooth Lower LayersBluetooth Lower Layers

participates in the first piconet for some time and then participates in the second
piconet for the remaining time. Before moving to the second piconet, the device
puts itself in low power mode in the first piconet so that the other devices of the
first piconet are aware of its temporary absence. This can be extended further to
any number of piconets.

Figure 3.2 shows three piconets joined together to form a scatternet. Two sce-
narios are shown:

	• Device M2 is Master in one piconet and Slave in the second piconet.

	• Device S7 is Slave in two piconets.

It’s not possible for a device to be in a Master in two piconets. Why?

This is because the piconet is defined by the Master’s BD_ADDR and clock. So, in
effect, all devices that are synchronized with that Master form one single piconet
and not two different piconets.

3.3.2 Time Division Duplex

The physical channel is divided into slots in the time domain. Each slot is 625 mi-
croseconds and a packet may be sent in 1, 3, or 5 slots depending on the length of
the packet. The Master and Slave send the packet alternately in slot pairs. A slot
pair starts with a Master transmitting a packet to one of the Slaves. The packet is
1, 3, or 5 slots in length. The response to that packet is received from the Slave (to
which the Master had sent the packet) in the next slot. The response packet may
also be 1, 3 or 5 slots in length.

The Master can send packets to a Slave in only EVEN Slots. The Slave can send
packets to Master only in ODD slots. This is illustrated in Figure 3.3.

3.3.3 Adaptive Frequency Hopping (AFH)

Normal frequency hopping provides some level of protection to interference from
other devices in the sense that if another device (whether Bluetooth or not) is using
the same RF channel and the data is corrupted due to interference, then the data
would be retransmitted next time on the next pseudo random channel. It is possible
that the next pseudo random channel is noise free and the packet gets received suc-
cessfully. This will still lead to loss of throughput since there are retransmissions in
case of interference and retransmissions need bandwidth.

The Bluetooth 1.2 specification introduced AFH which helps to increase the
immunity of Bluetooth devices against interference generated by other systems in
the ISM band.

Also, AFH serves another purpose of reducing the interference caused by Blue-
tooth on other devices in the ISM band.

3.3 Baseband Controller 39

When AFH is enabled, the channels which have interference are marked as un-
used. The Master informs the unused channels to the Slaves and these channels are
excluded from the frequency hopping pattern. So, even though the number of chan-
nels on which the frequency hopping occurs decreases, there is no decrease in the
throughput. If AFH were not enabled, the frequency hopping would have occurred

Figure 3.2 Bluetooth topology.

1

2
S3

S7

M1

…

M

Scatternet operation with 3 piconets
 M2 is Master in 1 piconet and slave in another
 S7 is slave in 2 piconets

M3

M2

S1S

S2S
S3

S7

…

S2

S1

S1

S2

Piconet with one Master and up to seven Slaves

40 Bluetooth Lower LayersBluetooth Lower Layers

on some of the bad channels as well and it would have resulted in retransmissions.
The retransmissions would have led to decrease in the throughput.

With AFH, the number of channels in use can be reduced until it reaches 20.
Remember that without AFH the number of channels used by Bluetooth is 79.

To use AFH, the Master maintains a channel map in which it classifies a chan-
nel as used or unused. It keeps on updating the channel map based on information
that it gathers about whether the packets could be transmitted successfully or not
on a particular frequency. It can gather this information based on whether it re-
ceived an acknowledgement of the packet that it sent or not.

The Slaves also help the Master by providing information on whether the chan-
nels are good or bad. Based on this information, the Master can mark the channel
as used or unused.

AFH is enabled by the Master after a connection is made.
The Master may also request Channel Classification information from the

Slave using LMP_channel_classification_req PDU. (The LMP PDUs are exchanged
between the link manager of the Master and the link manager of the Slave. These
will be explained in detail later). A Slave that supports this feature periodically pro-
vides the information on whether the channels are Good, Bad or Unknown using
the LMP_channel_classification PDU.

The Master can use this information to update its channel map. It sends the
updated channel map to the Slave using the LMP_set_AFH PDU.

The updated channel map is sent to Slaves periodically so that only the chan-
nels marked as used are used during frequency hopping.

Figure 3.3 Time division duplex.

Slave 1

Master

Slave 2

Slave N

Time Slots

625
µs

Master to Slave 1
1-Slot Packet

Master to Slave 2
3-Slot Packet

 Each Slot is 625
microseconds

Response from Slave 1
5-Slot Packet

 f(2k) f(2k+1)

3.3 Baseband Controller 41

In a piconet it’s possible that a Master enables AFH with connection to some
Slaves but disables it for some other Slaves. This will especially be the case if some
Slaves support Bluetooth 1.2 or newer specification while others support an older
version.

3.3.4 Master, Slave Roles and Role Switch

As mentioned earlier, a piconet consists of one Master and up to seven Slaves. The
devices in the piconet are synchronized to a common clock and frequency hopping
pattern. This synchronization reference is provided by the Master.

When a device decides to connect to another device (maybe after doing an in-
quiry), it initiates the connection procedure. By default, the device which initiates
the connection becomes the Master. It is also possible for the other device (which
is acting as Slave) to become the Master by doing a role switch. It can do so ei-
ther during the connection establishment itself or any time after the connection is
established.

The procedure to swap the roles of two devices connected in a piconet is called
role switch. It is initiated using the HCI_Switch_Role command. (HCI commands
are sent by the host to the controller on the HCI interface to request the controller
to take specific action. These will be explained in detail later).

Either of the two devices (Master or the Slave) can initiate a role switch.

One interesting point to note at this stage is that LE does not allow Role Switch in
order to keep things simple. We’ll come to that later when we dig deeper into LE.

3.3.5 Channel, Transport and Links

The Bluetooth data transport system follows a layered architecture. This is shown
in Figure 3.4. The lowest layer comprises the physical channel that provides the
communication mechanism between the devices on a Time Division Duplex chan-
nel. At the top, L2CAP channels provide communication channels for upper layers
of the protocol stack to exchange data. Each of the layers is explained in the follow-
ing sections going from bottom to top.

3.3.5.1 Physical Channel

The physical channel is the lowest architectural layer for communication in Blue-
tooth. It is characterized by the pseudo-random frequency hopping sequence, the
specific slot timing of the transmissions, the access code and the packet header en-
coding. This means that for two or more devices to communicate with each other,
their radios must be tuned to the same RF frequency at the same time. Besides this,
the radios must be in range to listen to each other’s transmissions.

When a device is synchronized to the timing, frequency and access code of a
physical channel it is said to be connected to that channel.

42 Bluetooth Lower LayersBluetooth Lower Layers

The physical channel is subdivided into time units called slots. Each slot is 625
µs and full duplex transmission is achieved using Time Division Duplex (TDD)
scheme. A packet may occupy 1, 3, or 5 slots depending on the packet type. As
mentioned earlier a frequency hopping scheme is used and each packet is trans-
mitted on the next pseudo-random frequency. The frequency hop occurs once per
packet and not once per time slot.

Four physical channels are defined:

	• Basic Piconet Channel: This channel is used for communication between
devices in a piconet.

	• Adapted Piconet Channel: This is similar to basic piconet channel and is used
with devices that have AFH enabled.

	• Inquiry Scan Channel: This channel is used for discovering the devices.

	• Page Scan Channel: This channel is used for creating connections with the
devices.

A device can use only one physical channel at a time and has to use time divi-
sion multiplexing between the channels to support other channels if it has to sup-
port multiple concurrent operations.

 For example, if a device is already connected to another device but still needs
to be in discoverable mode so that other devices can discover it. It already has a
physical channel established with another device which is either the basic piconet
channel or adapted piconet channel depending on whether AFH is enabled on that
channel. To support discoverable mode along with the physical channel, it has to
use time division multiplexing to support the inquiry scan channel. This feature
would be useful when forming a scatternet or adding more devices to the piconet.

Figure 3.4 Data transport architecture.

Physical channel
Frequency hopping with time
slots of 625 µs.

Physical link

Logical transport

Logical link

ACL-C carries LMP Control Data
ACL-U carries L2CAP User Data
SCO-S carries Streaming Voice Data
Suffix: C: Control Link, U: User Link,
S: Streaming Link

ACL carries Control Signals,
User Data. SCO, eSCO carry Symmetric,
Point-To-Point traffic. Typically these
carry voice

L2CAP channels User data on ACL-U links
L2CAP layer

Logical layer

Physical layer

Provides bi-directional packet
transport between a Master and
a Slave

3.3 Baseband Controller 43

3.3.5.2 Physical Link

A physical link defines the baseband to baseband connection at the lowest level.
The physical link is what actually carries the data physically over the channel. There
can be only one physical link between two Bluetooth devices. This means that if
we consider two devices—one Master and the other Slave—there will be only one
physical link between these two devices although at a logical level there could be
two or more links on top of it. (Logical links are explained in the next section.)

Within a physical channel, a physical link is established between any two de-
vices that transmit packets. In a piconet, a physical link is formed between the Mas-
ter and each Slave. It is not permitted to form a physical link between two Slaves.

It is worthwhile to note that Bluetooth does not support direct communication
between two Slaves. If the two Slaves need to talk, then they should disconnect
from their respective piconets and form a separate piconet with one of them acting
as the Master and the other acting as a Slave.

A physical link is always associated with exactly one physical channel.The
physical link supports link supervision so that a connection loss can be detected.
This could happen, for example, when the device moves out of range or one of the
devices is powered off. The physical link also supports encryption of the packets
that are transmitted.

3.3.5.3 Logical Transport

A logical transport is formed on a physical link to transfer control signals and syn-
chronous or asynchronous user data. The following three Logical Transports are
most commonly used.

1. Asynchronous Connection Oriented (ACL) Logical Transport.
2. Synchronous Connection Oriented (SCO) Logical Transport.
3. Extended Synchronous Connection Oriented (eSCO) Logical Transport.

Asynchronous Connection Oriented (ACL) Logical Transport
The Asynchronous Connection Oriented (ACL) transport is used to carry control
signals, user data and broadcast traffic. It provides a packet-switched connection
between the Master and all Slaves that are active in the piconet. The default ACL
connection is created when a device joins a piconet. This transport is used to send
data in bursts whenever data is ready and whenever a slot is available and not re-
served for the synchronous connection oriented transport.

Between a Master and a Slave only one single ACL logical transport is created.
The higher layer protocols multiplex their data on top of this logical transport.
Packet retransmissions are supported on the ACL transport to ensure data integrity
when the packets are delivered to the application on the receiver side.

If a SCO or eSCO transport exists between the Master and the Slave, then the
time slots are first allocated to the SCO or eSCO transport. (This is because SCO
and eSCO slots carry time bounded data like voice which need guaranteed band-
width.) The remaining slots are reserved for the ACL transport. (The SCO and
eSCO transports are covered in the next section.)

44 Bluetooth Lower LayersBluetooth Lower Layers

You might be wondering why the acronym is ACL and not ACO?

This is for historical reasons. In previous versions of the Bluetooth specification
(Prior to Core Spec 1.2) this link was called Asynchronous Connection Less and
abbreviated as ACL. That abbreviation still continues…

Synchronous Connection Oriented (SCO) Logical Transport
The Synchronous Connection Oriented (SCO) transport provides support for con-
tinuous transfer of data. It reserves time slots on the physical channel at the time
of establishment of the connection so it can be considered as a circuit-switched
connection. It is a symmetric point-to-point link between a Master and a particular
Slave. SCO links carry 64 kb/s of information in both directions. Typically this is
useful in transporting voice streams where timing of the data is as important as the
data content.

If a data packet is corrupted during transmission it is not retransmitted. This
is suitable for voice data since if there are retransmissions, these would introduce
delays. Hence the retransmitted packets may arrive too late to be played. On the
other hand if the average number of dropped packets is not too high, it may not
lead to noticeable degradation in the user experience.

Unlike ACL logical transport, the SCO (and eSCO) logical transports do not
support multiplexed logical links on top of them. So there is no further layering of
any stack components above SCO (and eSCO) logical transport.

A Master may support up to three SCO links to the same Slave or to different
Slaves. A Slave may support up to three SCO links from the same Master or two
SCO links if the links originate from different Masters. (SCO links can originate
from different Masters in the scatternet topology where a Slave is connected to two
Masters in two different piconets.)

A Master can support an ACL transport and a SCO transport simultaneously
with the Slave. One practical example of this is when connecting to a mono headset
from a mobile phone. The mobile phone establishes both the ACL transport as well
as the SCO transport with the headset. The ACL transport is used to carry com-
mands to create a connection to the headset, increase/decrease volume, disconnect,
etc. while the SCO transport is used to carry the voice traffic.

In theory the Master can support up to 3 SCO transports simultaneously with
an ACL transport to the Slave. In practice this is not used much. Most of the practi-
cal implementations use only one SCO link to transfer voice data along with ACL
link to transfer control data.

Extended Synchronous Connection Oriented (eSCO) Logical Transport
The extended synchronous connection oriented (eSCO) link is a symmetric or
asymmetric point-to-point link between a Master and a particular Slave. This is
in contrast to SCO link which supports only symmetric traffic. The eSCO logical
transport also reserves slots similar to SCO logical transport and can be considered
as a circuit-switched connection.

3.3 Baseband Controller 45

The support for eSCO Logical Transport was added from version 1.2 of the
Bluetooth specification as an enhancement to the functionality of the SCO Logical
Transport.

It offers the following extensions over the SCO link:

	• The transmission may be symmetric or asymmetric in the case of eSCO while
it’s only symmetric in the case of SCO. This means that in the case of eSCO
it’s possible to use 3-slot packets in one direction and 1-slot packet in the
reverse direction.

	• eSCO logical transport provides better reliability (and voice quality) by pro-
viding a limited number of retransmissions of packets that get corrupted.
The retransmission slots are allocated right after the reserved slots and are
used only if needed. This offers better voice quality as compared to SCO
transport. The number of retransmission slots is limited to ensure that the
timing constraints of voice data are still met in case of retransmissions and
that packets don’t arrive too late to be played.

	• eSCO provides higher data rates as compared to SCO links. This is achieved
by introducing additional eSCO packet types related to Enhanced Data Rate.

	• eSCO is used to transfer not only 64 kb/s voice packets, but also any other
types of packets which require constant traffic. For example the eSCO Logi-
cal Transport is used to transfer Wide Band Speech data.

What is Wide Band Speech (WBS)?

The bandwidth of the sound signals used in telephony is limited to about 200–
3400 Hz. This is referred to as Narrow Band Speech. As per Nyquist sampling
theorem, it is sampled at the rate of 8 KHz. (The Nyquist sampling theorem is
beyond the scope of this book. In brief it states that if a signal is band limited at B
Hz, then it can be perfectly reconstructed from a sequence of samples if the sam-
pling frequency is greater than 2 * B samples per second).

The 200–3400 Hz limitation on the bandwidth imposes a limit on the communica-
tion quality in Narrow Band Speech.

Most of the frequencies in speech signals are present below 7000 Hz. So increasing
this bandwidth to 50–7000 Hz increases the naturalness of speech and gives the
feeling of face-to-face communication. This is referred to as Wide Band Speech and
is quite frequently used in cellular systems, voice over IP, etc. The signal is sampled
at the rate of 16 KHz in the case of Wide Band Speech.

The 3G systems support Wide Band Speech and since the audio may be routed
to a Bluetooth headset, the Bluetooth headsets also need to support Wide Band
Speech to ensure that the voice quality is not degraded when routing the call over
a Bluetooth link.

46 Bluetooth Lower LayersBluetooth Lower Layers

3.3.5.4 Logical Links

The logical links are supported on top of the logical transport. Five types of logical
links are defined. These are described in Table 3.1.

The LC (link control) Logical link is carried in the packet headers. It contains
low level information like acknowledgment/repeat request (ARQ), flow control
and payload characterization. All other links are carried in the packet payloads.

The control ACL (ACL-C) logical link carries the control information between
the link managers and the Master and Slave(s). It has a higher priority than ACL-U
logical link.

The user ACL link (ACL-U) is used to carry user data. This link is used by
the L2CAP layer. For example this link is used for transferring a file during a file
transfer using FTP profile. (We will discuss L2CAP layer and FTP profile in the
next chapter.)

The SCO-S link is supported on top of the SCO logical transport. Each SCO-S
link is supported by a single SCO logical transport. Same is the case for eSCO-S
logical link which is supported on top of the eSCO logical transport.

Most of the time the C, U, or S suffix is dropped and the links are just referred
to as ACL, SCO, and eSCO, links. This does not lead to any ambiguity since the
type of links being used is clear from the context. For example, if link manager data
is being transferred then ACL would mean ACL-C logical link. Similarly if user data
(L2CAP) is being transferred, ACL would mean ACL-U logical link. Some practical
scenarios are explained in the Figure 3.5 for a better understanding of these links.

Scenario 1 shows a file transfer between a mobile phone and laptop. In this
scenario, an ACL link is established between these two devices and the file transfer
happens on this link.

Scenario 2 is a bit more complex. It shows a connection between a mobile
phone and mono headset and routing of an audio call (from the cellular network)
on the Bluetooth link to the headset. In this scenario, the initial connection estab-
lishment happens on the ACL link. Once the two devices are ready to exchange
audio (For example, when the user presses the button on the headset to accept
incoming call), the SCO or eSCO link is established.

Scenario 3 shows the case where a stereo headset is connected to a mobile
phone and a music file (MP3) is streamed over the Bluetooth link. The MP3 file is

Table 3.1 Types of Logical Links
Link Type Traffic Type Carrier

Link Control (LC) Low level link control information. Mapped in the packet header and
carried in every packet. (Except
identity packet since it does not have
a packet header).

ACL Control (ACL-C) Control information between the link
manager layers of Master and Slave(s).

Mostly ACL logical transport. May
also be carried in data part of DV
packets on SCO. (DV will be dis-
cussed later).

User Asynchronous/
Isochronous (ACL-U)

Asynchronous or isochronous user
information between L2CAP layers

User Synchronous (SCO-S) Synchronous user information SCO logical transport

User Extended Synchronous
(eSCO-S)

Synchronous user information eSCO logical transport

3.3 Baseband Controller 47

generally encoded in a different format by the mobile phone (by default Bluetooth
specification specifies the usage of an SBC codec) and then streamed on the ACL
link.

The link to transfer music should not be confused with the link to transfer voice.
Music links require much higher bandwidth as compared to voice links. This is
because voice is sampled at 8 KHz (or 16 KHz for Wideband speech) while music
is sampled at (up to) 48 KHz.

The SCO link has bandwidth to carry only 8 KHz voice. This can be enhanced to
16 KHz by using eSCO links. This is still not sufficient for music links.

So music is transferred over ACL links that provide a much higher bandwidth. In
fact even in the case of ACL links, the bandwidth is not sufficient to transfer raw
music. So the music file is first encoded and then transmitted. It is decoded after
reception and then played back.

If this is not clear at this stage, just hang on and we will revisit the subject when we
discuss Bluetooth profiles and in particular the A2DP profile in the next chapter.

ACL link

Scenario 1: File transfer between a mobile phone and a laptop

ACL link

Scenario 2: Routing a voice call from mobile phone to Bluetooth mono headset

(e)SCO link

ACL link

Scenario 3: Listening to music on a stereo Bluetooth headset

Figure 3.5 Usage of different link types.

48 Bluetooth Lower LayersBluetooth Lower Layers

3.3.6 Packet Format

The format of BR and EDR packets is shown in Figure 3.6.
All transmissions begin with an access code. This is the only mandatory part

of a packet; all other parts are optional. It is used for synchronization, DC Offset
compensation, and identification. All packets sent on the same physical channel
are preceded by the same access code. It indicates the arrival of a packet on the
receiver side.

Three different access codes are defined:

	• Device Access Code (DAC): This is used during pre-connection phase when
the devices are trying to connect to each other.

	• Channel Access Code (CAC): This is used when the devices are connected
and is prefixed to all packets that are exchanged between the devices in a
piconet. The receiver uses this code to check if the packet belongs to the
piconet that it is in or not.

	• Inquiry Access Code (IAC): This is used during the inquiry phase when the
devices try to find out other devices in the Bluetooth vicinity.

The packet header contains the following information:

	• Logical Transport Address (LT_ADDR): Indicates the logical transport ad-
dress of the destination device.

	• Packet Type (TYPE): Various packet types are defined for ACL, SCO and
eSCO logical transports. These will be explained in detail in the next section.

	• Flow control (FLOW): To start and stop the flow of packets depending on
whether the receiver is capable of receiving more packets or not. (For exam-
ple if the buffers in the receiver are full, then this bit will be used to indicate
to the transmitter to stop sending further packets)

	• Acknowledgment (ARQN): Positive or negative acknowledgment to indicate
the transmitter of a successful transfer of payload data after checking the
CRC.

	• Sequence Number (SEQN): Sequential numbering of packets to ensure that
packets are received in the correct order.

	• Header Error Check (HEC): To check the header integrity on reception. If
the HEC is incorrect on the receiver side, the entire packet is discarded.

Figure 3.6 BR and EDR packet formats.

HEADER PAYLOAD

ACCESS
CODE

HEADER GUARD SYNC PAYLOAD TRAILER

Standard Basic Rate (BR) packet format

Standard Enhanced Data Rate (EDR) packet format

ACCESS
CODE

3.3 Baseband Controller 49

The payload contains the data that is to be transferred along with the CRC.
The data can have asynchronous data field, synchronous data field or both. The
ACL data packets have the asynchronous data field and the SCO/eSCO packets
have the synchronous data field. There are a special DV packet types which are
defined as a part of SCO packet types. These have both asynchronous and synchro-
nous data field.

For EDR packets, GUARD and SYNC fields are placed before the payload
and a TRAILER field is placed after the payload. This is because EDR packets use
a different modulation scheme for the payload to achieve higher data rates. These
fields are used to facilitate the change in the modulation scheme just before payload
data is transmitted.

3.3.7 Packet Types

Different logical transports use different packet types. As mentioned in the previ-
ous section, the TYPE field within the packet header is used to indicate the various
packet types. Before getting into the details of the packet types, it’s important to
understand the nomenclature. Figure 3.7 shows the significance of each of the al-
phabets in the packet types 3DH5 and 2EV3.

The Packet types can be classified into 3 broad categories:

1. Link Control Packets.

Figure 3.7 Packet nomenclature.

EDR Packets are prefixed with 2 or
3 to indicate the type of modulation.
For BR packets this field is absent

3 D H 5

D indicates ACL Data Packet

The packet occupies 5 Slots.

High Rate Packet

EDR Packets are prefixed with 2 or 3
to indicate the type of modulation.
For BR packets this field is absent.

2 E V 3

EV: Enhanced Voice: eSCO packet.
HV, DV: Voice or Data-Voice
(SCO Packet)

The packet occupies 3 Slots.

Asynchronous packets

Synchronous packets

50 Bluetooth Lower LayersBluetooth Lower Layers

2. ACL Packets.
3. Synchronous Packets.

These are briefly described in the following sections.

3.3.7.1 Link Control Packet Types

There are 5 link control packet types:

	• ID;

	• NULL;

	• POLL;

	• FHS;

	• DM1.

The ID (Identity) packet is used before connection establishment. It’s a very
robust packet and contains the device access code (DAC) or inquiry access code
(IAC). It does not have a packet header of payload.

The NULL packet has no payload. It is generally used to indicate success of
the previous transmission or status of receive buffer. Typically this is used when
a Slave receives a packet from the Master and it has to acknowledge that packet
but it has no data to send back to the Master. So the Slave uses the NULL packet
to acknowledge. The Slave also uses the NULL packet to indicate to the Master if
its receive buffers are full. The Master will then halt transmissions till the time the
Slave empties its buffers to receive further packets. The default packet type for data
is NULL. This is used if there is no data to be sent. The NULL packet itself is not
required to be acknowledged by the Master.

The POLL packet is quite similar to the NULL packet. It also does not have
a payload. It is sent only by the Master. The Master generally uses this packet to
poll the Slaves to first detect whether they are still present and secondly to check
if they have any data to send. Unlike the NULL packet, the POLL packet must be

Table 3.2 Summary of Link Control Packets
Type Remarks

ID Identity (ID) packet. This packet is used before connection establishment to pass
on an address.

NULL The NULL packet has no payload. It is generally used to indicate success of previ-
ous transmission or status of Rx buffer.

POLL The POLL packet has no payload. It is generally used by the Master to poll the
Slaves. The Slave responds to this with a packet. If it doesn’t have any information
to send, it responds with a NULL packet.

FHS The Frequency Hop Synchronization (FHS) contains real time clock information.
It is used for frequency hop synchronization before the piconet channel has been
established or when existing piconet changes to a new piconet (by means of a role
switch).

DM1 The DM1 (Data Medium Rate 1-slot) packet type is used to carry control packets
and data packets.

3.3 Baseband Controller 51

acknowledged by the Slave. If the Slave does not have any information to send, it
responds to the Master with a NULL packet.

The FHS (Frequency Hop Synchronization) is a special control packet contain-
ing real time information. It contains the BD_ADDR and clock information of the
sender. The clock information is updated before each retransmission (since it is real
time and the clock would have changed since the last transmission) for this particu-
lar packet type. This packet is used for frequency hop synchronization before the
piconet channel has been established or when existing piconet changes to a new
piconet (by means of a role switch).

The DM1 (Data Medium Rate 1-slot) packet is used by the Link Manger and
Link Controller to exchange control packets. Besides control packets, this packet
can also be used to carry regular data. The details for this packet type are provided
in the ACL Packet Types section.

The scenarios in which these packet types are used are illustrated later in Figure
3.10.

3.3.7.2 ACL Packet Types

The different types of ACL packets are explained in Table 3.3. Different packets
types are suitable for different scenarios. For example when high throughput is
desired in only one direction, 3-DH5 packets are the most suitable. This is the case
when transferring files, downloading data from the internet etc. In such cases the
majority of the data is transmitted in one direction and there are only a few bytes
that need to be transmitted in the reverse direction.

The information about supported ACL packet types is provided at the time of
ACL connection creation. The link managers running on the two devices negotiate
the packet types that will be used subsequently based on this information. Only the
packet types that are successfully negotiated are used for subsequent transmissions.

Table 3.3 ACL Packet Types

Type

User
Payload
(bytes)

Symmetric
Max Rate
(kb/s)

Asymmetric Max
Rate (kb/s) Remarks

Forward Reverse

DM1 0-17 108.8 108.8 108.8 Data – Medium Rate, 1 Slot

DH1 0-27 172.8 172.8 172.8 Data – High Rate, 1 Slot

DM3 0-121 258.1 387.2 54.4

DH3 0-183 390.4 585.6 86.4

DM5 0-224 286.7 477.8 36.3

DH5 0-339 433.9 723.2 57.6 This packet is used for maximum throughput
in one direction for Basic Rate (BR) links.

AUX1 0-29 185.6 185.6 185.6

2-DH1 0-54 345.6 345.6 345.6

2-DH3 0-367 782.9 1174.4 172.8

2-DH5 0-679 869.1 1448.5 115.2

3-DH1 0-83 531.2 531.2 531.2

3-DH3 0-552 1177.6 1766.4 235.6

3-DH5 0-1021 1306.9 2178.1 177.1 This packet is used for maximum throughput
in one direction for EDR links.

52 Bluetooth Lower LayersBluetooth Lower Layers

As shown in Table 3.3, the maximum throughput is achieved when using asym-
metric data transfer using DH5 packets for BR and 3-DH5 packets for EDR.

3.3.7.3 Synchronous Packet Types

HV (High Quality Voice) and DV (Data-Voice) packets are used for SCO transmis-
sions. The HV packets do not include a CRC and thus these are not retransmitted.
The DV is a combined data-voice packet and it has separate sections for voice and
data. These packets do not include a CRC on the voice section, but include a CRC
on the data section. So in case the data section is not received properly at the remote
side, it is retransmitted. The voice section however is not retransmitted and contains
the next speech information.

eSCO uses EV packets. These packets include a CRC and retransmission is
done if an acknowledgment is not received from the remote side within the re-
transmission window. EV3, EV4 and EV5 packets are used for Basic Rate (BR)
operations. 2-EV3, 2-EV5, 3-EV3, 3-EV5 packets are used for Enhanced Data Rate
(EDR) transmissions. As mentioned previously eSCO packets can be used for both
64kb/s speech as well as data at the rates mentioned below.

3.3.8 Link Controller States

There are three major states used in the link controller:

	• STANDBY: This is the default state of the device. In this state, the device
may also enter low power mode to save power. The link controller may leave
this state to scan for inquiry or page messages from other devices or to itself
inquire or page.

	• CONNECTION: Once a device knows the address of the device to connect
to (using the inquiry procedure), it can create a connection to it. This proce-
dure is known as paging. The device that initiates paging becomes the Master

Table 3.4 Synchronous Packet Types

Type
User Payload
(bytes)

Symmetric
Max Rate
(kb/s) Remarks

HV1 10 64

HV2 20 64

HV3 30 64

DV 10 + (0–9) D 64.0+57.6 D Data Voice. This packet type can support both Data and
Voice simultaneously. D indicates the Data Payload.

EV3 1-30 96

EV4 1-120 192

EV5 1-180 288

2-EV3 1-60 192

2-EV5 1-360 576

3-EV3 1-90 288

3-EV5 1-540 864

3.3 Baseband Controller 53

after the connection is established. In this state, packets can be exchanged
between the Master and the Slave(s). This state is left through a detach or
reset command.

	• PARK: A Slave can enter the park state if it does not need to participate in
the piconet but still needs to remain synchronized with it. This mode helps
conserve power. The Slave wakes up periodically to resynchronize and listen
to the channel to decide whether it should come back to active state or not.

Besides this, there are seven substates. These are interim states that are used
for discovering devices in the vicinity and establishing a connection. The seven
substates are divided into two categories:

Device Discovery Substates

1. Inquiry scan: In this substate, the device listens for incoming inquiry
requests.

2. Inquiry: This substate is used to discover devices in the vicinity.
3. Inquiry response: After receiving the inquiry message, the Slave enters this

state and transmits an inquiry response message.

Connection Establishment Substates

4. Page scan: In this substate, the device listens for incoming connection
requests.

5. Page: This substate is used by a device to connect to another device. The
device that initiates the paging ends up being a Master after the connection
is established and the device that was in page scan mode ends up being
Slave.

6. Slave response: After receiving the page message, the Slave enters this state
and transmits a Slave response message.

7. Master response: The Master enters this state after it receives the Slave
response message.

The different states along with the permitted transitions from one state to an-
other are illustrated in Figure 3.8. As an example, the transition of states and sub-
states during inquiry, connection and disconnection is illustrated in Figure 3.9 and
Figure 3.10.

3.3.8.1 Connection State

During the connection state, the packets can be exchanged between the Master
and the Slave. The first few packets contain control messages that are exchanged
between the link managers of the devices to setup the link and negotiate link pa-
rameters. If the connection is no longer needed, the connection state may be left by
either a detach or reset command.

During the connection state, the device may be in one of the following three
modes:

54 Bluetooth Lower LayersBluetooth Lower Layers

	• Active Mode.

	• Hold Mode.

	• Sniff Mode.

Active Mode
In the active mode, one Master and up to seven Slaves can be active at any time
in the piconet. The Master schedules the transmissions in different slots based on
the SCO/eSCO connections that are established and the traffic requirements from
different Slaves. Even if the Master does not have any data to send, it keeps on
regularly transmitting POLL packets to the Slaves to keep them synchronized to the
channel. If the Slave has data to send, it sends the appropriate data packet. Else it
responds with a NULL packet to acknowledge the POLL packet.

Figure 3.8 Link controller states.

Connection

Standby

Park

 Page
scan

Page

Master
response

Slave
response

Active
mode

Sniff
mode

Hold
mode

Device
discovery
substates

Connection
establishment
substates

Inquiry
scan

Inquiry

Inquiry
response

3.3 Baseband Controller 55

Each Slave is assigned a 3-bit address called Active Member Address (AM_
ADDR). The Master uses this address in the packets to identify the Slave for which
those packets are meant.

Hold Mode
During the connection state, the ACL logical transport to the Slave can be set to
hold mode. In this mode, the ACL packets are not exchanged. The voice links
(SCO, eSCO) are still supported.

Before entering the hold mode, the Master and the Slave agree on the time du-
ration for which the Slave will remain in hold mode. During this time duration, the
Slave can either go to low power mode or do other activities like scanning, paging,
inquiring or participating in another piconet.

On expiration of the time duration of the hold mode, the Slave wakes up and
listens for transmissions from the Master.

Figure 3.9 Link controller messages and states during inquiry.

Packet type: DM1, DM3, DM5, DH1, DH3, DH5

(Slave)

Inquiry
response

Inquiry
scan

Standby

Packet Type: ID

Packet type: FHS

Standby

Message: Extended inquiry response

Message: Inquiry response

 Message: Inquiry

(Master)

Inquiry

Standby

Standby

56 Bluetooth Lower LayersBluetooth Lower Layers

Figure 3.10 Link controller messages and states during connection and disconnection.

(Master) (Slave)

Standby Standby

Page
Page
scan

Connection Connection

Packet Type: ID

Message: Page

Packet type: ID

Message: Slave page response

Packet type: FHS

Message: Master page response

Slave
response

Master
response

Packet Type: POLL

Message: Master packet

Packet Type: Any type of data packet

Message: Slave Packet

Message: Data exchanges

Packet Type: Any type of data packet

Packet Type: DM1

Message: detach (either from Master or Slave)

Standby Standby

.

.

.

3.3 Baseband Controller 57

Sniff Mode
The sniff mode is the most commonly used low power mode. It affects only the
ACL logical transport and does not affect the SCO or eSCO logical transports. This
means that when this mode is activated, the transmissions on ACL logical transport
are reduced, while the transmissions on SCO or eSCO logical transport continue
as usual.

In the sniff mode, the device can become absent from the piconet for a certain
period of time. So a duty cycle is defined consisting of the duration for which the
device will be present and active in the piconet versus the time it will be absent.

A practical use of the sniff mode is when a connection is made between a
mobile phone and a mono headset. The two devices can continue to be connected
for several days even when there is no active voice call going on. This ensures that
as soon as there is an incoming call, time is not wasted in first creating an ACL
connection and then creating a SCO connection to route the call. So, to conserve
power, the ACL connection between the mobile phone and the headset is put in
sniff mode. Most Bluetooth headsets implement the sniff mode.

Another use of the sniff mode is when a Bluetooth keyboard is attached to a PC
or laptop. Since the user may not be actively typing all the time, the ACL link is put
into sniff mode after an inactivity timer. As soon as the user types a key, the link is
brought back into the active mode.

Besides saving power, the sniff mode may also be useful when the device needs
to enter into a scatternet scenario. In this scenario, the device may put the ACL
link of the current piconet into sniff mode and then become active on another ACL
link in the second piconet. So by tuning the sniff parameters it may have periods in
which it is absent in first piconet and present in the second piconet and vice versa.

This mode requires a good bit of attention at the link level, especially when
there is a connection in sniff mode for a long duration. Any clock drifts on either
side while in sniff mode for a long time, could lead to the loss of packets or even
loss of the link. Generally controllers wake up time to time in between to synchro-
nize with the Master and go back to sniff mode again to avoid such problems.

3.3.8.2 Park State

A Slave can enter park state if it does not need to participate in the piconet channel
but still needs to be synchronized with it. It’s a very low power mode with very little
activity. In this mode both ACL and SCO or eSCO traffic is stopped. The Slave still
remains synchronized to the channel.

The parked Slave wakes up at regular intervals to listen to the channel to check
whether there are any messages for it. The Master informs the parked Slaves about
any messages for them through broadcast messages.

When a device is put into park state, a different address known as Parked
Member Address (PM_ADDR) is assigned to it by the Master during the parking
procedure. The Active Member Address (AM_ADDR) that was earlier used by the
Slave in active mode is freed up so that it can be re-used by the Master to make a
connection with some other device.

Park state is also used when more than seven Slaves need to be connected to a
single Master. At a time only seven Slaves can be active. The remaining Slaves are

58 Bluetooth Lower LayersBluetooth Lower Layers

put into park state. If a parked Slave needs to be unparked then it can be swapped
with another active Slave that will be put to park state.

3.4 Link Manager (LM)

The Link Manager performs the functions of link setup and control. The Link Man-
ager Protocol (LMP) is used for communication between the Link Managers of the
two devices. The communication messages between the devices are carried over the
ACL-C logical link. (As mentioned in the previous section, ACL-C logical link car-
ries control data while the ACL-U logical link carries the user data).

The LMP messages are transmitted using DM1 packets. If HV1 SCO link has
been established between the two devices and the length of the payload is less than
9 bytes, then DV packets may also be used. In practice, DV packets are seldom
used.

The packets transmitted by LM are referred to as PDUs. Each PDU contains
the following fields:

	• Transaction ID (TID);

	• OpCode;

	• Payload.

A transaction is a set of messages that are transmitted to achieve a particular
purpose. It may have more than one PDU and all PDUs contain the same TID. The
OpCode is used to uniquely identify different type of PDUs. The LMP messages
are denoted as LMP_message_name. For example, the message to establish a con-
nection is denoted as LMP_host_connection_req. A response PDU to this could be
LMP_accepted or LMP_not_accepted.

The functionality supported by LMP includes the following:

	• Connection Control: This includes procedures for creation and removal of a
connection as well as controlling all aspects of a connection.

	• Security: This includes procedures for authentication, pairing, and encryption.

	• Informational Requests: This includes various PDUs that the LMs exchange
with each other to get the characteristics of the remote device. For example,
the LM may find out the version of the remote device using the LMP_ver-
sion_req PDU. Similarly it may find out the list of features supported by
the remote device by sending the LMP_features_req PDU. The remote side
would respond using an LMP_features_res PDU.

	• Role switch: If the Slave device wants to reverse the roles and become the
Master, then these procedures are used. A practical example of this would
be if a Bluetooth mouse establishes a connection with a laptop. Since the
connection establishment is initiated by the mouse, it becomes the Master of
the connection. After the connection is established the laptop may prefer to
become the Master of the connection so that it can control other peripherals
as well. So it can invoke the role switch procedures to become the Master.

3.4 Link Manager (LM) 59

	• Modes of operation: In the baseband section, hold mode, sniff mode, and
park state were explained. These different modes of operations are invoked
by the link manager. Besides this the link managers of the two devices negoti-
ate the parameters for these modes.

	• Logical transports: The LM invokes the procedures to create and remove
the SCO and eSCO logical transports. The parameters of these transports
are also negotiated by the LMs of the two devices. These can also be rene-
gotiated at any time during the connection. For example an eSCO link is
established by sending an LMP_eSCO_link_req and removed by sending the
LMP_remove_eSCO_link_req.

	• Test Mode: This includes various PDUs for certification and compliance test-
ing of the Bluetooth radio and baseband.

The connection control and security functionality of link manager is explained
in further detail below.

3.4.1 Connection Control

The connection functionality includes all procedures related to creation and removal
of a connection and controlling all aspects of the operation of that connection.

Some of the major functions include the following:

	• Connection establishment: This includes the procedures for establishing a
connection with a remote device. If security on the connection is required,
then security procedures are also invoked. At the end of this procedure, the
device which initiated the connection establishment becomes the Master and
the other device becomes the Slave. It’s also possible to switch the roles by
invoking the role switch procedure during connection establishment. In that
scenario, the device which initiated the connection becomes the Slave and the
other device becomes the Master.

	• Detaching a connection: This includes the procedures for detaching a con-
nection. It may be started by either the Master or the Slave.

	• Link supervision: This feature is used to detect loss of a physical link, for
example, when the devices move away from range or one of the devices loses
battery power. The LMs of both devices use a supervision timer to detect if
the link has been lost. If the link is lost, then the LM reports the link loss to
the host. One of the sections earlier explained the POLL and NULL packets.
These packets are like a heartbeat between the pair of devices in a piconet.
These ensure that the link is still active and that the other device has not
gone out of range or has been reset. Hence there is a timer (timeout is ne-
gotiated right at the link establishment time) which is fired at both sides for
detecting an inactivity on these heartbeat signals. Once there is an inactivity
detected for the stipulated timeslots, the link managers on both sides assume
that there is something wrong on the link, or the devices have moved out of
range. Hence they indicate a link supervision timeout to the upper layers.

60 Bluetooth Lower LayersBluetooth Lower Layers

	• Enable, disable AFH and update of channel map: Adaptive Frequency Hop-
ping (AFH) was explained in previous sections. This feature helps in improv-
ing the performance in case of interference by removing the channels which
have interference from the frequency hopping pattern. The LM of the Master
enables or disables this feature and provides the updated channel map to
each Slave. The LM of the Slave receives these PDUs and updates it’s chan-
nel map accordingly. The LM of the Master may also request the Slave for
information about the quality of channels. This is an optional feature and if
the Slave supports it then it provides a channel map to the Master indicating
whether the channels are good, bad, or unknown.

	• Control of the transmit power level: If the receiver observes that the charac-
teristics of the received signal differ too much from preferred values, it may
ask the transmitter to increase or decrease the power level of the transmit-
ting device. This feature is optional and it allows the devices to use the most
optimal power levels for communication. As an example, as soon as the
devices move away from each other, the receiver may observe degradation of
the received signal. So it may request the transmitter to increase the transmit
power level. If the devices move closer, the receiver may again request the
transmitter to reduce the transmit power level. This will allow more efficient
use of battery power.

	• Quality of Service: This feature is used for bandwidth allocation on ACL
logical transport so that the requested amount of bandwidth can be reserved
on the ACL logical transport.

An example of air logs of different LMP transactions is shown in Figure 3.11.
Some of the points worth observing are:

1. There are two different columns: Role and Initiated By
a. Role indicates which device sent the current packet.

b. Initiated By indicates which device originally initiated this transaction.
For example if the transaction was initiated by the Master and the
Slave is now responding, then Role will indicate Slave and Initiated By
will indicate Master.

2. Frame #1: Connection request initiated by the Master.

3. Frame #9: Connection completed.

4. Frame #2 to #8: Master and Slave exchange information about supported
features and version.

5. Frame #14: SET_AFH command sent by Master to Slave to enable Adap-
tive Frequency Hopping.

6. Frame #292: detach command sent by Master to disconnect the connection.

3.4.2 Security

The security procedures include the following:

3.4 Link Manager (LM) 61

	• Pairing;

	• Authentication;

	• Encryption;

	• Secure Simple Pairing.

3.4.2.1 Pairing

Pairing is the process of associating two devices with each other. When the two
devices agree to communicate with each other, they exchange a passkey. This pass-
key can be considered to be similar to a password that is shared between the two
devices. The passkey is also referred to as the Bluetooth PIN and is generally entered
on the UI. For example when connecting a mobile phone to a laptop, the user will
have to enter identical PIN codes on both the laptop and the mobile phone.

Pairing can be done by using older legacy pairing procedures or by secure sim-
ple pairing procedures. (Secure simple pairing was introduced in version 2.1 + EDR
of the Bluetooth specification).

The Bluetooth PIN that is entered on the UI is used along with a random num-
ber and BD_ADDR to create a link key. This link key is used for authentication
between the two devices for all subsequent connections. This key is stored in the
devices so that when the next time the devices are connected, the user does not need
to enter the PIN again.

Figure 3.11 Example of LMP transactions.

62 Bluetooth Lower LayersBluetooth Lower Layers

3.4.2.2 Authentication

Authentication is the process of verifying who is at the other end of the link. The
authentication process starts when the two devices initiate a connection establish-
ment. It is based on a challenge-response scheme. The verifier sends a challenge to
the other device that contains a random number (the challenge). The other device
calculates a response that is the function of the challenge, its own BD_ADDR and a
secret key. The response is sent back to the verifier that checks whether it is correct
or not.

The success of the authentication procedure requires that the two devices share
a secret key. This key was generated during the pairing process. If they do not share
a secret key, then the pairing procedure is initiated.

3.4.2.3 Encryption

This is an optional procedure and the Master and Slave must agree whether to use
encryption or not. To use encryption, it’s mandatory to perform authentication.

If encryption is enabled, then all data exchanged on the link is encrypted using
an encryption key. The encryption key can be from 8-bits to 128-bits.

3.4.2.4 Secure Simple Pairing

Secure simple pairing was introduced in version 2.1 + EDR of the Bluetooth speci-
fication to both simplify the pairing mechanism and improve security. This is ex-
plained in further detail later in this chapter.

3.5 Host Controller Interface (HCI)

One of the strengths of Bluetooth specification is that it provides a uniform method
for accessing the controller’s capabilities. This has several advantages. First the
development of the software for controller and host can go on independently. Sec-
ondly a host from one vendor can work easily with a controller from another ven-
dor. For example a Bluetooth dongle from any vendor can be plugged into a PC to
use Bluetooth functionality.

The Host Controller Interface (HCI) provides this uniform method for access-
ing the controller’s capabilities. The host interfaces with the controller using this
layer. It is optional and is required only in implementations where the software for
controller and host run on different processors. It may be skipped in implementa-
tions where the software for controller and host run on the same processor.

The communication over the HCI interface happens in form of packets. The
host sends HCI command packets to the controller and is asynchronously notified
by the controller using HCI events.

The commands and events for LE controllers are also exchanged over the HCI
interface. The LE controllers use a reduced set of HCI commands. Some commands
and events are re-used for multiple controller types.

There are four possible types of controllers:

3.5 Host Controller Interface (HCI) 63

1. BR/EDR Controller: Supports only BR/EDR functionality.
2. BR/EDR/LE Controller: Supports both BR/EDR and LE functionality.
3. LE Controller: Supports only LE functionality.
4. AMP Controller: Supports functionality of AMP Protocol Adaptation

Layer (PAL) (BT 3.0 + HS).

3.5.1 HCI Packet Types

There are four types of packets that can be sent on the HCI Interface.

1. HCI Command Packet.
2. HCI Asynchronous (ACL) Data Packet.
3. HCI Synchronous (SCO/eSCO) Data Packet.
4. HCI Event Packet.

These are shown in Figure 3.12.

3.5.1.1 HCI Command Packet

The HCI Command Packet is used by the host to send commands to the controller.
Each command is assigned a 2 byte unique OpCode. The OpCode is further divided
into two fields:

1. OpCode Group Field (OGF) (upper 6 bits): This field is used to group
similar OpCodes together.

2. OpCode Command Field (OCF) (lower 10 bits): This field is used to iden-
tify a particular command in the OpCode group.

The HCI command packets are denoted as HCI_xxx where xxx is the com-
mand that is given by the host to the controller. For example the command to reset
the controller is denoted as HCI_Reset.

Figure 3.12 HCI packet types.

Host Controller
r

HCI command packet

HCI event packet

HCI ACL data packet

HCI synchronous data packet

64 Bluetooth Lower LayersBluetooth Lower Layers

The format of HCI command packet is shown in Figure 3.13. It consists of a
16-bit OpCode followed by an 8-bit parameter total length field. The parameter
total length field specifies the total length of all parameters that are contained in
the remaining packet measured in octets. (An octet denotes an 8-bit value). This is
followed by the command parameters.

3.5.1.2 HCI Event Packet

The HCI Event Packet is used by the controller to notify the host when an event
occurs. This may be in response to an HCI command that was sent earlier (For ex-
ample a command to create a connection), or due to any other event (For example
loss of connection or incoming connection request). Errors are also indicated using
HCI Event Packets.

The format of HCI event packet is shown in Figure 3.14. It consists of an 8-bit
Event Code followed by an 8-bit parameter total length field. The parameter total
length field specifies the total length of all parameters that are contained in the
remaining packet (measured in octets). This is followed by the event parameters.

3.5.1.3 HCI ACL Data Packet

The HCI ACL Data Packet is used to exchange data between the host and the
controller. ACL Data packets can only be exchanged after a connection has been
established.

The format of HCI ACL data packet is shows in Figure 3.15. It consists of a
12-bit Handle followed by 2-bit Packet Boundary (PB) and 2-bit Broadcast (BC)
flags. This is followed by 16-bit Data Total Length field which specifies the length
of the following data in octets. This is followed by the data.

Figure 3.13 HCI command packet format.

OpCode

OCF OGF

 Parameter

0

Parameter

1

Parameter

…

BIT

0 8 16 24 32

Parameter
total length

Figure 3.14 HCI event packet format.

0

1

Event
parameter

…

BIT

0 8 16 24 32

Event Code Parameter
total length

Event
parameter

Event
parameter

3.5 Host Controller Interface (HCI) 65

The Handle specifies the Connection Handle on which data is to be sent. Each
connection is specified by a unique connection handle.

The packet boundary flag is useful when a higher layer protocol packet is frag-
mented into multiple ACL data packets. It indicates whether this packet is the first
packet in the fragment or a continuing packet. This field also indicates the flush-
able characteristics of the packet—whether it is automatically flushable or not.
Automatically flushable packets are automatically flushed based on a timer if they
cannot be transmitted by the time the timer expires.

The broadcast flag indicates whether this is a point-to-point packet or a broad-
cast packet.

3.5.1.4 HCI Synchronous Data Packet

The HCI Synchronous Data Packet is used to exchange synchronous data between
the host and the controller.

The format of HCI synchronous data packet is shown in Figure 3.16. It con-
sists of a 12-bit Connection Handle followed by 2-bit Packet Status (PS) flag and
2-bit reserved (RES) field. This is followed by 16-bit Data Total Length field which
specifies the length of the following data in octets. This is followed by the data.

The Connection Handle specifies the Connection Handle on which data is to
be sent. Each SCO or eSCO connection is specified by a unique connection handle.

The Packet Status flag gives an indication whether the packet was correctly
received or not.

3.5.2 HCI Commands and Events

The HCI commands are grouped into several categories. Some examples of the HCI
commands in various groups are provided below.

Figure 3.15 HCI ACL data packet format.

B
C

Data total length Data …

BIT

0 8 16 24 32

Handle P
B

Figure 3.16 HCI synchronous data packet format.

R
E
S

Data total length Data …

BIT

0 8 16 24 32

Connection
handle

P
S

66 Bluetooth Lower LayersBluetooth Lower Layers

	• Link Control Commands: These allow a controller to control connection to
other controllers.

•	 HCI_Inquiry—Discover devices in the vicinity.

•	 HCI_Inquiry_Cancel—Cancel Inquiry.

•	 HCI_Create_Connection—Create a connection to remote device.

•	 HCI_Disconnect—Terminate an existing connection.

•	 HCI_Remote_Name_Request—Obtain user friendly name of another
controller.

	• Link Policy Commands: These are used to control how Bluetooth piconets
and scatternets are established and maintained.

•	 HCI_Hold_Mode—Put the connection in hold mode.

•	 HCI_Sniff_Mode—Put the connection in sniff mode.

•	 HCI_Switch_Role—Switch the role from Master to Slave and vice versa.

	• Controller and Baseband Commands: These provide access to various capa-
bilities of Bluetooth hardware.

•	 HCI_Set_Event_Mask—Control which events can be generated by the
controller to be sent to the host.

•	 HCI_Reset—Reset the controller.

•	 HCI_Write_Local_Name—Modify the user friendly name of the local
device.

•	 HCI_Write_Class_of_Device—Write the Class of Device parameter.

	• Informational Parameters: These provide information about the capabilities
of the controller.

•	 HCI_Read_Local_Version_Information—Version, Manufacturer name.

•	 HCI_Read_BD_ADDR—Reads the BD_ADDR of the controller.

	• Status Parameters: These provide information about the current state of the
controller.

•	 HCI_Read_Link_Quality_Information about the link quality.

	• LE Controller Commands: These are used for LE controllers.

•	 HCI_LE_Set_Event_Mask—Controls which LE Events are generated by
the controller to be sent to host.

•	 HCI_LE_Read_Buffer_Size—Read the maximum size of data packets that
can be sent to controller and the total number of buffers.

•	 HCI_LE_Create_Connection—Create an LE connection.

Some examples of HCI events are provided below.

	• Inquiry Complete: Is used to indicate completion of inquiry.

	• Inquiry Result: Is used to provide information about remote devices found
during inquiry.

	• Connection Complete: Indicates that a connection has been established.

	• Disconnection Complete: Indicates that a connection has been terminated.

3.5 Host Controller Interface (HCI) 67

	• Hardware Error: Indicates some hardware failure.

	• LE Meta Event: Is used to encapsulate all LE events. A sub-event code in-
dicates the exact event that has occurred. It could be one of the following:

•	 LE Connection Complete—Indicates that an LE connection has been
established.

•	 LE Advertising Report—Indicates that an advertising report has been
received.

•	 LE Connection Update Complete Event—Indicates that the process to up-
date the connection parameters has been completed.

The following two HCI events are used quite frequently:

	• Command Complete: This event is used by the controller to transmit the
return status of the command as well as the return parameters associated
with the command.

	• Command Status: This event is used by the controller to indicate that it has
received the command and has started performing the task for the command
though the task may not have completed yet. This event is needed to provide
a mechanism of asynchronous operation so that the host can continue doing
other operations while the controller performs the tasks requested by the
host. The host is notified by another event when the task is completed by the
controller.

An example of the HCI commands and events exchanged during inquiry is
shown in Figure 3.17.

3.5.3 Buffers

The controller has buffers to receive the commands and ACL/Synchronous data
sent by the host.

	• Command Buffers: The BR/EDR/LE controller uses shared buffers for the
commands.

	• Data Buffers: The controller may either have shared or separate data buffers
for BR/EDR and LE.

Whether the controller has separate or shared data buffers for LE can be de-
termined using the HCI_Read_Buffer_Size command. This will be explained in a
later section.

3.5.4 HCI Flow Control

In general the controller has much less buffers and processing power as compared
to the host. This means that if the host sends a few packets to the controller to pro-
cess in fast succession, then it is possible that the buffers of the controller get full.

68 Bluetooth Lower LayersBluetooth Lower Layers

Flow control mechanism is needed in such a scenario to ensure that the host does
not send any packets further till the time the previous ones are processed.

The HCI interface provides separate flow control mechanisms for the following:

1. Host to Controller Data Flow Control: ACL Data Packets from host to
controller.

2. Controller to Host Data Flow Control: ACL Data Packets from controller
to host.

3. Command Flow Control: HCI Command Packets from host to controller.

Out of these, Controller to Host Data Flow Control is not much widely used
since typically the host has more resources than the controller. So most of the time,
the controller can send data to the host without any flow control.

3.5.4.1 Host to Controller Data Flow Control

The Host to Controller Data flow control is used to regulate the flow of data from
the host to the controller. This is needed because the controller may have much
lesser buffers as compared to the host. Besides this the controller also needs time
to process (transmit/re-transmit) those packets. During that time, the flow control
ensures that the host sends only as many packets as the number of available buffers
in the controller.

There are two mechanisms:

1. Packet Based Flow Control.
2. Data-Block-Based Flow Control.

Figure 3.17 HCI commands and events for inquiry.

Host Controller

HCI_Inquiry

Command_Status_Event

This host is informed
that the controller
has started the inquiry.
Meanwhile the host
is free to do other
tasks.

Inquiry_Result_Event

Inquiry_Result_Event

Inquiry_Result_Event

Inquiry_Complete_Event
All devices reported.

More devices found.

Start Inquiry

Inquiry Done.
Prepare full list
of devices

Keep collecting
results

3.5 Host Controller Interface (HCI) 69

The Packet Based Flow Control is used quite widely and this is explained in
detail in this section. It is shown in Figure 3.18.

During initialization the host sends the Read Buffer Size command to get in-
formation about the buffers in the controller. The response to the Read Buffer Size
contains the following:

1. Number of ACL buffers.
2. Size of each ACL buffer.
3. Number of SCO buffers.
4. Size of each SCO buffer.

If the controller supports LE, then it is possible for the controller to either have
separate LE buffers or share the same buffers. The host can send the LE Read Buf-
fer Size command to find this out. If the response to this indicates zero as the length
of the buffers, then it means that the same buffers are shared between BR/EDR and
LE. Otherwise the response would indicate the number of LE buffers present in the
controller and the size of those buffers.

Once the host has information on the number of ACL buffers, it knows that
at any given time, it can have a maximum of that many packets outstanding (to
be processed) on the controller side. For example if the Number of ACL buffers
was four, then the host can have a maximum of four packets outstanding on the
controller side at any given time.

Figure 3.18 Packet-based Host to Controller data flow control.

Packets
transmitted

Number of completed packets event

Host Controller

HCI_Read_Buffer_Size

ACL buffer size, number of buffers

HCI ACL data packet

Initialize count of
buffers to number
of buffers

Decrement count
by number of packets
sent to controller.

If count > 0

Increment count by
number of packets
reported as processed
by controller

70 Bluetooth Lower LayersBluetooth Lower Layers

The host maintains a count of the number of ACL buffers available in the
controller. It initializes this value to the number of ACL buffers it received in the
response to Read Buffer Size command. After that every time it sends a packet to
the controller, it decreases this count by one.

Once the controller has completed processing one or more packets, it sends
that count of processed packets in the Number of Completed Packets event. The
host knows that some additional buffers have been freed up on the controller side
and it increments its count by the number of packets reported in the Number of
Completed Packets event.

3.5.4.2 Command Flow Control

The flow control used for commands is very simple. The command complete and
command status events that are sent by the controller to the host have a field which
indicates how many more commands can be sent to the controller. The host can
send up to that many commands to the controller before waiting for the next com-
mand status or command complete event.

In general, if the controller is not able to complete a command right away, it
sends a command status event. Later on when the command is completed it ei-
ther sends a command complete event or another relevant event depending on the
command that was sent. For example if the host requests the controller to start
an inquiry, the controller starts the inquiry and returns a command status event.
This indicates to the host that the controller has started processing of the inquiry
command. Once the inquiry is complete, the controller sends an inquiry complete
event to indicate that the inquiry command has been completed. This was shown
in Figure 3.17.

3.5.5 Connection Handle

The HCI interface assigns a Connection Handle when a new logical link is created.
The value of this connection handle is returned in the Connection_Complete_Event.
The host uses this connection handle to manage this connection, send data and fi-
nally disconnect the connection.

3.5.6 HCI Transport Layer

The Host Controller Interface defines 4 transport layers that can be used:

1. UART Transport Layer.
2. USB Transport Layer.
3. Secure Digital (SD) Transport Layer.
4. Three-Wire UART Transport Layer.

The UART Transport Layer in described in detail here. This interface is com-
monly used in systems where the Host and Controller are on the same PCB (Printed
Circuit Board). Some examples are Smartphones, Tablets and Printers.

3.5 Host Controller Interface (HCI) 71

Each packet that is exchanged between the Host and the Controller is prefixed
with a packet indicator immediately before the HCI Packet. This allows the dif-
ferentiation of various packets.

The following Packet Indicators are used on the HCI UART Interface:

1. HCI Command Packet: Packet Indicator 0x01.
2. HCI Asynchronous (ACL) Data Packet: Packet Indicator 0x02.
3. HCI Synchronous (SCO/eSCO) Data Packet: Packet Indicator 0x03.
4. HCI Event Packet: Packet Indicator 0x04.

Figure 3.19 indicates the direction in which these packets are sent along with
the packet indicators. (The arrows indicate the direction in which packets are sent.)

In some implementations (e.g., some Smartphones), the HCI Synchronous
Data packets are not sent on the UART Transport Layer. Rather these packets are
directly sent by the host’s application processor or modem to the Bluetooth chip on
a different interface. For example a PCM/I2S interface may be used to send voice
packets between the Application Processor and Bluetooth Chip. This is shown in
Figure 3.20.

3.5.6.1 Decoding HCI Packets

Figure 3.21 shows an example of how to decode the packets on the UART transport
layer. This is quite useful when debugging the HCI transactions happening on the
UART. Similar method can be used to also debug packets on other transport layers.

In general the UART Transport Layer assumes that the line is free from line
errors. (Why? - Since they are closely located on the same PCB so it’s assumed that
there will not be any errors). In case there is a synchronization loss in the commu-
nication from the Host to the Controller, the Controller sends a Hardware Error
Event to the Host. Once the Host is aware of the synchronization loss, it has to
terminate any pending Bluetooth activity and then reset the Controller to regain

Figure 3.19 HCI UART transport layer.

Host Controller

HCI command packet (0x01)

HCI event packet (x04)

HCI ACL data packet (0x02)

HCI synchronous data packet (0x03)

72 Bluetooth Lower LayersBluetooth Lower Layers

communications. This is done by the host by sending the HCI_Reset command to
the controller.

Figure 3.20 Typical HCI UART connections in a smartphone.

The HCI UART interface is used
for Commands, Events and
ACL Data

The PCM/I2S lines are directly
connected between the modem
and Bluetooth chip to transfer voice Cellular modem

Application
processor

Bluetooth chip

Figure 3.21 How to decode packets sent on HCI UART transport layer.

Host Controller

Packet Indicator (HCI Command Pkt)

HCI Reset Command

01 03 0C 00

Opcode

Parameter Total Length
If this is non-zero, it’s followed by number
of parameters specified by Length.

Command Complete Event

02 03 0C 00 04 0E 04

Packet Indicator (HCI Event Pkt)

Event Code
(Command Complete Event)

Parameter Total Length
(Length of Remaining Packet)

Parameters of the Event:
 Num_HCI_Command_Packets
 Command_Opcode
 Return_Parameter(s)

3.6 Security—Secure Simple Pairing (SSP) 73

In order to avoid synchronization losses, the Host and Controller use Hard-
ware Flow Control. For details on this as well as the details on the settings of the
UART you may refer to the Bluetooth Core specification (Ref [1]).

3.6 Security—Secure Simple Pairing (SSP)

Secure Simple Pairing was introduced in Bluetooth spec 2.1 +	EDR. The main goal
was to simplify the pairing procedure from the user perspective. It also introduced
improved level of security as compared to previous versions.

SSP increased the security level as compared to previous version of the Blue-
tooth specification. Till Bluetooth spec 2.0 + EDR, only 4-digit numeric pin keys
were supported. On top of that several devices used frequently used pin keys like
0000, 8888, or 1234. So hacking those codes was comparatively easier. SSP intro-
duced 16 alphanumeric pin which makes it more difficult to hack the codes.

SSP has two security goals:

	• Passive Eavesdropping Protection.

	• Man-In-The-Middle (MITM) Attack Protection.

3.6.1 Passive Eavesdropping Protection

Passive Eavesdropping protection is provided by two mechanisms:

	• Strong Link Key: The strength of a link key is dependent on the amount of
randomness (entropy) in its generation. In previous versions of Bluetooth,
the only source of this entropy was the 4-digit numeric PIN key. This was
relatively easy to break in short time. In comparison SSP uses 16-bit alpha-
numeric PIN key which provides for much higher entropy.

	• Strong Encryption Algorithm: SSP uses Elliptic Curve Diffie Hellman
(ECDH) public key cryptography. This provides a high degree of strength
against passive eavesdropping attacks. It’s also computationally less complex
than standard Diffie Hellman (DH76) cryptography and suitable for Blue-
tooth controllers which may have limited computational power.

3.6.2 Man-in-the-Middle (MITM) Attack Protection

An MITM attack occurs when a rouge device attacks by sitting in the middle of
two devices that want to connect and relays messages between them. The two de-
vices believe that they are directly talking to each other without knowing that all
their messages are being intercepted and relayed by a third device which is setting
between them. This is also known as active eavesdropping.

Let’s say devices A and B want to make a connection and M is an attacking
device (as shown in Figure 3.22).

M receives all information from A and relays it to B and vice versa. So, A and
B have an illusion that they are directly connected. They are not aware of the ex-
istence of M between them. Since M is relaying the information between the two

74 Bluetooth Lower LayersBluetooth Lower Layers

devices, it can interpret all this information and misuse it. Besides this, M can also
attack by inducing rogue information between the two devices.

Since A and B can only communicate via M, this type of attack can get detected
only if the connection to M is lost. In that case, A and B will not be able to com-
municate any further and user can detect an MITM attack.

To prevent MITM attacks, SSP provides two mechanisms: Numeric Compari-
son and Passkey entry. These are described in further detail below.

3.6.3 Association Models

SSP provides four association models based on the I/O capabilities of the two de-
vices. These are as follows:

	• Numeric Comparison;

	• Just Works;

	• Out of Band;

	• Passkey Entry.

3.6.3.1 Numeric Comparison

This is used in scenarios where both devices are capable of displaying a six digit
number and both are capable of having the user enter a binary “yes” or “no” re-
sponse. This method displays a 6-bit numeric code on both the devices. The user is
then asked whether the number is the same on both the devices. If the user enters
yes on both devices, the pairing is successful.

This method has the following advantages:

Figure 3.22 Example of MITM attack.

Device A
Device B Device M: MITM

Attacker

Device A
Device BExpected communication path

Actual communication path

3.7 Practical Scenarios 75

1. It provides additional confirmation that the correct devices are being paired.
This is especially true in cases where the device names are not unique and
it’s quite hard to remember and identify the device using BD_ADDR

2. It helps to provide protection against MITM attacks.
3. It is also applicable in scenarios where a device may not have a full-fledged

keyboard (for entering the PIN) but has only a display. For this method a
binary Yes/No input is sufficient.

3.6.3.2 Just Works

As the name implies, this method just works without any user intervention. It’s
designed for scenarios where the device does not have capability to enter 6 decimal
digits nor it has capability to display 6 decimal digits.

It’s quite commonly used in pairing mobile phones with mono headsets since
mono headsets do not have display and pin entry capabilities. Internally this method
still uses the Numeric Comparison though the numbers are not displayed to the user.

It provides protection against passive eavesdropping but does not provide
MITM protection. So the security level is still higher than older 2.0 devices but not
as good as Numeric Comparison.

3.6.3.3 Out-of-Band (OOB)

Out Of Band Pairing uses an external means for discovering the devices and ex-
changing pairing information. It’s expected that the Out Of Band channel provides
protection against MITM attacks to ensure that the security is not compromised.

Typically this could be NFC (Near Field Communication) where the user may
touch the two devices. An option would be given to pair the two devices and if the
user confirms, the pairing would be successful.

3.6.3.4 Passkey Entry

The passkey mechanism is used when one device has input capability but does
not have display capabilities and the second device has display capabilities. One
example of such scenario is pairing between keyboard and PC. The user is shown
a six digit number on the device which has display capabilities and is then asked to
enter this number from the device which has input capabilities. Pairing is successful
if the value entered by the user is correct.

3.7 Practical Scenarios

This section describes how the HCI, Baseband Controller and Link Manager inter-
act to implement the following practical scenarios:

	• Inquiry;

	• Connection Establishment;

	• Disconnection.

76 Bluetooth Lower LayersBluetooth Lower Layers

3.7.1 Inquiry

Inquiry is the procedure to discover other Bluetooth devices in the vicinity. It is also
known as scanning or discovering.

Prior to performing an inquiry, it is important that the device that is to be dis-
covered be set in discoverable mode. This includes sending the HCI_Write_Scan_
Enable command with Inquiry Scan parameter set to Enabled. Besides this, HCI_
Write_Inquiry_Scan_Activity can also be used to configure additional parameters.
Once this is done the device is said to be in inquiry scan mode (or discoverable
mode).

The inquiry procedure is started by the host of the first device (which is sup-
posed to discover other devices) by sending an HCI_Inquiry command to the con-
troller. On receipt of this command, the controller initiates an inquiry. The devices
in the vicinity respond with inquiry responses.

The controller collects the inquiry responses and provides the results of in-
quiry to the host in Inquiry_Result events. These events contain the BD_ADDR,
Class_Of_Device and Clock_Offset. Multiple devices may be reported in a single
Inquiry_Result event. Once the inquiry is complete, an Inquiry_Complete event is
sent by the controller to the host (on the device that initiated the inquiry).

This is illustrated in Figure 3.23. (Some of the events are omitted to aid
simplicity).

Figure 3.23 Inquiry procedure.

Host Controller Controller Host

Device A Remote device(s)

Set mode
to discoverable

.

.

.

Inquiry
Inquiry

Inquiry_response

List of devices

Inquiry_Result_Event (s)

Each discoverable device sends
an Inquiry response.

Inquiry_Complete_Event

Command_Status

HCI_Inquiry

 HCI_Write_Scan_Enable
(Inquiry scan enabled)

.

.

.

3.7 Practical Scenarios 77

3.7.1.1 Periodic Inquiry

If the inquiry procedure is to be repeated periodically, then HCI_Periodic_Inquiry_
Mode command can be used. This command takes the maximum and minimum
period between consecutive inquiries as parameters. Once this command is given
by the host, the controller performs an automatic inquiry periodically. This can be
stopped by the host by sending the HCI_Exit_Periodic_Inquiry_Mode command.

A practical use of this is when a device wants to be regularly alerted of any
devices which are coming in or going out of the vicinity. To achieve this periodic
inquiry can be used. The time range between two consecutive inquiries is provided
as a parameter. The new device list can be compared with the previous device list. If
a device was not present in the previous list but is present in the new list then it has
entered the Bluetooth vicinity recently. Any specific action like finding details about
the device, connecting to it, sending a message or file to it can then be initiated.

3.7.1.2 Extended Inquiry Response (EIR)

The EIR enhancement was added in Bluetooth 2.1 + EDR version of the specifica-
tion. If a device supports EIR it can provide some additional data while responding
to the inquiry. This extended data may contain the name of the device, supported
services, Received Signal Strength Indicator (RSSI) etc.

This is more efficient than a normal inquiry response since the inquiring de-
vice gets all the information in one go instead of first doing an inquiry, then a get
name and finally a service search. This leads to an overall faster connection setup
procedure.

3.7.2 Connection Establishment

The procedure to connect to a remote device is known as paging or connecting pro-
cedure. In the text below, the device that initiates the connection is referred to as the
initiator and the device to which it connects is referred to as the target.

Prior to connecting, the target device (that is to be connected to) is set to Con-
nectable mode. This is done by sending the HCI_Write_Scan_Enable command.
This command takes Page_Scan as one of the parameters. The Page_Scan param-
eter is set to Enabled to make the device connectable. Besides this, HCI_Write_
Page_Scan_Activity can be used to configure additional parameters. Once this is
done the device is in page scan mode (or Connectable Mode).

Connection procedure is started by the host of the initiator by sending an HCI_
Create_Connection command to the controller. The parameters of this command
include BD_ADDR, Packet Types, Page_Scan_Repetition_Mode, Clock_Offset and
Allow_Role_Switch.

On receipt of this command the controller initiates a connection request using
the link manager command LMP_host_connection_req.

Figure 3.24 depicts a very simplified view of the connection establishment pro-
cedure. The optional parts like Feature Exchange, Authentication, Encryption and
some of the HCI events are omitted to aid simplicity.

The initiator device becomes the Master after successful connection
establishment.

78 Bluetooth Lower LayersBluetooth Lower Layers

Figure 3.25 illustrates the disconnection procedure. Either of the devices may
decide that the connection is no longer needed and initiate this procedure.

3.8 Summary

This chapter explained the lower layers of the Bluetooth Protocol stack. These
include the stack layers up to the HCI interface: Bluetooth Radio, Baseband Con-
troller, and Link Manager. These layers are typically implemented in a controller.

Figure 3.24 Simplified connection establishment procedure.

Host Controller Controller Host

Initiator device Target device

Set mode to
connectable

.

.

.

Connect

LMP_host_connection_req

HCI_Write_Scan_E
enable (Page Scan
Enabled)

HCI_Create_Connection

Connection
request event

Accept incoming
connection

HCI_Accept_Connection_Request

LMP_accepted

LMP_setup_complete

LMP_setup_complete

Indicate
connection
completion

Connection
complete event

Indicate start of
procedure

Command Status
event

Indicate incoming
connection

Indicate
connection
completion

Connection
complete event

Optional Procedures: Feature Exchange, AFH Enable, Authentication, Encryption

3.8 Summary 79

The Bluetooth Radio is responsible for transmitting and receiving the packets
to and from the air interface. It uses frequency hopping across 79 channels in the
ISM band to combat interference. The Baseband Controller is responsible for car-
rying out procedures like inquiry, connection, formation of piconet and scatternet,
connection states, and low power modes. The Link Manager provides the function-
ality of link setup and control, security, Master-Slave role switch, etc.

The HCI interface provides a standard mechanism for interfacing Bluetooth
upper layers with the controller.

The next chapter will be the last in the series of chapters explaining the Blue-
tooth architecture. It will cover the Bluetooth upper layers.

Reference

[1] Bluetooth Core Specification 4.0 http://www.bluetooth.org.

Figure 3.25 Disconnection procedure.

Host Controller Controller Host

Device A Remote device

Disconnect

LMP_detach

Indicate
disconnection
complete

HCI_Disconnect

Command Status
Event

Indicate start of
disconnection

Ack

Disconnection
complete event

Indicate
disconnection
complete

Disconnection
complete event

Connection Exists between the two devices and Remote Device decides to disconnect it

.

.

.

81

C H A P T E R 4

Bluetooth Upper Layers and Profiles

4.1 Introduction

The previous chapter described the lower layers of the Bluetooth protocol stack.
This chapter continues explanation of the Bluetooth protocol stack and covers the
upper layers of the Bluetooth protocol stack and the profiles.

The detailed Bluetooth architecture was presented in Chapter 2. It is shown
again in Figure 4.1 for ease of reference. The upper layers make use of the func-
tionality provided by lower layers to provide more complex functionality like serial
port emulation, transferring big chunks of data, streaming music, and synchroniz-
ing information. These help the applications to conveniently implement end user
scenarios.

One of the design principles of the Bluetooth protocol stack was the reuse of
existing protocols wherever possible instead of rewriting everything from scratch.
On one hand this helped to easily and quickly build further on existing and prov-
en technologies, on the other hand it also helped in reusing existing applications
that were already implemented and available. Protocols such as Object Exchange
(OBEX) and RFCOMM were adopted from other standard bodies and are re-
ferred to as adopted protocols. These are shown by shaded rectangles in Figure 4.1.
OBEX was adopted from the IrOBEX protocol which was defined by the Infrared
Data Association. So applications that were designed to run on Infrared transport
can generally be reused to run on Bluetooth as well. Similarly RFCOMM was ad-
opted from ETSI standard 07.10. It allows legacy serial port applications to be used
on top of Bluetooth without much change.

Some protocols were defined from scratch. These were the protocols that pro-
vided the core Bluetooth functionality and are called core protocols. These are
shown by plain rectangles in Figure 4.1. For example the Service Discovery Pro-
tocol (SDP) is one of the core protocols that allows for support of discovering the
services of the devices in the vicinity. Since Bluetooth is an ad hoc peer to peer pro-
tocol, this layer was essential because there is no prebuilt infrastructure to provide
such information and devices can come into vicinity at any time. So this protocol
was defined to query the services from the device itself instead of the need of a cen-
tral server to store information about all devices.

82 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

Bluetooth profiles provide a usage model of how the different layers of the pro-
tocol stack come together to implement a particular usage model. Profiles define
the protocols and the features of each of the protocol that are needed to support a
particular usage model. For example the File Transfer Profile (FTP) profile defines
how and what features of the underlying protocols like OBEX, RFCOMM and
L2CAP are needed in order to provide support for transferring files. Profiles are
shown by dotted rectangles in Figure 4.1.

4.2 Logical Link Control and Adaptation Protocol (L2CAP)

The L2CAP protocol sits above the Baseband layer and provides data services to
the upper layer protocols. It uses the ACL links to transfer packets and allows the
protocols above it to send data packets up to 64 KB in length.

L2CAP is based on the concept of Channels. A channel represents a data flow
path between L2CAP entities in remote devices. Channels may be connection-ori-
ented or connectionless.

Connection-oriented L2CAP channels are used to transport point-to-point
data between two devices. These channels provide a context within which specific
properties may be applied to data transported on these channels. For example QoS

Figure 4.1 Detailed Bluetooth architecture.

Profiles

Upper
Layers

Link Manager Protocol (LMP)

Host Controller Interface (HCI)

Bluetooth Radio

L2CAP

SDP

Baseband Controller (also known as Link Controller)

AVDTP AVCTP

 Core
Protocols

 Adopted
Protocols

 Profiles

G
O
E
P

S
D
A
P

H
F

F
T
P

S
P
P

A
2
D
P

G
A
V
D
P

O
P
P

A
V
R
C
P

OBEX

RFCOMM

4.2 Logical Link Control and Adaptation Protocol (L2CAP) 83

parameters may be applied to the connection-oriented channels. These channels are
setup using the L2CAP_CONNECTION_REQUEST command before any data
can be transferred. Once data transfer is completed, these channels are discon-
nected using the L2CAP_DISCONNECT_REQUEST command.

Connectionless L2CAP channels are generally used for broadcasting data
though they may also be used for transporting unicast data. The Master uses these
channels to broadcast the data to all Slaves in the piconet. These channels do not
need separate procedures to setup and disconnect the channel. So latency incurred
during the channel setup is removed.

Each endpoint of an L2CAP Channel is referred to as a Channel Identifier
(CID). So CID is the local name representing a logical channel end point on the de-
vice. CIDs are assigned from 0x0001 to 0xFFFF. Out of these, CIDs from 0x0001
to 0x003F are reserved. These are known as fixed channels. The CID 0x0001 is
reserved as the L2CAP signaling channel and 0x0005 is reserved as the L2CAP LE
signaling channel. CID assignment is specific to the device and is done independent
of the other devices. So it’s possible, for example, to have one CID number assigned
on one device and a different CID number assigned on the other device by the
L2CAP entities executing on the respective devices.

The fixed channels (0x0001 for BR/EDR and additionally 0x0005 for LE) are
available as soon as the ACL-U logical link is established with the remote device.
The L2CAP Signaling Channel is used for negotiating configuration parameters
and setting up the other channels.

The allocation of CID numbers is shown in Table 4.1.

Table 4.1 CID Name Space
CID Description

0x0000 Null Identifier. Usage is not allowed.

0x0001 L2CAP Signaling channel. Used to send the signaling commands in the form
of requests and responses. Some examples of signaling commands are:

	• Connection Request

	• Connection Response

	• Configuration Request

	• Configuration Response

	• Disconnection Request

	• Disconnection Response

0x0002 Connectionless channel. Used for the following:

	• Broadcast from Master to all Slaves in the piconet. There is no acknowl-
edgement or retransmission of this data.

	• Unicast transmission from either a Master or Slave to a single remote
device.

0x0003 AMP Manager Protocol. This is used for BT 3.0 + HS operations.

0x0004 Attribute Protocol. Attribute Protocol will be covered in detail in later
chapters.

0x0005 LE L2CAP Signaling Channel.

0x0006 Security Manager Protocol (SMP): SMP will be covered in detail in later
chapters.

0x0007 – 0x003E Reserved for future use

0x0040 – 0xFFFF Dynamically allocated by the L2CAP layer.

84 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.2.1 Modes of Operation

There are six modes of operation for L2CAP. The mode of operation is selected
independently for each channel.

1. Basic L2CAP Mode: This is the default mode. The header contains only
minimal information including the length of the packet and the channel ID.

2. Flow Control Mode: In flow control mode no retransmissions are done.
The missing PDUs are detected and reported as lost.

3. Retransmission Mode: In retransmission mode a timer is used to ensure
that all PDUs are delivered to the peer. The PDUs are retransmitted if they
are not ack’ed by the remote side.

4. Enhanced Retransmission Mode: The enhanced retransmission mode is
similar to the retransmission mode and adds some enhancements to it. For
example it adds a POLL bit to request a response from the remote L2CAP
layer.

5. Streaming Mode: The streaming mode can be used for all streaming appli-
cations. In this mode, the PDUs from the transmitting side are numbered
but are not acknowledged by the receiver. The numbering of PDUs ensures
that they are processed in the correct sequence on the receiving side. A
flush timeout is used so that if the PDUs are not sent within that timeout,
they are flushed.

6. LE Credit-Based Flow Control Mode: This mode was introduced in speci-
fications 4.1. Support for connection-oriented channels for LE was intro-
duced in this version. At the time of connection establishment, each side
provides the number of credits that are available. The number of credits
indicates the number of LE-frames that the device is capable of accepting.
The remote side can send as many LE-frames as the number of credits it has
received; if the credits become zero, it stops sending packets. As and when
the packets are processed on the receiver side and buffer space becomes
available, more credits are given to the transmitter side so that it can send
more packets.

4.2.2 L2CAP PDUs

The L2CAP Protocol Data Unit (PDU) is the term used to refer to the packets that
are sent and received the L2CAP layer. The PDUs contain control information or
data.

L2CAP defines 5 types of PDUs:

1. B-frame (Basic Frame): A B-frame is a PDU used in basic L2CAP mode for
L2CAP data packets.

2. I-frames (Information Frame): An I-frame is a PDU used in enhanced re-
transmission mode, streaming mode, retransmission mode and flow con-
trol mode. It contains additional information encapsulated in the L2CAP
header.

4.2 Logical Link Control and Adaptation Protocol (L2CAP) 85

3. S-frame (Supervisory Frame): An S-frame is a PDU used in Enhanced re-
transmission mode, retransmission mode and flow control mode. It con-
tains protocol information only and no data.

4. C-frame (Control Frame): A C-frame is a PDU that contains L2CAP signal-
ing messages that are exchanged between peer L2CAP entities. This frame
is exchanged on the L2CAP signaling channel.

5. G-frame (Group Frame): A G-frame is used on the connectionless L2CAP
channel. It may be used to broadcast data to multiple Slaves or unicast data
to a single remote device.

4.2.3 L2CAP Features

L2CAP performs the following major functions:

	• Higher layer Protocol Multiplexing and Channel Multiplexing;

	• Segmentation and Reassembly (SAR);

	• Per Channel Flow Control;

	• Error Control and Retransmissions;

	• Streaming Channels;

	• Quality of Service;

	• Group Management.

L2CAP uses BR/EDR Controller, LE Controller or a Dual mode controller for
transporting data packets. It can also use AMP controllers if they exist.

4.2.3.1 Higher layer Protocol Multiplexing and Channel Multiplexing

L2CAP permits several higher layer protocols to share the same ACL links. Each
higher layer protocol is assigned a separate CID to transfer data. For example once
an L2CAP channel is established with the remote device it may be shared by SDP,
RFCOMM and other protocols. Each of these protocols will use a different CID
to talk to the respect peer entity on the remote device. This is shown in Figure 4.2.

The Protocol/Service Multiplexer (PSM) field is used during L2CAP connection
establishment to identify the higher level protocol that is making a connection on
that particular channel. The PSM values are predefined for many of the protocols
by the Bluetooth SIG and can be referred to on the Assigned Numbers page on the
Bluetooth SIG website. Some of the PSM values for the protocols are show in Table
4.2.

L2CAP also allows the channel to be operated over different controllers though
the channel can be active on only one controller at a time. This is useful in sce-
narios where the channel is initially established over BR/EDR controller and then
it’s moved to an AMP controller to achieve higher data throughput.

86 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.2.3.2 Segmentation and Reassembly (SAR)

L2CAP allows higher layer protocols to transmit and receive data packets up to
64 kilobytes. While transmitting, L2CAP breaks the packets into smaller packets
depending on the packet size supported by the controller. On the receiving end,
L2CAP receives all these segments and reassembles them to form the complete
packet. This complete packet is then sent to the higher layers.

As an example, let’s say RFCOMM sends a packet of 60 KB to L2CAP. L2CAP
will break this packet into smaller chunks of 1021 bytes which can then be trans-
ferred over a BR/EDR controller (Note that this is the maximum packet size that
can be transmitted over ACL using 3-DH5 packets. A BR/EDR controller may sup-
port this as the maximum size or a smaller size). This will result in 60 chunks of
1021 byte packets and one chunk of 180 bytes.

 60 KB = 61440 Bytes = 60 * 1021 + 1 * 180

Table 4.2 Assigned Protocol/Service Multiplexer Values (PSM)
Protocol PSM Remarks

SDP 0x0001 Service Discovery Protocol

RFCOMM 0x0003 RFCOMM Protocol

TCS-BIN 0x0005 Telephony Control Specification, TCS Binary Protocol

TCS-BIN-CORDLESS 0x0007 Telephony Control Specification, TCS Binary Protocol

BNEP 0x000F Bluetooth Network Encapsulation Protocol

HID_Control 0x0011 Human Interface Device Profile

HID_Interrupt 0x0013 Human Interface Device Profile

UPnP 0x0015

AVCTP 0x0017 Audio/Video Control Transport Protocol

AVDTP 0x0019 Audio/Video Distribution Transport Protocol

UDI_C-Plane 0x001D Unrestricted Digital Information Profile.

Figure 4.2 L2CAP: protocol/channel multiplexing.

L2CAP

SDP RFCOMM

BR/EDR Controller

AVDTP AVCTP

LE Controller AMP Controller

Protocol Multiplexing

Channel Multiplexing

4.2 Logical Link Control and Adaptation Protocol (L2CAP) 87

All these 61 chunks will be reassembled by the L2CAP on the receiving side
and the original 60 KB RFCOMM packet will be recreated. This packet will then
be given to the RFCOMM of the remote side.

(Note that the above example is a bit simplified. In practice, L2CAP will also
prefix its own 4 byte header to the RFCOMM packet. So it will actually be segment-
ing and reassembling a packet of 61444 bytes. (61440+ 4 byte L2CAP header).)

Segmentation and Reassembly of packets provides the following advantages:

1. The higher layer protocol doesn’t need to care about the size of packets
that can be transmitted over the ACL link. The L2CAP layers of the peer
devices negotiate a mutually suitable MTU size and use it for the data
transfer. This makes the design of the higher layer protocol simpler.

2. Since the packet is split into smaller chunks, if there is an error in transmis-
sion of one of the chunks then only that chunk will be retransmitted. The
whole packet doesn’t need to be retransmitted.

3. L2CAP can interleave packets of different higher layer protocols. This en-
sures that if one of the higher layer protocols is sending a big packet, the
other protocols don’t get starved for bandwidth.

4. In general, the controllers have limited buffer space for keeping transmit
and receive packets while the host may have much larger buffer space. So
L2CAP allows the upper layer protocols to send bigger data packets even
though the controller may support much smaller packet sizes.

The MTU (Maximum Transmission Unit) is specified by each device indepen-
dently and is not negotiated between the two L2CAP entities. This means, for
example, if a mobile phone is connected to the headset then the mobile phone may
specify a higher MTU size while the headset may specify a smaller MTU size. The
mobile phone will always send packets which are smaller than or equal to in length
to the MTU size of the headset.

The MTU parameter is very significant in cases where speed of data transfer
is important. Lower MTU values will result in the need of segmenting a big chunk
into more number of smaller packets. This will decrease the overall speed of data
transfer.

4.2.3.3 Per Channel Flow Control

Flow control mechanisms are already in place for the data that is transferred on the
HCI interface but that is at an aggregate level to control the data that is flowing
from the host to the controller and on the air from one controller to another. L2CAP
extends this mechanism to provide individual flow control to each of the channels
that are multiplexed on top of it. This means that the data for the RFCOMM layer
may be stopped while the data for the SDP layer may still be allowed to flow.

4.2.3.4 Error Control and Retransmissions

The first level of error control is done by the baseband layer. If the received packet
has an error, then it is not passed on to the host. L2CAP provides an additional
level of error control that detects any erroneous packets that are not detected by

88 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

the baseband. L2CAP retransmits packets if they are not received correctly on the
remote side. Besides this, it’s possible that some of the packets are dropped by the
time they reach the host entity on the remote side. This could be, for example, if
the packet had an error and was dropped by the baseband layer. The L2CAP layer
retransmits these packets so that the layers above it receive all the packets in the
correct sequence without any errors.

L2CAP uses a Transmit/Acknowledge mechanism. Each packet that is transmit-
ted is acknowledged by the remote device. If the acknowledgement is not received,
then L2CAP may decide to either retransmit that packet or to drop it. Whether
packets on a certain channel are to be retransmitted or not is specified using the
Flush Timeout option. There are three possible values:

1. No retransmissions at the baseband level.
2. Use a specified flush timeout and continue retransmitting till the time the

timeout expires.
3. An infinite amount of retransmissions. In this case, the baseband continues

retransmissions until the physical link is lost.

4.2.3.5 Streaming Channels

Streaming channels are useful in scenarios where data with a specific data rate (like
audio) is being transferred. The audio applications can setup an L2CAP channel
with the specific data rate. A flush timeout is used if L2CAP is not able to transfer
packets within the correct time period to comply with that data rate. This ensures
that packets don’t get queued up indefinitely if, for example, the link quality de-
teriorates. Since audio packets are real time in nature, it’s better to drop a delayed
packet and transmit the next packet than to continue trying to retransmit the de-
layed packet.

4.2.3.6 Quality of Service

Isochronous data has time constraints associated with it. The information has a
time bound relation with the previous and successive entities. Audio is a good ex-
ample of isochronous data. For such a data, the lifetime is limited after which the
data becomes invalid and there is no point in delivering that data anymore.

L2CAP can support both isochronous (Guaranteed bandwidth) and asynchro-
nous (Best Effort) data flows over the same ACL logical link. This is done by mark-
ing the isochronous packets as automatically flushable and asynchronous packets
as nonflushable in the Packet_Boundary_Flag in HCI ACL data packets. This flag
was explained in detail in the HCI section in previous chapter. The automatically
flushable packets will be automatically flushed by the controller if they are not
transmitted within the time window of the flush timeout set for the ACL link.

4.3.3 L2CAP Signaling

The Signaling commands are used between L2CAP entities on peer devices for opera-
tions like setting up the connection, configuring the connection, and disconnection.
The fixed channels (0x0001 and additionally 0x0005 for LE) are available as soon

4.4 Service Discovery Protocol (SDP) 89

as the ACL-U logical link is established with the remote device. The L2CAP Signal-
ing Channel is used for negotiating configuration parameters and setting up the other
channels. The L2CAP commands are encapsulated within C-Frames (control frames).

The format of C-Frames is shown in Figure 4.3. The Channel ID is 0x0001 for
BR/EDR signaling and 0x0005 for LE signaling. The Code field identifies the type
of command. The Identifier field is used to match responses with the requests.

The various L2CAP signaling packets are shown in Table 4.3.
Out of the commands mentioned in Table 4.3, Connection Parameter Update

Request and Response are used only for LE. Command Reject can be used for both
LE and BR/EDR. These will be explained in detail in Chapter 10.

An example of various L2CAP Signaling PDUs is shown in Figure 4.4. This
figure shows an air sniffer capture of L2CAP signaling packets when RFCOMM
uses the services of L2CAP.

Some of the points worth noting are:

1. The Signaling packets are being exchanged on Signaling channel (CID
0x0001). See Frames #22–#29.

2. The RFCOMM data packets are exchanged on CID 0x0040. This is the
CID allocated to RFCOMM.

3. During the Connection Request, the master provided the following
information:
a. Source Channel ID = 0x0040: The CID that the master will be using.

b. PSM = RFCOMM: To indicate that L2CAP is creating a channel for
RFCOMM to use.

4. The configure request and configure response packets are exchanged be-
tween the Master and Slave in both directions to negotiate the connection
parameters.

5. Once the data transfer is done, the Master sends a disconnection request on
the Signaling channel.

4.4 Service Discovery Protocol (SDP)

Bluetooth provides support for ad hoc connections. This means devices can dy-
namically discover each other and then decide to connect to each other. Before

Figure 4.3 Format of L2CAP signaling PDUs (C-Frames).

MSBLSB

Information Payload Channel ID
(2 octets)

Length
(2 octets)

0x0001: ACL-U
0x0005: LE-U

Code
(1 octet)

 Identifier
(1 octet)

 Length
(2 octets)

 Data

90 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

making the decision to connect to each other, one device may need to “discover”
details about the other device. These details include which services are available and
what are the characteristics of those services. Service discovery protocol provides a
mechanism to discover the services provided by the remote devices and the charac-
teristics of those services.

As an example, let’s say a laptop needs to play an audio file on Bluetooth wire-
less speakers. It will first do an inquiry to find out the devices in the Bluetooth vi-
cinity. Once this is done, it will connect to these devices and search for the services
provided by those devices. In order to play an audio file, it will search for a device
that has the services registered for A2DP. Once it finds such a device, it may create
an A2DP connection with that device to play the file.

(Note: In practice the laptop need not connect to all the devices to discover the
A2DP service. It can already narrow down its search based on the Class of Device
(CoD) information provided by that device during inquiry. It needs to only discover
services on the devices of the Audio/Video Major class.)

Table 4.3 L2CAP Signaling Packets
Code Signaling Packet Purpose

0x00 Reserved

0x01 Command Reject This is sent in response to a command packet that contains an
unknown command or when sending the corresponding response is
inappropriate.

0x02 Connection Request This is used to create an L2CAP channel between two devices.

0x03 Connection Response This is sent in response to a Connection Request.

0x04 Configure Request This is used to negotiate configuration parameters of the connec-
tion. These include parameters like MTU, Flush Timeout, QoS, etc.

0x05 Configure Response This is sent in response to Configure Request.

0x06 Disconnection Request This is used to terminate an L2CAP channel.

0x07 Disconnection Response This is sent in response to Disconnection Request.

0x08 Echo Request This is used to request a response from the remote L2CAP entity.
This request is generally used to check the status of the link.

0x09 Echo Response This is sent in response to Echo Request.

0x0A Information Request This is used to request implementation specific information from
the remote L2CAP entity.

0x0B Information Response This is sent in response to Information Request.

0x0C Create Channel Request This is used to create an L2CAP channel between two devices over
the specific controller. This is used when BT 3.0 + HS is supported
and an alternate controller is used.

0x0D Create Channel Response This is sent in response to Create Channel Request.

0x0E Move Channel Request These are used to move an existing L2CAP channel from one con-
troller to another. These are used when BT 3.0 + HS is supported.0x0F Move Channel Response

0x010 Move Channel Confirmation

0x11 Move Channel Confirmation
Response

0x12 Connection Parameter Up-
date Request

This command is sent from an LE Slave to an LE Master to update
the connection parameters. This will be described in further detail
in Chapter 10.

0x13 Connection Parameter Up-
date Response

This is sent in response to Connection Parameter Update Request.

4.4 Service Discovery Protocol (SDP) 91

SDP focuses primarily on providing a uniform method for discovering services
available on the Bluetooth devices. It does not define the method to access those
services once they are discovered. This is done by the other layers depending on the
type of service. For example if a device provides a printing service, then the printing
related profiles will make use of that service to print documents.

SDP follows a client server model. The services supported by a device are reg-
istered with an SDP server. The server maintains a list of these services in the form
of service records. The SDP client queries for these services.

This is illustrated in Figure 4.5.
Only one SDP server is permitted per Bluetooth device. If the device does not

need to provide any services to other devices, it can act as a client only device. In
such cases it does not need to implement an SDP server.

4.4.1 Service Record, Service Attributes and Service Class

All the server applications register their services with the SDP server in the form of
Service Records. A service is any entity that can provide information, perform an
action, or control a resource on behalf of another entity. It may be implemented as
software, hardware or a combination of both. For example a printer could provide
the service of color printing; a smartphone could provide the service of a dial-up-
networking gateway.

A service record contains all information that an SDP server wants to provide
about the service to the SDP clients. This is in the form of a list of Service Attri-
butes. Each Service Attribute describes a single characteristic of the service and
is the form of an Attribute ID and Attribute Value. An Attribute ID is a 16-bit

Figure 4.4 Air sniffer capture of L2CAP signal packets.

92 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

unsigned integer that distinguishes each service attribute from other service attri-
butes within a service record. An Attribute Value is a variable length field whose
meaning is determined by the attribute ID associated with it and by the service class
of the service record in which the attribute is contained.

Each service is an instance of a service class. The service class definition pro-
vides the definitions of all service records that can be present in the service. Each
service class is assigned a unique identifier called the service identifier. It is repre-
sented as a Universally Unique Identifier (UUID).

What is UUID?

A UUID is a universally unique identifier that is guaranteed to be unique across all
space and time. UUIDs can be independently created in a distributed fashion. No
central registry of assigning UUIDs is required.

A UUID is a 128-bit value. To reduce the burden of storing and transferring 128-
bit values, a range of UUIDs has been pre-defined along with 16-bit or 32-bit
aliases. A 16-bit or 32-bit UUID may be converted into 128-bit UUID by pre-
defined formulas.

Figure 4.5 SDP Client and Server.

SDP Client

Service Record 1

SDP Server

SDP Requests

SDP Responses

.

.
 .

Service Attribute 1

 Attribute ID

 Attribute Value

 Service Attribute 2

 Attribute ID

 Attribute Value

Service Attribute(s)

 Attribute ID

 Attribute Value

Service Record n

4.4 Service Discovery Protocol (SDP) 93

Table 4.4 provides a list of commonly used service attributes supported by SDP.
Out of these, the first two attributes viz ServiceRecordHandle and ServiceClas-
sIDList are mandatory to exist in every service record instance. The remaining ser-
vice attributes are optional. A sample of some of these service attributes is shown
in Figure 4.6.

4.4.2 Searching and Browsing Services

There are two ways for an SDP client to get the services from the SDP server:

	• Search for Services.

	• Browse for Services.

Using the Service Search transaction, the client can search for service records
for some desired characteristics. These characteristics are in the form of Attribute
Values. The search is in the form of a list of UUIDs to be searched. A service search
pattern is formed by the SDP client which is a list of all UUIDs to search. This
service search pattern is sent to the SDP server in the service search request. This
pattern is matched on the SDP server side if all the UUIDs in the list are contained
in any specific service record. A handle to this service record is returned if a match
is found.

Another technique to fetch the list of the service records on the server is by
Browsing for Services. In this case the client discovers all the services of the server
instead of any specific ones. This is useful when the client does not have previ-
ous knowledge of the type of services which the servers supports, so it’s difficult
to form a UUID pattern or if the client is interested in getting the complete list of
services supported. An example of browsing the services of a smartphone using the
BlueZ stack on Linux is shown in Figure 4.6.

Table 4.4 Commonly Used Service Attributes
Attribute Name Description

ServiceRecordHandle It uniquely identifies each service record within an SDP server. It is used to
reference the service by the clients.

ServiceClassIDList A list of UUIDs representing the service classes that this service record con-
forms to. For example Headset Audio Gateway, Dial Up Networking.

ServiceRecordState This is used for caching of service attributes. Its value is changed when any
other attribute value is added, deleted, or changed in the service record. The
clients can read this value to check if any values have changed in the service
record since the last time they read it.

ServiceID A UUID that uniquely identifies the service instance described by the service
record.

ProtocolDescriptorList A list of UUIDs for protocol layers that can be used to access the service.
For example: L2CAP, RFCOMM.

BluetoothProfileDescriptorList A list of elements to provide information about the Bluetooth profiles to
which this service conforms to.

ServiceName A string containing name of the service.

ServiceDescription A string containing a brief description of the service

ProviderName A string containing the name of the person or organization providing this
service.

94 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.4.3 SDP Transactions

SDP is a simple protocol with minimal requirements on the underlying transport.
It uses a request/response model. Each transaction comprises one request PDU and
one response PDU. The client sends one request and then waits for a response be-
fore sending the next request. So, only one request can be pending at any time. This
makes the design of the client and server quite simple.

The different transactions that are supported by SDP are described in Table
4.5.

An example of the SDP transactions between a mobile phone and an A2DP
headset is shown in Figure 4.7 and Figure 4.8.

Figure 4.7 shows the SDP_ServiceSearchAttributeRequest where the mobile
phone queries the A2DP headset to check if the following services exist:

	• Audio Sink;

Figure 4.6 Example of browsing SDP services of a smartphone from BlueZ stack running on Linux.

sdptool browse 68:ED:43:25:0E:99
Browsing 68:ED:43:25:0E:99 ...
Service Name: Dialup Networking
Service RecHandle: 0x10000
Service Class ID List:
 "Dialup Networking" (0x1103)
 "Generic Networking" (0x1201)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 1
Profile Descriptor List:
 "Dialup Networking" (0x1103)
 Version: 0x0100

Service Name: Voice gateway
Service RecHandle: 0x10001
Service Class ID List:
 "Headset Audio Gateway" (0x1112)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 2
Profile Descriptor List:
 "Headset" (0x1108)
 Version: 0x0100

Service Name: Hands-free
Service RecHandle: 0x10002
Service Class ID List:
 "Handsfree Audio Gateway" (0x111f)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 3
Profile Descriptor List:
 "Handsfree" (0x111e)
 Version: 0x0105

BlueZ SDP command to browse SDP
services on remote device

Service Record of First Service

• Service Name
• Service Record Handle
• Service Class ID List
• Protocol Descriptor List
• Profile Descriptor List

Service Record of Second Service

4.4 Service Discovery Protocol (SDP) 95

	• L2CAP;

	• Audio/Video Distribution Transport Protocol (AVDTP).

Figure 4.8 shows the SDP_ServiceSearchAttributeResponse from the A2DP
headset to the mobile phone. The A2DP headset responds to inform the support
for the following:

	• Audio/Video Distribution Transport Protocol (AVDTP) Version 1.0

	• AVDTP is using PSM 0x0019 of L2CAP.

	• Advanced Audio Distribution (A2DP) Version 1.0.

Table 4.5 SDP Transactions
PDU ID Transaction Description

0x00 Reserved —

0x01 SDP_ErrorResponse The SDP server sends this PDU if an error occurred and it
cannot send the correct response PDU. This could be the case,
for example, if the request had incorrect parameters.

0x02 SDP_ServiceSearchRequest This PDU is sent by the SDP client to locate service records
that match a service search pattern.

0x03 SDP_ServiceSearchResponse Upon receipt of SDP_ServiceSearchRequest, the SDP server
searches it’s service record data base and returns the handles
of the service records that match the pattern using this PDU.

0x04 SDP_ServiceAttributeRequest This PDU is sent by the SDP client to retrieve specified attri-
bute values from a specific service record. (The service record
handle would have been fetched already by the client using
SDP_ServiceSearchRequest transaction).

0x05 SDP_ServiceAttribute_Response The SDP server uses this PDU to provide the list of attributes
(Attribute ID, Attribute Value) from the requested service
record that was provided in the SDP_ServiceAttributeRequest.

0x06 SDP_ServiceSearchAttributeRequest This PDU combines the capabilities of SDP_ServiceSearchRe-
quest and SD_ServiceAttributeRequest. The SDP client
provides both the service search pattern and list of attributes
to retrieve.

0x07 SDP_ServiceSearchAttrbuteResponse The SDP server uses this PDU to provide a list of attributes
(Attribute ID, Attribute Value) from the service records that
match the requested service search pattern.

Figure 4.7 Example of SDP_ServiceSearchAttributeRequest.

96 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

	• Headphone is supported.

	• Amplifier, Recorder and Speaker are NOT supported.

4.5 RFCOMM

The RFCOMM protocol is based on the ETSI (European Telecommunications Stan-
dards Institute) standard TS 07.10. It is referred to as an adopted protocol because
it uses a subset of TS 07.10 protocol and makes some adaptations and extensions
to that protocol.

The TS 07.10 is essentially a multiplexer protocol that allows a number of si-
multaneous sessions over a normal serial interface. Each session could be used for
transferring various kinds of data, for example voice, SMS, data, GPRS etc. For
details see the bibliography.

RFCOMM provides the emulation of RS-232 serial ports on top of the L2CAP
protocol. One of the first intended uses of the Bluetooth technology was as a cable
replacement protocol. RFCOMM is the key component to enable this cable re-
placement. Broadly it may be compared to an RS-232 serial cable where the end
points of the cable get replaced with RFCOMM endpoints and the cable is replaced
with a Bluetooth connection. This may be used anywhere where serial cables are
used to replace those cables with a wireless connection. Some examples are:

	• Communication between PCs;

	• Connection of mobile phone to headset;

	• Connection of mobile phone to laptop.

RFCOMM supports up to 60 simultaneous connections between two Bluetooth
devices. As an analogy this can be considered to be similar to two PCs connected

Figure 4.8 Example of SDP_ServiceSearchAttributeResponse.

4.5 RFCOMM 97

to each other using up to 60 serial cables. The user can run separate applications
on each of the serial ports.

There are broadly two types of communications devices:

	• Type 1 devices are communication end points. As the name suggests, these
devices are at the end of the communication path and are either the producer
or consumer of data. For example a laptop that is used to browse the internet
is a communication end point.

	• Type 2 devices are part of the communication segment. These devices allow
data to be relayed from one segment to another. For example a mobile phone
may relay the data to the cellular network or a Bluetooth modem may relay
the data to the telephony network.

RFCOMM supports both these types of devices.
RS-232 serial interface has following nine circuits which are used for data

transfer and signaling.

	• TD (Transmit Data) and RD (Receive Data) to carry the data.

	• RTS (Request To Send) and CTS (Clear To Send) for Hardware Handshaking
or Flow Control.

	• DSR (Data Set Ready) and DTR (Data Terminal Ready) for Hardware Flow
Control.

	• CD (Data Carrier Detect) to indicate a connection to the telephone line.

	• RI (Ring Indicator) to indicate an incoming ring signal on the telephone line.

	• Signal Common to connect to common ground.

RFCOMM emulates these nine circuits. One of the advantages of this is that it
provides backward compatibility with Terminal Emulation programs (like Hyper-
terminal, TeraTerm etc). These terminal emulation programs can be run on virtual
serial ports provided with an underlying RFCOMM connection and provide the
same user experience as the wired serial ports connected through RS-232 cables.

As shown in Figure 4.9, up to 60 emulated ports can be active simultane-
ously though in practice a much lesser number of ports may be supported by the

Figure 4.9 RFCOMM multiplexing.

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

File
Transfer

Object
Push

Terminal
Emulator

Hands
Free

… File
Transfer

98 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

implementation. Each connection is identified by a DLCI (Data Link Connection
Identifier).

DLCI 0 is used as a control channel. This is used to exchange Multiplexer Con-
trol commands before setting up the other DLCIs.

The DLCI value space is divided between the two communicating devices using
the concept of RFCOMM server channels and direction bit. The server applica-
tions registering with RFCOMM are assigned a Server Channel Number in the
range 1 to 30. The device that initiates the RFCOMM session is assigned the direc-
tion bit 1. (This is the lowest significant bit in DLCI).

So the server applications on the non-initiating side are accessible on DLCI 2,
4, 6, …, 60 and the server application on the initiating side are accessible on DLCI
3,5, 7, …, 61.

One of the enhancements that RFCOMM made to TS 07.10 is the credit based
flow control. It was introduced after Bluetooth spec 1.0b to provide a flow control
mechanism between the two devices. At the time of DLCI establishment, the receiv-
ing entity provides a number of credits to the transmitter. The transmitter can send
as many frames as it has credits and decrement its credit count accordingly. Once
the credit count reaches zero, it stops further transmission and waits for further
credits from the receiver. Once the receiver is ready to receive more packets (For
example after it has processed the previous packets) it provides further credits to
the transmitter. This provides a simple and effective mechanism to emulate the flow
control circuits of RS-232.

4.6 Object Exchange Protocol (OBEX)

Bluetooth technology has adopted the IrOBEX protocol from Infrared Data Asso-
ciation (IrDA). OBEX provides the same features for applications as IrDA protocol.
So applications can work on both the Bluetooth stack and IrDA stack. That is why
OBEX is also referred to as an adopted specification.

Version 1.1 of the OBEX specification provided for support of OBEX over
RFCOMM. (It also defined optional OBEX over TCP/IP though it was not used
by most of the protocol stacks). Version 2.0 of the specification provided for sup-
port of OBEX directly over L2CAP bypassing the RFCOMM layer. This helped in
reducing the overheads of RFCOMM and providing higher throughputs, especially
in the case of BT 3.0 + HS.

The OBEX protocol follows the client/server model. The purpose of this proto-
col is to exchange data objects. These data objects could be business cards, notes,
images, files, calendars etc.

Some examples of usage of OBEX are provided below:

	• Synchronization: OBEX could be used for the synchronization of data be-
tween two devices. For example to keep the contacts information and calen-
dar in sync between the laptop and mobile phone.

	• File Transfer: OBEX can be used for sending and receiving files, browsing
folders, deleting files, etc.

4.6 Object Exchange Protocol (OBEX) 99

	• Object Push: OBEX can be used for sending (pushing) and fetching (pulling)
objects like business cards, calendars, notes, etc. Standard formats for these
objects are used to ensure interoperability. These formats are referred to as
vCard, vCalendar, vMessage and vNotes (electronic business card, electronic
calendar, electronic message, and electronic notes).

A device may implement the client role only, server role only or both. For ex-
ample, a printer may support only the server role. Other devices may connect to the
printer and push objects that are to be printed. On the other hand a mobile phone
may support both a client and server role so that it can either push or pull objects
from other devices or allow other devices to push and pull objects from it.

4.6.1 OBEX Operations

OBEX follows a client/server request-response mechanism as shown in Figure 4.10.
The client is the initiator of the OBEX connection. Requests are issued by the cli-
ent and the server responds to these requests. The request/response pair is referred
to as an operation.

The requests/responses are sequential in nature. After sending a request, the
client waits for a response from the server before issuing another request.

The various operations supported by OBEX are shown in Table 4.6.

Figure 4.10 OBEX Client and Server (with OBEX over L2CAP).

OBEX

L2CAP

Lower Layers

OBEX

L2CAP

Lower Layers

OBEX ServerOBEX Client

Request

Response

Table 4.6 OBEX Operations
Operation Meaning

Connect This operation is used by the client to initiate a connection to the server and negotiate the
parameters to be used for further operations (For example OBEX version number, maxi-
mum packet length)

Disconnect This signals the end of OBEX connection.

Put The Put operation is used by the client to push one object from the client to the server.

Get The Get operation is used by the client to request to server to return an object to the client.

SetPath The SetPath operation is used to set the “current directory” on the server side. All further
operations are carried on from that directory after this command is sent.

Abort The Abort request is used when the client decides to terminate an operation that was spread
over multiple packets between the client and server.

100 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.7 Audio/Video Control Transport Protocol (AVCTP)

AVCTP defines the transport mechanisms used to exchange messages for control-
ling Audio or Video devices. It uses point-to-point signaling over connection ori-
ented L2CAP channels.

Two roles are defined:

	• Controller (CT): This is the device that initiates an AVCTP transaction by
sending a command message. The device that supports the controller func-
tionality is also responsible for initiating the L2CAP channel connection on
request of the application.

	• Target (TG): This is the remote device that receives the command message
and returns zero or more responses to the controller.

A complete AVCTP transaction consists of one message containing a command
addressed to the target and zero or more responses returned by the target to the
controller. A device may support both CT and TG roles at the same time.

AVCTP may support multiple profiles on top. It uses the concept of a Profile
Identifier to allow applications to distinguish messages from different profiles.

4.8 Audio/Video Distribution Transport Protocol (AVDTP)

AVDTP defines the protocol for audio/video distribution connection establishment,
negotiation and streaming of audio/video media over the Bluetooth interface. The
transport mechanism and message formats are based on the RTP protocol which
consists of two major protocols: RTP Data Transfer Protocol (RTP) and RTP Con-
trol Protocol (RTCP). AVDTP uses the L2CAP connection oriented channels for
setting up the A/V streams and then streaming the data. A stream (or Bluetooth A/V
stream) represents the logical end-to-end connection of streaming media between
two A/V devices.

Two roles are defined:

	• Source (SRC): This is the device where the streaming data originates.

	• Sink (SNK): This is the device which receives the audio data.

Figure 4.11 AVCTP Controller and Target.

AVCTP

L2CAP

Lower Layers

AVCTP

L2CAP

Lower Layers

TargetController

Command

Response

4.8 Audio/Video Distribution Transport Protocol (AVDTP) 101

As an example in the scenario of streaming data from a laptop to a Bluetooth
stereo headset, the stream corresponds to the audio stream between the laptop and
the Bluetooth headset. The laptop acts as a SRC device and the Bluetooth stereo
headset acts as the SNK device.

A Stream End Point (SEP) is a concept to expose the available transport ser-
vices and AV capabilities of the application in order to negotiate a stream. An
application registers its SEPs in AVDTP to allow other devices to discover and
connect to them.

AVDTP defines procedures for the following:

	• Discover: To discover the Stream End Points supported in the device.

	• Get Capabilities: To get the capabilities of the Stream End Point.

	• Set Configuration: To configure the Stream End Point.

	• Get Configuration: To get the configuration of the Stream End Point.

	• Reconfigure: To reconfigure the Stream End Point.

	• Open: Open a stream.

	• Start: To start streaming.

	• Close: To request closure of a Stream End Point.

	• Suspend: To request that a Stream End Point be suspended.

	• Security Control: To exchange content protection control data.

	• Abort: To recover from error conditions.

A typical sequence of operations of AVDTP transactions is shown in Figure
4.13. In this scenario a mobile phone (acting as CT) creates a connection to an
A2DP headset (acting as TG), streams a music file and then disconnects. The se-
quence of transactions that happen is as follows:

1. Frame #65: The mobile phone sends a command to discover the stream end
points in the headset.

2. Frame #66: The headset responds with information about the stream end
points. (In this example, the slave actually provides two stream end points.
a. One that supports MP3 codec.

b. Second that supports SBC codec.

Figure 4.12 AVDTP Source and Sink.

AVDTP

L2CAP

Lower Layers

AVDTP

L2CAP

Lower Layers

Sink (SNK)Source (SRC)

Audio/Video Streaming Media

Application Application

Audio/Video Signaling

102 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

3. Frame #67, #68: The mobile phone gets the capabilities of the first stream
end point and the headset responds.

4. Frame #69 and #79: The mobile phone gets the capabilities of the second
stream end point and the headset responds.

5. Frame #80: The mobile phone configures the stream end point on the head-
set with the parameters needed to stream the audio.

6. Frame #82: The mobile phone opens the stream.
7. Frame #94: The mobile phone starts streaming the audio data.
8. Frame #95 to Frame #3100: The audio data is streamed from the mobile

phone to the headset.
9. Frame #3101: The mobile phone decides to close the stream.

4.9 Profiles

As explained at the beginning of this chapter, profiles can be considered to be
vertical slices through the protocol stack. They provide information on how each
of the protocol layers comes together to implement a specific usage model. They
define the features and functions required from each layer of the protocol stack
from Bluetooth Radio up to L2CAP, RFCOMM, OBEX, and any other protocols
like AVCTP, AVDTP, etc. Both the vertical interactions between the layers as well
as peer-to-peer interactions with the corresponding layers of the other device are
defined.

Profiles help to guarantee that an implementation from one vendor will work
properly with an implementation from another vendor. So they form the basis for
interoperability and logo requirements. The profiles need to be tested and certified
before a device can be sold in the market. A device can support one or more profiles
at the same time.

Generic Access Profile (GAP) is mandatory to be implemented for all devices
that support Bluetooth. Devices may implement more profiles depending on the
requirements of the application. The dependencies amongst profiles are depicted in

Figure 4.13 Example of AVDTP transactions between mobile phone and stereo headset.

4.10 Generic Access Profile (GAP) 103

Figure 4.14. A profile is dependent on another profile if it uses parts of that profile.
A dependent profile is shown in an inner box and the outer box indicates the pro-
files on which it is directly or indirectly dependent. GAP is shown in the outermost
box since all other profiles are dependent on it.

For example Hands-Free Profile is dependent on Serial Port Profile which is
in turn dependent on Generic Access Profile. So the box for Hands-Free Profile is
shown within the box for Serial Port Profile. The Box for Serial Port Profile is in
turn located inside the box for Generic Access Profile.

4.10 Generic Access Profile (GAP)

Generic Access Profile is a base profile which is mandatory for all devices to imple-
ment. It defines the basic requirements of a Bluetooth device. For BR/EDR it defines
a Bluetooth device to include at least the following functionality:

	• Bluetooth Radio;

	• Baseband;

	• Link Manager;

	• L2CAP;

	• SDP.

GAP defines how these layers come together to provide the Bluetooth function-
ality. It also defines procedures for the following:

	• Device discovery;

	• Connection establishment;

Figure 4.14 Profile dependencies.

Generic Access Profile (GAP)

Serial Port Profile (SPP)

Generic Audio/Video
Distribution Profile (GAVDP)

Advanced Audio
Distribution Profile (A2DP)

Audio/Video Remote Control
Profile (AVRCP)

Hands-Free Profile (HF)

Service Discovery Application
Profile (SDAP)

Generic Object Exchange
Profile (GOEP)

File Transfer Profile (FTP)

Object Push Profile (OPP)

104 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

	• Security;

	• Authentication;

	• Service discovery.

The purpose of GAP is:

	• To introduce definitions, recommendations, and common requirements re-
lated to modes and access procedures that are used by transport and applica-
tion profiles.

	• To describe how the devices behave in various states like standby and con-
necting. Special focus is put on discovery, connection establishment and se-
curity procedures.

	• To state requirements on user interface aspects, names of procedures, and
parameters, etc. This ensures a uniform user experience across all devices.

GAP defines the procedures for both BR/EDR and LE device types. It defines
three device types:

	• BR/EDR: Devices that support Basic Rate and Enhanced Data Rate.

	• LE Only: Devices that support Low Energy configuration.

	• BR/EDR/LE: Dual mode devices that support both BR/EDR and LE.

The BR/EDR procedures will be covered in this section and LE procedures will
be covered in Chapter 14.

4.10.1 Bluetooth Parameters Representation

GAP states requirements about the generic terms that should be used on the user
interface (UI) level. These are useful not only when designing user interfaces but
also in user manuals, documentation, advertisements, etc. This helps to ensure a
uniform user experience irrespective of the vendor who makes the device or the
application.

GAP defines the requirements for:

	• Bluetooth Device Address (BD_ADDR)

•	 On the user interface level, the address should be referred to as “Blue-
tooth Device Address” and represented as 12 hex characters possibly sepa-
rated by “:” symbol. An example of representation of the BD Address is
00:AB:CD:EF:12:34.

	• Bluetooth Device Name

•	 This is the user friendly name that can be used to refer to a device. This is in
the form of a character string which can be retrieved by remote devices us-
ing the remote name request. The maximum length of the character string
is 248 bytes.

	• Bluetooth Passkey (Bluetooth PIN)

4.10 Generic Access Profile (GAP) 105

•	 The pairing process was explained in the previous chapter. The Bluetooth
passkey may be used to authenticate two devices via the pairing procedure.
The PIN may either be entered on the UI level (For example on the user
interface on mobile phone or laptop) or stored in the device (For example
the predefined PIN key stored in a headset).

	• Class of Device (CoD)

•	 Class of device provides information on the type of device and the type of
services it supports. The Class of Device is retrieved during the inquiry pro-
cedure. GAP defines that the Class of Device parameters should be referred
to as “Bluetooth Device Class” and “Bluetooth Service Type” on the UI
level. These are obtained from various fields of the CoD.

4.10.2 Modes

GAP defines different modes in which the device can be in with respect to inquiry
and connection. These modes are explained in this section.

4.10.2.1 Discoverability Modes

Inquiry is the procedure to discover devices in the Bluetooth vicinity. With respect
to inquiry, a device can be in one of the following two discoverability modes:

	• Non-Discoverable mode: In this mode a device does not respond to inquiry.
So it cannot be discovered by other devices.

	• Discoverable mode: In this mode the device is set to discoverable mode and
it may respond to inquiry from remote devices. There are two discoverable
modes:

•	 Limited Discoverable mode: The limited discoverable mode is used by de-
vices that are discoverable only for a limited amount of time, during tem-
porary conditions, or for a specific event. The device responds to a device
that makes a limited inquiry.

•	 General Discoverable mode: This mode is used by devices that need to
be discoverable continuously or for no specific condition. The device re-
sponds to any device that make a general inquiry.

4.10.2.2 Connectability Modes

Paging is the procedure used to connect to remote devices. With respect to paging,
a device can be in one of the following two connectable modes:

	• Non-connectable mode: In this mode, the device does not enter the PAGE_
SCAN state. So it’s not possible to connect to this device. (PAGE_SCAN state
was explained in the previous chapter).

	• Connectable mode: In this mode, the device periodically enters the PAGE_
SCAN state to check for incoming connection requests. So other devices can
connect to this device.

106 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.10.2.3 Bondable Modes (for Pairing)

Bonding is the process of pairing when the passkey is entered on the device for the
purpose of creating a “bond” between two Bluetooth devices. It may or may not be
followed later on by creation of a connection.

With respect to bonding, a device can be in one of the following two bondable
modes:

	• Non-bondable mode: In this mode, the device does not accept a pairing re-
quest from other devices. It may still accept an incoming connection from
devices that do not require bonding.

	• Bondable mode: In this mode, the device accepts a pairing request from other
devices. Pairing can be either in the form of legacy pairing or secure simple
pairing (SSP).

4.10.3 Idle Mode Procedures

The idle mode procedures include procedures for inquiry, name discovery, bond-
ing etc. These are called idle mode procedures because generally these are initiated
when the device is in the idle mode though these can also be done when the device
is already connected (for example, to create a scatternet).

4.10.3.1 Inquiry

Inquiry is the procedure to discover information about remote devices. Devices can
dynamically enter and move out of the Bluetooth vicinity. This procedure is useful
to find out the list of devices that are currently in the vicinity along with some basic
information about those devices. Using this information, a decision may be taken to
further move on to stages like discovering name, creation of connection, etc.

Inquiry provides the following information about the remote device:

	• BD_ADDR;

	• Clock information;

	• Class of Device;

	• Information about Page scan mode;

	• Extended Inquiry Response Information if it is supported by the device.

Bluetooth specification defines two types of inquiry:

	• General Inquiry: This is used to discover devices which are set to discover-
able mode and are set to do an inquiry scan with General Inquiry Access
Code. (GIAC). This is used for devices that are made discoverable continu-
ously or for no specific condition.

	• Limited Inquiry: This is used to discover devices which are scanning with
Limited Inquiry Access Code (LIAC). This is used for devices which are made
discoverable only for a limited amount of time, during temporary conditions
for a specific event.

4.10 Generic Access Profile (GAP) 107

Devices that are set to Limited discoverable mode are also discovered in Gen-
eral Inquiry. The term used on User Interface level is “Bluetooth Device Inquiry.”

4.10.3.2 Name Discovery

This procedure is used to get the Bluetooth name of the remote device. The term
used on User Interface level is “Bluetooth Device Name Discovery.”

4.10.3.3 Device Discovery

This procedure is similar to the Inquiry procedure. It is used to find some additional
information besides the one provided in inquiry.

Discovery provides the following information about the remote device:

	• BD_ADDR;

	• Clock information;

	• Class of Device;

	• Information about Page scan mode;

	• Extended Inquiry Response Information;

	• Bluetooth Device Name—This is the additional information that is not re-
ported during inquiry.

The term used on User Interface level is “Bluetooth Device Discovery.”

4.10.3.4 Bonding

The bonding procedure is used to create a mutual trust relationship between two
Bluetooth devices based on a common link key. The link key is created and ex-
changed during this procedure and is expected to be stored by both the Bluetooth
devices. This link key is used for authentication when a connection is created.

The term used on the User Interface level is “Bluetooth Bonding.”

4.10.4 Establishment Procedures

These procedures refer to the link establishment, channel establishment and con-
nection establishment. A Device discovery or inquiry procedure is done before es-
tablishment procedures to get information about the device to which the connection
is to be established. These are shown in Figure 4.15.

4.10.4.1 Link Establishment

This procedure is used to create an ACL link between two devices. The term used
on the User Interface level is “Bluetooth link establishment.”

108 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.10.4.2 Channel Establishment

This procedure is used to create an L2CAP channel between two devices. The term
used on the User Interface level is “Bluetooth channel establishment.”

4.10.4.3 Connection Establishment

This procedure is used to establish a connection between applications on two Blue-
tooth devices. The term used on the User Interface level is “Bluetooth connection
establishment.”

4.10.5 Authentication

Authentication was explained in the previous chapter. It is the process of verifying
“who” is at the other end of the link. The authentication process starts when the
two devices initiate a connection establishment. If the link is not already authenti-
cated and the link key is not available, then the pairing procedure is started.

4.10.6 Security

There are two broad types of security modes: Legacy security mode and Simple
Secure Pairing mode. Legacy mode is used by devices that do not support SSP.

Within legacy security mode, there are three types of security modes:

	• Security mode 1 (non-secured): This mode means that no security is desired.

	• Security mode 2 (service level enforced security): In this mode, the security is
initiated after the connection establishment if the channel or service requires
security. For example if security is required for a particular profile, then this
security mode may be used.

	• Security mode 3 (link level enforced security): In this mode, the security is
initiated during the connection establishment.

Figure 4.15 Establishment procedures.

.

.
.
.

Application

L2CAP

LMP

Application

L2CAP

LMP

Device BDevice A

Step 1: Link Establishment

Step 2: Channel Establishment

Step 3: Connection Establishment

4.11 Serial Port Profile (SPP) 109

Version 2.1 + EDR of the Bluetooth specification added Simple Secure Pairing
and Security mode 4:

	• Security mode 4 (service level enforced security): The security can be speci-
fied with the following attributes:

•	 Authenticated link key required: This is the link key generated using nu-
meric comparison, out-of-band, or passkey entry. It has protection against
MITM attacks as explained in Chapter 3.

•	 Unauthenticated link key required: This is the link key generated using just
works method. It does not provide protection against MITM attacks.

•	 Security optional: This is only used for SDP transactions.

It is possible for a device to support two security modes at the same time. This
could be the case when it wants to connect to legacy devices using Security Mode 2
and devices that support Simple Secure Pairing with Security mode 4.

4.11 Serial Port Profile (SPP)

The serial port profile (SPP) defines the requirements for setting up emulated se-
rial connections between Bluetooth devices. This provides similar user experience
as compared to an RS232 cable connection between the two devices with the only
difference that a physical wire is replaced by the Bluetooth connection between the
two devices.

Bluetooth was originally designed as a cable replacement technology and this
was amongst the first profiles that were used since it supports the cable replace-
ment use case.

One of the strongest points about this profile is that it allows legacy applica-
tions (which were designed for RS232 serial ports) to use Bluetooth wireless con-
nection instead of a wired connection. Generally another application (for example,
a Bluetooth connection management application) is used to initially discover de-
vices in the vicinity and create an SPP connection with the remote device. Once this
is done, the legacy application can transparently use the Bluetooth connection as if
it were a wired RS232 connection. As shown in Figure 4.14, SPP depends on GAP
and re-uses the terms and procedures defined in the GAP profile. SPP is in turn used
by other profiles like Hands-Free and GOEP.

SPP defines two roles:

	• Dev A: This is the device that initiates a Bluetooth connection.

	• Dev B: This is the device that waits for a device to make a connection and
then accepts the incoming connection.

Figure 4.16 shows a typical usage scenario of Serial Port Profile. It uses the
RFCOMM, L2CAP and lower layers of the Bluetooth protocol stack. A port emu-
lation layer is used to emulate the serial port. In general this layer is dependent on
the operating system. For example on Linux, this layer may expose a virtual serial

110 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

port device driver. A Legacy serial port application could be used on both devices
to connect to the emulated serial port.

Besides this a separate Bluetooth application may be used for initial device dis-
covery, services discovery, connection establishment, etc. Once a Bluetooth connec-
tion is established, the legacy application can start using the emulated serial port
just like any other RS232 serial port.

4.12 Headset Profile, Hands-Free Profile

The Headset and Hands-Free profiles define the set of functions to be used for a
Bluetooth connection between a mobile phone and a handsfree device, for example
a Bluetooth mono headset, Carkit installed in a car, etc. The Headset profile was
one of the first profiles defined by the Bluetooth specification. Later on this profile
was superseded by the Hands-Free profile. The Hands-Free profile provides a su-
perset of the Headset profile functionality.

Some of the functionality defined by this profile includes:

	• Connection related functionality.

•	 Connection to a Hands-Free device so that the audio can be routed from
the mobile phone to the Hands-Free device.

•	 Accept an incoming call.

•	 Reject an incoming call.

•	 Terminate a call.

Figure 4.16 Typical usage scenario of serial port profile.

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

Serial Port Emulation

Legacy serial
Application

SDP SDP

Serial Port Emulation

Bluetooth
Application

for
connection

Bluetooth
Application

for
connection

Dev A Dev B

Legacy serial
Application

4.12 Headset Profile, Hands-Free Profile 111

	• Display of phone status like signal strength, roaming, battery level, etc, on
the Hands-Free device.

	• Transfer an audio connection from phone to Hands-Free or vice versa.

	• Different options for placing a call from the Hands-Free device.

•	 From a number supplied by the Hands-Free device.

•	 By memory dialing.

•	 Redial last number.

	• Activation of voice recognition.

	• Call waiting notification.

	• Three-way calling.

	• Caller line identification (CLI).

	• Echo cancellation and Noise reduction.

	• Remote audio volume control.

Hands-Free profile defines the following two roles. These are shown in Figure
4.17.

	• Audio Gateway (AG): This is the device that acts as a gateway for audio.
Typically this is the mobile phone which acts as a gateway of the audio from
the cellular network to the Hands-Free device.

	• Hands-Free unit (HF): This is the device that acts as the audio input and out-
put mechanism. This may also provide some means to control some of the
functionality of the AG. Typically this is a Carkit or a handset.

Figure 4.17 Hands-Free profile.

Service level connection

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

Hands-Free control

SDP SDP

Hand-Free Control

Audio Gateway Hands-Free Unit

AT Commands

Audio connection
(SCO or eSCO)

Application
(Audio port emulation on the AG)

Application
(Audio driver for relaying of
Audio to/from speaker/mic)

112 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

The Hands-Free profile defines two types of connections:

	• Service level connection: This is the RFCOMM connection between the AG
and HF which is used for transfer of control information.

	• Audio Connection: This is the SCO or eSCO connection along with the com-
plete audio path to route the audio (voice data) from the cellular network to
the Hands-Free unit.

The Hands-Free profile uses AT commands extensively on the Service level
connection to perform various tasks. The AT commands used by this profile are a
subset of the 3GPP 27.0.0.2 specification.

4.13 Generic Object Exchange Profile (GOEP)

GOEP defines the requirements for devices like laptops, PDAs and smartphones
to support capabilities to exchange objects. As shown in Figure 4.14, this profile
is dependent on GAP and SPP. In turn it provides features to support profiles like
FTP and OPP.

GOEP defines the following two roles. These are shown in Figure 4.18.

	• Server: This is the device that acts as the object exchange server to and from
which objects can be pushed and pulled.

	• Client: This is the device that can push or pull objects to and from the server.

Figure 4.18 Generic object exchange profile.

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

OBEX

SDP SDP

OBEX

Client Server

Server ApplicationClient Application

4.14 Object Push Profile (OPP) 113

As shown in Figure 4.18, this profile makes use of the OBEX, SDP, RFCOMM,
L2CAP and lower layers of the protocol stack. It provides the following major
features:

	• Establishment of an object exchange session: This feature is used in the begin-
ning to establish a connection between the client and the server. The remain-
ing features can only be used once this procedure is successfully completed.

	• Pushing a data object: This feature is used to transfer an object from the cli-
ent to the server.

	• Pulling a data object: This feature is used to retrieve an object from the server
to the client.

4.14 Object Push Profile (OPP)

This profile defines the requirements needed to support the object push usage model
between two Bluetooth devices. It is dependent on GOEP, SPP and GAP.

OPP defines the following two roles. These are shown in Figure 4.19.

	• Push Server: This is the device that acts as the object exchange server to and
from which objects can be pushed and pulled.

	• Push Client: This is the device that can push or pull objects to and from the
push server.

As shown in Figure 4.19, this profile makes use of the OBEX, SDP, RFCOMM,
L2CAP and lower layers of the protocol stack. It provides the following major
features:

	• Object Push: This feature is used to push an object to the inbox of another
device. For example to push a business card or an appointment to a mobile
phone.

	• Business Card Pull: This feature is used to pull an object from the server. For
example to pull a business card from a mobile phone.

	• Business Card Exchange: This feature is used to exchange objects. For ex-
ample to push a business card followed by a pull of the business card.

The different objects that can be pushed by this profile are as follows:

	• vCard: This is a format used for transferring contacts.

	• vCalendar: This is a format used for transferring appointments.

	• vMessage: This is the format used for messaging applications.

	• vNote: This is the format used by notes applications.

References to the details of these formats are provided in the Bibliography
section.

114 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

4.15 File Transfer Profile (FTP)

This profile defines the requirements needed to support the file transfer usage model
between two Bluetooth devices. It is dependent on GOEP, SPP and GAP.

FTP defines the following two roles. These are shown in Figure 4.20.

	• Server: This is the device that acts as the file transfer server to and from
which files can be pushed and pulled. It also provides the folder browsing
capabilities.

	• Client: This is the device that can push or pull files to and from the server.

As shown in Figure 4.20, this profile makes use of the OBEX, SDP, RFCOMM,
L2CAP, and lower layers of the protocol stack. It provides the following major
features:

	• Browse the file system: This feature allows support for browsing the file sys-
tem of the server. This includes viewing the files and folders and navigating
the folder hierarchy of the other device.

	• File Transfer: This feature provides support for transferring files and folders
from one device to another.

	• Object manipulation: This feature allows manipulating the objects on the
other device. This may include deleting files, creating folders, deleting fold-
ers, etc.

Figure 4.19 Object push profile.

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

OBEX

SDP SDP

OBEX

Push Client Push Server

Push Server ApplicationPush Client Application

Objects being pushed

Objects being pulled

4.16 Generic Audio/Video Distribution Profile (GAVDP) 115

4.16 Generic Audio/Video Distribution Profile (GAVDP)

This profile defines the requirements for Bluetooth devices to support streaming
channels for supporting audio/video distribution on ACL channels. It is dependent
on GAP and uses AVDTP, L2CAP and lower layers.

GAVDP defines the following two roles. These are shown in Figure 4.21:

Figure 4.20 File transfer profile.

RFCOMM

L2CAP

Lower Layers

RFCOMM

L2CAP

Lower Layers

OBEX

SDP SDP

OBEX

File Transfer Server
ApplicationFile Transfer Client Application

Files being pushed

Files being pulled

File Transfer Client File Transfer Server

Figure 4.21 Generic audio video distribution profile.

AVDTP

L2CAP

Lower Layers

AVDTP

L2CAP

Lower Layers

SDP SDP

Laptop
(Initiator)

Stereo Headphone
(Acceptor)

Application
(Acceptor Role)

Application
(Initiator Role)

Request

Response

116 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

	• Initiator (INT): This is the device that initiates the GAVDP signaling
procedures.

	• Acceptor (ACP): This is the device that responds to the incoming requests
from the INT.

A typical use case of the profile is the streaming of audio between a laptop and
headphones. In this case, the laptop may act as the INT. It would send request to
establish a streaming channel, negotiate parameters, control the stream etc. The
headphones would act as the ACP and respond to the requests made by the INT.

GAVDP provides support for the following two scenarios:

	• Setup the two devices for A/V data streaming and then create a connection
between these two devices.

	• Control the established streaming connection.

The detailed features and procedures supported by this profile are described in
Table 4.7.

4.17 Advanced Audio Distribution Profile (A2DP)

This profile defines the requirements for Bluetooth devices to support high quality
audio distribution. It uses the ACL channels for distribution of high quality audio.
This is in contrast to the HF profile in which the SCO channels are used to transfer
voice.

ACL channels are used because the bandwidth that is provided by SCO and
eSCO channels is not sufficient to transfer the high quality audio data. In fact if
raw audio data were to be streamed, then even the ACL channels don’t have suf-
ficient bandwidth. So, a codec is used to encode the data before sending and then
decoding the data after it is received on the remote side.

Table 4.7 GAVDP Features and Procedures
Feature Procedure Purpose

Connection Connection Establishment This procedure is used when a device needs to
create a connection with another device. It includes
AVDTP procedures for finding the stream end
points and getting the capabilities.

Start Streaming This procedure is used when both the devices are
ready to start streaming and is used to start or
resume streaming.

Connection Release This procedure is used to release the stream.

Transfer Control Suspend This procedure is used to suspend the A/V stream.

Change Parameters This procedure is used to change the service pa-
rameters of the stream.

Signaling Control Abort This procedure may be used to recover from a loss
of signaling message.

Security Control Security Control This procedure is used to exchange security control
messages between the two devices.

4.17 Advanced Audio Distribution Profile (A2DP) 117

Another difference from the Hands-Free profile is that while Hands-Free sup-
ports bi-directional transfer of voice data, A2DP supports audio data streaming
in only one direction. This is in line with the use cases meant for these profiles.
Hands-Free is meant for transfer of voice data where users may be having a con-
versation on the mobile phone. A2DP is meant for transfer of audio data where a
user may be listening to music on the wireless headset.

This profile is dependent on GAP and GAVDP.
A2DP defines the following two roles. These are shown in Figure 4.22:

	• Source (SRC): This is the device that acts as the source of the digital audio
stream to the SNK.

	• Sink (SNK): This is the device that receives the audio stream from the SRC
and processes it.

Typical use cases of this profile are:

	• Play stereo music from a laptop to speakers. In this case the laptop acts as the
SRC and the speakers act as the SNK.

	• Play stereo music from mobile phone to the Bluetooth enabled music system
in the car. In this case the mobile phone acts as the SRC and the Bluetooth
enabled music system in the car acts as a SNK.

A2DP does not define point-to-multipoint distribution of audio (note that such
cases are still supported by the Bluetooth technology. This can be done, for ex-
ample, by creating two A2DP connections and routing the same audio on both the
connections).

Figure 4.22 Advance audio distribution profile (A2DP).

AVDTP

L2CAP

Lower Layers

AVDTP

L2CAP

Lower Layers

SDP SDP

Mobile phone
(Audio Source)

Stereo Headphone
(Audio Sink)

Audio Stream

Encoded using a codec
Application

(Audio Source)
Application
(Audio Sink)

118 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

Since raw streaming of audio data requires lot of bandwidth, A2DP uses on-
the-fly encoding and decoding of audio data. There are several codecs that could
be used to encode and decode the data.

	• Sub-Band Codec (SBC);

	• MPEG-1,2 Audio;

	• MPEG-2,4 AAC;

	• ATRAC family;

	• Non-A2DP Codecs: This allows the applications to use their own codecs.

Out of these codecs, supporting SBC is mandatory. All other codecs are op-
tional. SBC is a low complexity codec. It needs less computational power compared
to the other codecs and delivers good quality compression of audio samples in
real time. It’s quite suitable for devices like headphones which may have limited
resources like memory and computation power. It supports sampling frequencies
from 16 KHz to 48 KHz. 48 KHz sampling frequency is sufficient for CD quality
audio.

On the Audio source side, the audio samples coming from the application are
encoded with the codec (e.g., SBC) before being given to AVDTP layer for transmis-
sion. These encoded samples are sent over the ACL link to the SNK. The AVDTP
layer on the SNK side receives those samples. These are decoded and then given to
the Audio Sink application. The audio sink application then plays those samples.

4.18 Audio/Video Remote Control Profile (AVRCP)

AVRCP defines the requirements for Bluetooth devices to support use cases related
to control of A/V devices. This control can be considered similar to the control
provided by a remote control of, let’s say, a DVD player.

This profile is dependent on GAP. AVRCP defines the following two roles.
These are shown in Figure 4.23:

	• Controller (CT): This is the device that initiates a transaction by sending a
command to the target.

	• Target (TG): This is the device that receives the command, takes the re-
quested action and sends back the response.

Typical use cases of this profile are:

	• A headphone sending commands to the mobile phone to pause, play, fast
forward, change tracks etc. In this case the headphone acts as the controller
and the mobile phone acts as the target.

	• A PC sending a command to a DVD player to pause video playback. In this
case the PC is the controller and the DVD player is the target.

Typical operations that are carried out by devices that support this profile are:

4.19 Summary 119

	• Retrieving information about the type of units and subunits supported by the
device (e.g., Player/Recorder, Monitor/Amplifier, Tuner, etc.);

	• Volume up;

	• Volume down;

	• Channel up;

	• Channel down;

	• Mute;

	• Play;

	• Stop;

	• Pause;

	• Rewind;

	• Fast forward.

Not all devices support all operations. Rather the operations that are support-
ed by the device depend on the type of the device and the features it supports.

This profile extensively uses the AV/C command set as defined in the 1394
trade association specification (See Bibliography). (Note: This is another good ex-
ample where Bluetooth borrows from existing specifications instead of writing the
specifications from scratch.)

4.19 Summary

This chapter explained the Bluetooth upper layers and profiles. Wherever possible,
the Bluetooth protocols and profiles try to reuse implementations that are already
available. These are referred to as adopted protocols. The protocols which are de-
fined from scratch by the Bluetooth SIG are referred to as core protocols.

The profiles provide information on how each of the protocol layers comes
together to implement a specific usage model. These define how end-to-end

Figure 4.23 Audio/video remote control profile (AVRCP).

AVCTP

L2CAP

Lower Layers

AVCTP

L2CAP

Lower Layers

SDP SDP

Controller Target

Application
(Target)

Application
(Controller)

AVRCP Commands

120 Bluetooth Upper Layers and Profi lesBluetooth Upper Layers and Profiles

interactions take place between two Bluetooth devices and form the fundamen-
tal building block towards ensuring interoperability between devices from various
vendors.

The Generic Access Profile (GAP) is a base profile which is mandatory for all
devices to implement. A device may implement one or more of the other profiles
depending on the end application that the device is intended to support.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth SIG, Specifications of the Bluetooth System, Profiles http://www.bluetooth.org.
Bluetooth Assigned Numbers, https://www.bluetooth.org/assigned-numbers.
GSM 07.10 version 6.3.0 Release 1997 aka ETSI TS 101 369.
Infrared Data Association, IrDA Object Exchange Protocol (IrOBEX) (http://www.irda.org).
Infrared Data Association, IrMC (Ir Mobile Communications) Specification.
IETF RFC3550 / RFC1889 (obsolete) RTP, A Transport Protocol for Real-Time Applications
3GPP 27.007 v6.8.0. http://www.3gpp.org/ftp/Specs/html-info/27007.htm.
The Internet Mail Consortium, vCard—The Electronic Business Card Exchange Format, Version
2.1, September 1996.
The Internet Mail Consortium, vCalendar—The Electronic Calendaring and Scheduling Ex-
change Format, Version 1.0, September 1996.
1394 Trade Association, AV/C Digital Interface Command Set—General Specification, Version
4.0, Document No. 1999026 and AV/C Digital Interface Command Set - General Specification,
Version 4.1, Document No. 2001012 (http://www.1394ta.org).
1394 Trade Association, AV/C Panel Subunit, Version 1.1, Document No. 2001001 (http://
www.1394ta.org).

121

C H A P T E R 5

Getting the Hands Wet

5.1 Introduction

After walking through the concepts of Bluetooth, it’s a good time to start doing
some practical experiments. This chapter will help you to bring up your own Blue-
tooth development environment in which you can start writing small scripts and
programs. A bit of familiarity with the Linux systems, scripting with the shell and
the C programming language is assumed.

This chapter will introduce some of the practical usage of the Bluetooth func-
tionality. This will be extended in further chapters to Bluetooth Low Energy. So it’s
important that you understand the examples provided here and try out a few of
them yourself.

This chapter provides examples based on the BlueZ stack. BlueZ is the “official
Linux Bluetooth protocol stack.” Support for BlueZ can be found in many Linux
distributions. In general it is compatible with any Linux system in the market. It
provides support for the core Bluetooth layers and protocols. It is flexible, efficient,
and uses a modular implementation. Further details about BlueZ can be found on
the BlueZ website (http://www.bluez.org).

5.2 Ingredients

You will need the following:

1. A PC running any flavor of Linux. For the purpose of examples, Ubuntu
12.10 is used here, though any other Linux system will serve the purpose
provided it’s not too old.

2. A Bluetooth Dongle. If you search for Bluetooth dongle, you will find a
lot of vendors offering USB based dongles. Any of those should be good. If
your PC (or laptop) has an in-built Bluetooth device, then it should also be
fine and you don’t need an external dongle.

3. Some off-the-shelf devices that support Bluetooth. For example, mobile
phone, mono headset, stereo headset, keyboard, mouse, printer. Depending
on the devices that you have, you may be able to run different examples
provided later in this chapter.

122 Getting the Hands WetGetting the Hands Wet

4. Some off-the-shelf devices that support Bluetooth Low Energy. This is the
tricky part since only limited LE devices are available in the market as of
writing this book. You will find development kits from some of the vendors
which could be useful in developing LE applications. For the purpose of
examples, a PTS dongle is used as a Bluetooth Low Energy device. This
dongle is available for purchase from the Bluetooth SIG website.

5.3 Basic Bluetooth Operations

Before trying the examples provided in this section, you will need to connect the
Bluetooth dongle to the PC and boot up Linux. Some of the examples provided here
may also need root privileges.

5.3.1 Enabling and Disabling Bluetooth

The first command to try out is hciconfig. This command is used to configure the
Bluetooth devices.

To check whether the Bluetooth dongle is properly connected and initialized,
run the hciconfig command. It will give output similar to Figure 5.1. If the dongle
is properly connected, then this command should show information like:

	• BD_ADDR.

	• Class of Device.

	• Manufacturer name.

	• Packet Types supported.

	• Number of ACL buffers and buffer size: The screenshot below shows 10 buf-
fers of 310 bytes each.

	• Number of SCO buffers and buffer size: The screenshot below shows 8 buf-
fers of 64 bytes each.

Figure 5.1 Hciconfig command.

hciconfig -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:1B:DC:05:B5:B3 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:1127 acl:0 sco:0 events:39 errors:0
 TX bytes:655 acl:0 sco:0 commands:38 errors:0
 Features: 0xff 0xff 0x8f 0x7e 0xd8 0x1f 0x5b 0x87
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'ubuntu-1'
 Class: 0x6e0100
 Service Classes: Networking, Rendering, Capturing, Audio, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 4.0 (0x6) Revision: 0x1d86
 LMP Version: 4.0 (0x6) Subversion: 0x1d86
 Manufacturer: Cambridge Silicon Radio (10)

5.3 Basic Bluetooth Operations 123

To close the HCI interface, use the command:

hciconfig hci0 down

To open and initialize the HCI interface, use the command:

hciconfig hci0 up

Both these commands need root privileges. In these commands, hci0 indicates
the hci interface on which the Bluetooth dongle is attached. It’s possible that it’s
attached on hci1 or some other interface instead of hci0. The parameters of these
commands will need to be changed accordingly.

5.3.2 Discovering Devices

There are two commands to discover the devices in the vicinity:

hcitool scan

hcitool inq

hcitool inq performs a Bluetooth inquiry and reports information like BD_
ADDR, Clock offset and Class of Device.

hcitool scan performs the Bluetooth inquiry as well as gets the Bluetooth De-
vice names for all the devices that are found during inquiry.

The output of these two commands is shown in Figure 5.2.

5.3.3 Browsing Services

The following command can be used to browse the services of the remote devices:

sdptool browse [bdaddr]

The command queries the SDP server on the device specified by the BD_ADDR
and shows the list of services supported.

A partial output of this command is shown in Figure 5.3.

Figure 5.2 Discovering devices.

#hcitool inq
Inquiring ...
 68:ED:43:25:0E:99 clock offset: 0x298e class: 0x7a020c
 00:17:83:DC:72:E9 clock offset: 0x7596 class: 0x1a0114

hcitool scan
Scanning ...
 00:17:83:DC:72:E9 WM_nareshg
 68:ED:43:25:0E:99 BlackBerry 8520

124 Getting the Hands WetGetting the Hands Wet

5.4 Real World Application—Café Bluebite

This section explains how to use the Bluetooth commands to implement a simple
real world application. It is assumed that the reader is familiar with writing simple
shell scripts using bash shell.

Let’s say you have been requested by Café Bluebite (fictitious name) to create
a Bluetooth based advertisement application for them. They are located in a shop-
ping mall and they want to send the deal of the day to anyone who visits the mall.
The deal is to be sent on the person’s mobile phone via Bluetooth assuming that the
person has his Bluetooth switched on when he enters the Mall.

5.4.1 Requirements Specification

The requirements specification provided by Café Bluebite is as follows:

	• Advertise the deal of the day to any user who enters the shopping mall.

Figure 5.3 SDP browsing.

Service Record of First Service

• Service Name
• Service Record Handle
• Service Class ID List
• Protocol Descriptor List
• Profile Descriptor List

Service Record of Second Service

sdptool browse 68:ED:43:25:0E:99
Browsing 68:ED:43:25:0E:99 ...
Service Name: Dialup Networking
Service RecHandle: 0x10000
Service Class ID List:
 "Dialup Networking" (0x1103)
 "Generic Networking" (0x1201)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 1
Profile Descriptor List:
 "Dialup Networking" (0x1103)
 Version: 0x0100

Service Name: Voice gateway
Service RecHandle: 0x10001
Service Class ID List:
 "Headset Audio Gateway" (0x1112)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 2
Profile Descriptor List:
 "Headset" (0x1108)
 Version: 0x0100

Service Name: Hands-free
Service RecHandle: 0x10002
Service Class ID List:
 "Handsfree Audio Gateway" (0x111f)
 "Generic Audio" (0x1203)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 3
Profile Descriptor List:
 "Handsfree" (0x111e)
 Version: 0x0105

5.4 Real World Application—Café Bluebite 125

	• Send this advertisement to the person’s mobile phone using Bluetooth.

5.4.2 High Level Design

The high level design of the application is provided in the form of a flow chart in
Figure 5.4

Some key points to note in the high level design are as follows:

	• Step 1c

•	 We switch off the discoverable and connectable mode of our own device.
This is because we only want to send advertisements messages and we
don’t want to receive any messages from the remote devices.

	• Step 7

•	 We want to send messages to only Mobile phones and Tablets. There is no
point in sending messages to headsets, keyboards, etc. because they don’t
have display capabilities.

	• Step 11

•	 This example uses an endless loop. In practice it will be needed to termi-
nate this loop based on certain conditions.

5.4.3 Code

Before we start writing the code, let’s look at the pre-requisites to run this program.
This program will use OBEX to send the advertisements to the remote device.

It’s possible that the obexftp software is not installed on your Linux system. It’s
possible that the obexftp software is not installed on your Linux system. To check
this, you may run the command shown in Figure 5.5. This indicates that the obexftp
is not installed on you system. To install it, run the command shown in Figure 5.6.

You will need to be online to download the obexftp package. During instal-
lation it will ask for a few confirmations and then install obexftp on your system.

Now let’s start writing the code for each of the steps mentioned above.
We will write the code as bash scripts for simplicity. You may either use a

programming language or scripts in another shell depending on what you are con-
versant with.

Step 1: Initialize Bluetooth. The following steps assume that the Bluetooth con-
troller is attached to hci0 interface. If it’s attached to another interface, then the
name of the correct hci device needs to be put here. This step also disables inquiry
and page scans. After this other devices will not be able to discover our device or
connect to our device.

echo “Initializing the Bluetooth Controller on hci0...”
hciconfig hci0 up # Initialize the Bluetooth controller.

echo “Configuring the name to Cafe Bluebite...”
hciconfig hci0 name “Cafe Bluebite” # Configure the BT name.

126 Getting the Hands WetGetting the Hands Wet

Figure 5.4 High level design—flow chart for Bluebite.

Y

1. Initialize Bluetooth
 a. Switch Bluetooth On.
 b. Configure the Bluetooth friendly name
 c. Switch off discoverable and connectable mode

 2. Initialize the file to store device addresses
a. Create an empty file which will store Bluetooth
addresses of devices found in the vicinity
(previous_bt_devices.txt)

 3. Initialize the advertisement message to be

sent as deal of the day

4. Scan for devices in the Bluetooth vicinity.

Store the results in a file (new_bt_devices.txt)

 5. Compare previous_bt_devices.txt and
new_bt_devices.txt

START

7. Check the device services using SDP. It should
support receiving message that will be pushed by us.

8. Ok to push
message?

9. Push Message

10. Any more
new devices?

Y

6. New
device(s)
found?

N

N

11. Put
some delay
before starting
next iteration

5.4 Real World Application—Café Bluebite 127

echo “Switching off inquiry and page scans...”
hciconfig hci0 noscan # Disable page and inquiry scan.

Step 2: Create an empty file to store device names. This step is quite easy. We can
just do a simple “> previous_bt_devices.txt” to create such a file.

Create an empty file to store the previous list of devices
> previous_bt_devices.txt

Step 3: Initialize the advertisement message to be sent as deal of the day.

Initialize the advt message to be sent as deal of the day
echo “Welcome to the shopping mall !!” > advt.txt
echo “Visit Cafe Bluebite for exciting deals” >> advt.txt
echo “Get 15% off if you show this message” >> advt.txt

Step 4: Scan for devices in the Bluetooth vicinity. Store the results in a file (new_bt_
devices.txt). “hcitool inq” performs a Bluetooth inquiry for remote devices in the
vicinity and reports the Bluetooth device address, clock offset and Class of Device
for each device that is found.

We redirect the output of this command to the file temp_bt_devices.txt. The file
temp_bt_devices.txt will contain the list of devices in the following format:

#hcitool inq
Inquiring ...
 68:ED:43:25:0E:99 clock offset: 0x298e class: 0x7a020c
 00:17:83:DC:72:E9 clock offset: 0x7596 class: 0x1a0114

We need only the BD_ADDRs out of this list. So the remaining information can
be removed. We will use a combination of the following two commands to remove
the remaining information:

tail –n +2: To remove the first line.
cut –c2-12: To keep only columns 2 to 18 which contain BD_ADDR.

Perform an inquiry and store the results in a temporary file.
hcitool inq > temp_bt_devices.txt
Remove extra info from the temporary file
tail –n +2 temp_bt_devices.txt | cut –c2-18 > new_bt_devices.txt

Figure 5.5 OBEX FTP check for installation.

Figure 5.6 OBEX FTP installation.

128 Getting the Hands WetGetting the Hands Wet

If we use these two commands on the shell prompt, the file new_bt_devices.txt
will contain the following.

68:ED:43:25:0E:99
00:17:83:DC:72:E9

This file will be used in the following steps for comparing with the previous list
of Bluetooth devices stored in previous_bt_devices.txt.

Step 5: Compare previous_bt_devices.txt and new_bt_devices.txt to find out the
devices that have got added.

There are several methods to do this with varying level of complexity and
simplicity. In the interest of simplicity we choose a very rudimentary method here.

We read each line of the file new_bt_devices.txt and check if that line was pres-
ent in previous_bt_devices.txt. This comparison is done using the grep command.
The grep command returns 0 if the line is found and 1 if it is not found.

One interesting thing in the code below is that we redirect the output of grep
command to /dev/null. This is because the output of the grep command is the list
of matching lines. Besides that it also sets the exit status ($?) to 0 if a match was
found and 1 if a match was not found. Since we are only interested in the exit status
and not the list of matching lines, we let the list of matching lines go to /dev/null.

Run a loop for all lines in new_bt_devices.txt
for line in $(cat new_bt_devices.txt)
do
 # Check if a match is found in previous_bt_devices.txt
 grep $line previous_bt_devices.txt > /dev/null
 # If a match is not found, then it’s a new device
 if [“$?” -eq “1”]
 then
 echo “New Device found: $line”

 #### Some more code will be put here in Step 7 ####
 fi
done

Step 7: Check the remote device services using SDP. For simplicity, let’s create a
function check_sdp that will do this.

check_sdp function will search the SDP records of the remote device to see if
it supports the OBEX Object Push service. This service is referred to by SDP as
OPUSH.

It first creates two temporary files temp_sdp.txt and temp_sdp1.txt. It then
searches for the OPUSH service on the remote device using the sdptool command.
If the OPUSH service is found, it finds the RFCOMM Channel number on which
the service is present.

function check_sdp ()
{
 # Create a blank file to store the results of SDP search
 > temp_sdp.txt
 > temp_sdp1.txt

5.4 Real World Application—Café Bluebite 129

 # Do an SDP search for OPUSH service on the BD_ADDR
 sdptool search --bdaddr $1 OPUSH > temp_sdp.txt

 # The output is in temp_sdp.txt
 # if the device has OBEX Object Push service then we must
 # be able to find the string OBEX Object Push in the file
 grep “OBEX Object Push” temp_sdp.txt > /dev/null
 retval=$?

 if [$retval -eq 0]
 then
 # Check for the Channel number
 grep “Channel: “ temp_sdp.txt > temp_sdp1.txt
 retval=$?

 if [$retval -eq 0]
 then

 # Channel number is in the format
 # Channel: 6
 # So extract the field after colon (:)
 channel_num=`cut -d: -f2 temp_sdp1.txt`
 echo OBEX Object Push service found on Channel Num-
ber: $channel_num
 fi
 fi

 # grep returns 0 if found. 1 otherwise.
 # this is the same that our function has to return.
 return $retval
}

Step 8: If the check_sdp function returned 0, it means that the device supports
OPUSH and we can push the advertisement.

Step 9: Push the advertisement.

 # Check if the device supports Object Push
 echo “Checking Services...”
 check_sdp $line

 if [“$?” -eq “0”]
 then
 echo “Device supports OPUSH. Pushing advertisement”
 push_advt $line
 else
 echo “Device does not supports OPUSH.”
 fi

function push_advt ()
{
 echo executing obexftp --bluetooth $1 -B $channel_num -p
advt.txt
 obexftp --bluetooth $1 -B $channel_num -p advt.txt}

Step 10: Repeat this for any more devices found. This is already done by the for
loop in Step 5.

130 Getting the Hands WetGetting the Hands Wet

Step 11: Put some delay before starting next iteration. Before doing this also copy
the temp_bt_devices.txt file to previous_bt_devices.txt so that this file can be used
for comparison to find whether any new devices came in the vicinity.

cp temp_bt_devices.txt previous_bt_devices.txt
sleep 5s

5.4.4 Complete Code

The previous section provided code in pieces. The complete code for Bluebite.sh is
provided below.

#! /bin/bash

function check_sdp
Input: BD_ADDR of the device for which SDP search is to be done
Output: 0 if OPUSH record is found. 1 otherwise
Synopsis: This function does an SDP Search for OBEX Object Push
service on the remote device

function check_sdp ()
{

 # Create a blank file to store the results of SDP search
 > temp_sdp.txt
 > temp_sdp1.txt

 # Do an SDP search for OPUSH service on the BD_ADDR
 sdptool search --bdaddr $1 OPUSH > temp_sdp.txt

 # The output is in temp_sdp.txt
 # if the device has OBEX Object Push service then we must
 # be able to find the string OBEX Object Push in the file
 grep “OBEX Object Push” temp_sdp.txt > /dev/null
 retval=$?

 if [$retval -eq 0]
 then
 # Check for the Channel number
 grep “Channel: “ temp_sdp.txt > temp_sdp1.txt
 retval=$?

 if [$retval -eq 0]
 then
 # Channel number is in the format
 # Channel: 6
 # So extract the field after colon (:)
 channel_num=`cut -d: -f2 temp_sdp1.txt`
 echo OBEX Object Push service found on Channel Number:
$channel_num
 fi
 fi

 # grep returns 0 if found. 1 otherwise.
 # this is the same that our function has to return.
 return $retval

5.4 Real World Application—Café Bluebite 131

function push_advt
Input: BD_ADDR of the device to which advertisement is to be
pushed
Output: None
Synopsis: This function pushes the advertisement to the remote
device

function push_advt (){

 echo executing obexftp --bluetooth $1 -B $channel_num -p
advt.txt
 obexftp --bluetooth $1 -B $channel_num -p advt.txt
}

echo “Initializing the Bluetooth Controller on hci0”
hciconfig hci0 up # Initialize the Bluetooth controller.

echo “Configuring the name to Cafe Bluebite”
hciconfig hci0 name “Cafe Bluebite” # Configure the BT name.

echo “Disabling Simple Secure Pairing”
hciconfig hci0 sspmode 0

echo “Switching off inquiry and page scans.”
hciconfig hci0 noscan # Disable page and inquiry scan.

Create an empty file to store the previous list of devices
> previous_bt_devices.txt

Initialize the advt message to be sent as deal of the day
echo “Welcome to the shopping mall !!” > advt.txt
echo “Visit Cafe Bluebite for exciting deals” >> advt.txt
echo “Get 15% off if you show this message” >> advt.txt

echo “Starting infinite loop. Press Ctrl-C to exit program”

while [0 -eq 0]
do
 # Perform an inquiry and store the results.
 hcitool inq > temp_bt_devices.txt

 # Remove extra information from the temporary file and
 # store results in new_bt_devices.txt
 tail -n +2 temp_bt_devices.txt | cut -c2-18 > new_bt_devices.
txt

 num_devices=`cat new_bt_devices.txt | wc -l`
 echo Found $num_devices devices in this iteration

 # Run a loop for all lines in new_bt_devices.txt
 for line in $(cat new_bt_devices.txt)
 do
 # Check if a match is found in previous_bt_devices.txt
 grep $line previous_bt_devices.txt > /dev/null

132 Getting the Hands WetGetting the Hands Wet

 # If a match is not found, then it’s a new device
 if [“$?” -eq “1”]
 then
 echo “New Device found: $line”

 # Check if the device supports Object Push
 echo “Checking Services...”
 check_sdp $line

 if [“$?” -eq “0”]
 then
 echo “Device supports OPUSH. Pushing advertisement”
 push_advt $line
 else
 echo “Device does not supports OPUSH.”
 fi
 fi
 done
 # Sleep for 5 seconds
 cp temp_bt_devices.txt previous_bt_devices.txt
 sleep 5s
done # Infinite While loop

5.5 Disclaimer

The code provided here is only for educational purposes to illustrate the use of
different Bluetooth related commands and features. It has been tested with only a
few mobile phones and may not work with all phones or lead to some unknown
problems. So you are advised to use it at your own risk. To make the code suitable
for commercial use several enhancements, error checks, and exhaustive testing
would be needed.

5.6 Summary

This chapter explained the basic requirements of bringing up a setup to try out
some Bluetooth operations like enabling and disabling Bluetooth, discovering de-
vices, etc. An example application was also developed to get accustomed to how
the various Bluetooth operations can be invoked through simple shell commands.

With this chapter, the background of Bluetooth is completed. The next chapter
onwards will focus on Bluetooth Low Energy.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth SIG, Specifications of the Bluetooth System, Profiles http://www.bluetooth.org.
BlueZ website (http://www.bluez.org).

133

C H A P T E R 6

Bluetooth Low Energy—Fundamentals

6.1 Introduction

As described in Chapter 1, Bluetooth Low Energy is the next major evolution of the
Bluetooth technology. It specifies requirements for devices to have ultra low power
consumption. This is a radical change from the direction in which the technology
was evolving through previous versions. While the focus of previous versions was
either feature enhancements or increase in the throughput, LE focused in an entirely
new direction—how to cut down the power consumption drastically? LE technol-
ogy is fully optimized from the ground up to ensure that the power consumption is
kept to a minimum. This meant a complete redesign of several key components to
ensure that all steps are taken to reduce the power requirements.

In general Bluetooth devices are battery powered. It’s expected that the LE de-
vices may have smaller batteries like the coin cell batteries (or even smaller ones).
This technology focuses on reducing both the peak current and the average current.
A reduced average current ensures that the battery drains down slowly. A reduced
peak current means that the devices can continue operating even when the battery
has started running down and the maximum current that the battery can provide
has been reduced.

Some of the uses for LE were shown in Chapter 1. These included finding de-
vices, alerting devices, proximity detection, sensors, healthcare, sports and fitness
equipment, mobile payments, etc. It may be noted that none of those use cases fo-
cused on high throughput or transferring big chunks of data. Rather the use cases
focused on transferring very short pieces of information that could be transferred
only when needed, which may generally not be very frequent.

Typical LE use cases would include creating a connection, transferring a few
bytes or kilobytes of data and then disconnecting. The connection time is so low
that it’s easier to reestablish the connection every time a data transfer is needed
without any impact on the user experience. This is in contrast to BR/EDR use cases
like a connection that is maintained for a long time to ensure that there is least
latency when there is an incoming call, or use cases like the exchange of big file in
the case of FTP profile.

134 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

There are two broad classifications of Bluetooth systems.

	• The first is the classic Bluetooth system that conforms to versions prior to 4.0
of the Bluetooth specification. It is also referred to as BR/EDR. BR stands for
Basic Rate indicating that the device can support up to a maximum data rate
of 721 kbps. EDR stands for Enhanced Data Rate indicating that the device
can support up to a maximum data rate of 2.1 Mbps.

	• The second is the LE system which conforms to 4.0 (or higher) version of
the Bluetooth specification and supports enhancements for ultra low power.
These systems have lower complexity and lower cost compared to BR/EDR
systems. The throughput is significantly lower. The maximum throughout
is about 305 kbps for 4.0 compliant devices and 800 Kbps for 4.2 compli-
ant devices, though devices generally don’t need or use such high rate data
transfers.

A device can support only BR/EDR, only LE, or both BR/EDR and LE. A de-
vice which supports both BR/EDR and LE is also referred to as BR/EDR/LE or dual
mode device. This will be explained in further detail later in this chapter.

The architecture of BR/EDR devices was covered in detail in previous chapters.
This chapter and further chapters will focus on the architecture of LE devices.

6.2 Single Mode versus Dual Mode Devices

Depending on the functionality supported, the Bluetooth devices may be catego-
rized into 3 types:

1. BR/EDR Devices: These are the classic Basic Rate/Enhanced Data rate de-
vices which do not support the LE functionality.

2. LE Only Devices or Single Mode LE Devices: These devices support only
LE functionality. Examples of these devices include watches, key fobs,
heart rate monitors, thermometers, sports and fitness equipment, sensors,
etc. These devices are expected to have ultra low power consumption and
last for several months or years on coin cell batteries.

3. BR/EDR/LE or Dual Mode Devices: These devices support both BR/EDR
and LE functionality. Typically these devices are smartphones, tablets, PCs,
etc. These devices are expected to communicate with both the BR/EDR de-
vices and single mode LE devices even at the same time. These devices don’t
have as stringent requirements on power consumption as the single mode
LE devices since these have bigger batteries or are generally recharged
frequently.

The use cases of LE only devices were explained in Chapter 1. Some of the pos-
sible use cases of Dual Mode devices are as follows:

1. A person is listening to music or taking a call on the Bluetooth headset
and the child (or the pet) goes out of range. In this case the user would be

6.3 Bluetooth Smart Marks 135

alerted about the child (or the pet) going out of range by the proximity
detection feature of LE so that the person can take immediate action.

2. A person walks into the home while on a call. The presence detection func-
tion of LE may automatically switch on the lights or switch on the air
conditioning.

3. A person is jogging on a treadmill and wants to listen to music on the Blue-
tooth headset and at the same time monitor his/her heart rate, number of
steps he/she has run, etc.

4. A person using a GPS enabled smartphone while cycling wants to see dis-
tance covered on the track and parameters like current heart rate, maxi-
mum heart rate, average heart rate, calories burnt, etc. In addition to dis-
playing on the smartphone, the same data could be sent to the laptop or
fitness center for further analysis using the smartphone as a gateway.

Table 6.1 provides information on compatibility between different categories
of devices.

Some examples of communication between the various devices types are pro-
vided below:

1. BR/EDR to BR/EDR—Classic Bluetooth communications between:
a. Mobile phone to headset.

b. Laptop to laptop.

c. PC to printer.

2. Single Mode LE to Single Mode LE—Low energy ecosystem
a. Sports sensor displaying data on a watch.

3. Single Mode LE to Dual Mode
a. A laptop sending an alert to a key fob.

b. A heart rate monitor sending data to the hospital’s computer using
smartphone as the gateway.

6.3 Bluetooth Smart Marks

The Bluetooth smart marks were created to help consumers ensure compatibility
among their Bluetooth devices. There are two trademarks from the Bluetooth SIG:

Table 6.1 Compatibility Between Single Mode
and Dual Mode Devices

BR/EDR
Single
Mode LE

Dual
Mode

BR/EDR Yes No Yes

Single Mode LE No Yes Yes

Dual Mode Yes Yes Yes

136 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

	• Bluetooth Smart;

	• Bluetooth Smart Ready.

6.3.1 Bluetooth Smart (Sensor-Type Devices)

Bluetooth Smart devices are sensor-type devices that are used to collect a specific
piece of information. After collecting this information, these devices send it to the
Bluetooth Smart Ready devices. Bluetooth Smart devices include only a single mode
LE radio and are expected to consume ultra low power.

Some examples of Bluetooth Smart devices are heart rate monitors, thermome-
ters, sports equipment, etc. These devices collect a specific piece of information like
heart rate or temperature and then relay it to the Bluetooth Smart Ready devices.

Bluetooth Smart trademark was developed to brand qualified devices as meet-
ing the following three requirements:

1. Conform to Bluetooth 4.0 or higher with GATT based architecture.
2. Contain Single mode LE radio.
3. Use GATT-based architecture to enable a particular functionality (GATT-

based architecture will be explained in detail in subsequent sections).

6.3.2 Bluetooth Smart Ready (Hubs)

Bluetooth Smart Ready devices are the devices that receive data sent from the classic
Bluetooth and Bluetooth Smart devices and give it to applications that make use of
that data. The applications could be running on these devices themselves or could
be running anywhere else on the internet. These devices implement the dual mode
radio and can connect to the BR/EDR devices as well as the Bluetooth Smart de-
vices. Such devices have one single Bluetooth device address which is used for both
the BR/EDR and LE radios. Some examples are phones, tablets, PCs etc.

Bluetooth Smart Ready mark was developed to brand qualified devices as
meeting the following three requirements:

1. Conform to Bluetooth 4.0 or higher with GATT based architecture.
2. Contain Dual mode radio.
3. Provide a means by which the end user can choose to update the function-

ality for a Bluetooth Smart device on a Bluetooth Smart Ready device. For
example if the user buys a new Bluetooth Smart device then new software
can be installed on the smart phone to communicate to that device.

Figure 6.1 shows Bluetooth, Bluetooth Smart and Bluetooth Smart Ready de-
vices. In this scenario, the mobile phone is the Smart Ready device and it is com-
municating to two devices at the same time:

1. Streaming audio data to a Bluetooth headset.
2. Collecting temperature information from a Bluetooth Smart thermometer

and acting as a hub to relay that information to a server located in the
hospital. The server can then take the appropriate action like informing the
doctor or pharmacist.

6.4 LE Fundamentals 137

6.4 LE Fundamentals

The devices which are based on BR/EDR require a recharge in a few days or few
weeks and are generally using larger batteries than coin cell batteries. Take, for ex-
ample, a Bluetooth keyboard, mouse, headset, etc. All have relatively large batteries
and need a recharge every few days or weeks.

Achieving a power consumption of several months to several years with LE was
not as easy as optimizing the power consumption of various layers in the Bluetooth
architecture. That would not have led to drastic reduction in the power consump-
tion. So LE has been designed almost from scratch to ensure that all possibilities
to achieve ultra low power consumption have been incorporated. It is designed
ground up for simplicity, low cost and ultra-low power consumption without com-
promising robustness, security, global usage, or ease of use. Most importantly the
compatibility of dual mode devices with the existing BR/EDR devices has been
preserved to ensure that nothing gets broken when manufacturers upgrade their
existing devices to BT 4.0-based devices.

There are several enhancements done in BT 4.0 specification to achieve low
power. Some of the fundamental concepts related to LE operation are introduced
below. These will be explained at length in the following chapters.

6.4.1 Frequency Bands

Similar to the BR/EDR radio, the LE radio operates in the 2.4 GHz ISM band. This
band is globally license free and is shared by several other wireless technologies. LE
also uses a frequency hopping mechanism to combat interference. (Frequency hop-
ping was explained in Chapter 3).

One important difference between BR/EDR and LE is that while BR/EDR uses
79 channels for frequency hopping, LE uses only 40 channels. Secondly there are

Figure 6.1 Bluetooth, Bluetooth Smart, and Bluetooth Smart ready devices.

Internet

Music Streaming

Temperature Data

LE Thermometer

A2DP Headset

The mobile can talk to both
Bluetooth and Bluetooth
Smart devices

Temperature Data
transmitted to
hospital’s server by
mobile phone
acting as a hub.

138 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

dedicated channels for advertising and sending data in the case of LE. This will be
explained in detail later in Chapter 8.

6.4.2 Mostly Off Technology

LE can be termed as a “mostly off” technology. This means that the LE devices are
expected to be sending data only occassionally and be in a switched-off state for the
remaining time. For example, the heart rate monitor may collect all data and then
send it across once per hour or once per day, the weighing machine may send the
weight only once per day or once per week, or a temperature sensor may send the
data only if the temperature crosses a certain threshold limit.

LE technology is designed in such a manner that the LE devices remain off
most of the time and switch on only when they need to transmit some data. This
ensures that the duty cycle (ratio of device off to device on) is almost close to zero
and the device will only switch on when some specific conditions are triggered.
Normally the device would just remain off.

6.4.3 Faster Connections

LE takes much less time to create connections as compared to BR/EDR. This is be-
cause LE uses only 3 dedicated advertising channels which can be used for creating
connections. This is in contrast to BR/EDR where 32 channels are used for inquiry
and paging (connection).

Since BR/EDR has more channels, the device takes more time in scanning across
all channels before a connection can be created. A typical BR/EDR connection can
take up to 20 milliseconds while in the case of LE the connection time is less than
3 milliseconds because the device has to scan on only 3 channels.

A faster connection means that whenever the device needs to send the data,
it can quickly connect, transmit data, and then disconnect. The total time for this
transaction may be in the range of only 3 to 4 milliseconds. This means that the
LE radio needs to be switched on for a very short time. The shorter the time that
the radio is switched on the lower the power consumption. The device may switch
itself off until it needs to transmit data again.

This is in contrast to BR/EDR. For example, in the case of a headset that is
connected to a mobile phone, the headset may remain connected to mobile phone
for several days. During this time the headset would be in sniff mode. This would
mean that it would be waking up periodically to see if the mobile phone has data to
send. This would translate into continuous drain of battery since the headset would
wake up periodically and check to see if the mobile phone has any data to send.

6.4.4 Reduced Functionality

LE incorporates some major reductions in the functionality so that it can target a
specific market—the one which needs devices to be consuming ultra low power. So
it cuts down heavily on the functionality to reduce the memory required to imple-
ment that functionality.

6.4 LE Fundamentals 139

Some of the major reductions are:

1. Not mandatory to implement both transmitter and receiver—LE is de-
signed in such a manner that a device can implement only transmitter, only
receiver or both transmitter and receiver. For example an LE weighing ma-
chine may implement only the transmitter. As soon as it has measured the
weight, it just transmits and does not need to receive anything. Such de-
vices would reduce the silicon area to almost half as compared to devices
which implement both transmitter and receiver.

2. No support for voice channels—LE is intended for devices that send short
amount of data infrequently. It is not intended for devices like headsets
which need to transfer continuous stream of voice data. So the SCO/eSCO
functionality has been completely removed.

3. No support for Scatternet—LE provides support for only a piconet and
the support for scatternet has been removed. This has simplified the state
machine of the link layer since a device can only be in one piconet at a par-
ticular time. While BR/EDR supports only up to 7 devices in a piconet, an
LE piconet can have any number of devices, limited only by the resources
available on the piconet master device. So removal of scatternet functional-
ity in LE did not put any restriction on the number of devices that could
be connected together while it also simplified the link layer state machine.
The support for scatternets was added in specifications 4.1 as optional,
so the system designers could choose this flexibility at the cost of adding
complexity.

4. No support for Master/Slave role switch—BR/EDR allowed the possibility
to switch the roles of Master and Slave. In LE, once a connection is made,
the role switch is not permissible. It is also clearly defined right in the be-
ginning which device will end up being a Master and which device will end
up being a Slave. This led to a lot of simplification of the link layer state
machine.

5. No need for continuous polling of the link. In the case of BR/EDR, even
if there is no data exchange, POLL/NULL packets are continuously ex-
changed to check if the remote device is still present, leading to consump-
tion of power. In the case of LE, there is no need to continuously moni-
tor the link. Devices can just shut down the link and recreate it whenever
needed without any impact on the user experience. This is because the link
setup time is far less in case of LE as compared to BR/EDR.

6. No support for sniff and park modes. The LE controllers are designed to
be very simple and power efficient from ground up. The connection is cre-
ated for a very short duration—only when the data is transferred, and then
disconnected. So there is no need for separate power saving modes. It can
be said that the default mode for LE is already power savings mode and so
no additional power savings modes are defined.

140 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

6.4.5 Shorter Packets

LE uses packets of much shorter size as compared to BR/EDR which means that the
time needed to transmit or receive them is lesser. So the radio will be switched on
for a lesser time leading to savings in power consumption.

Besides this the buffer space needed to store the packets is much lesser. The
maximum size of LE packet is 27 bytes which is much shorter than the maximum
size of 1021 bytes supported by BR/EDR (As discussed in Chapter 3, the maximum
size of 3DH5 packets is 1021 bytes). The maximum packet size allowed by 4.2
specification is 251 bytes, which is still much shorter than BR/EDR packets.

Besides lesser times, shorter packets also require much lesser power to trans-
mit. This is because of radio characteristics. If a long packet has to be transmitted,
the radio needs to be in a high power state for a longer period of time, resulting in
the heating up of silicon. This changes the material’s physical characteristics and
deviation in the transmission frequency which could result in a packet loss or even
link loss. To counter this, the radio needs to be constantly recalibrated in order to
ensure that the transmission frequency is correct. Recalibration logic makes the
radio more complex and also requires power for the recalibration. In compari-
son shorter packets ensure that the silicon stays cool and the characteristics don’t
change. Hence no recalibration logic is needed.

6.4.6 Reduced Dynamic Memory Footprint

Another design principle used in LE is to optimize the usage of dynamic memory
as much as possible. This is because firstly memory requires silicon area which
contributes to the costs and secondly dynamic memory requires constant supply
of current to retain the contents that are stored in it. So it adds to the current con-
sumption of the device. (Dynamic memories typically need to be refreshed continu-
ously so that they do not lose the contents. In contrast ROM and FLASH memories
do not need to be refreshed).

To reduce the dynamic requirements on memory, LE incorporates the following:

1. Shorter packets—The amount of buffer memory space needed for storing
packets is much smaller in case of LE due to shorter packet sizes. This was
explained in the previous section.

2. Shorter headers—LE uses only a 32-bit access code to reduce the overall
size of the packet. This again leads to less time to transmit the packet and
lesser buffer requirement.

3. Simple Protocol—The LE protocol has been designed to be very simple so
that there is least state information to be stored. For example the Link Lay-
er has only 5 states and a very limited number of state transitions. Similarly
the L2CAP layer has also been simplified a lot to support a very limited
number of CIDs (Channel Identifiers) and signaling commands. These will
be explained in detail in the subsequent chapters.

4. Uniform Packet Format—LE uses only one packet format for all types of
packets. This makes the logic for creating packets on the transmitter side

6.4 LE Fundamentals 141

and parsing packets on the receiver side much simpler thereby reducing the
code that has to be implemented.

6.4.7 Optimized Power Consumption of Peripherals

LE is designed in such a manner that the peripherals consume the least amount
of power while the central devices could consume a bit more power to compen-
sate. This is because generally the peripherals are resource constrained. They have
smaller batteries, memory and limited processing power. In contrast, the central
devices may have much higher processing power and much bigger batteries. These
may even be powered from mains (For example a TV, PC, or a set-top box) or may
be recharged frequently (For example a mobile phone or a tablet).

As an example, if a weighing machine gets connected to a mobile phone to send
data, then it’s more important to optimize the power consumption of the weighing
machine as compared to optimizing the power consumption of the mobile phone.
The mobile phone may be charged every day or every alternate day while the weigh-
ing machine’s battery may be replaced only once in a few months or years.

The LE protocol is designed in such a manner that the peripheral needs to be
powered on for as less time as possible while the central device may be continu-
ously powered on to wait for any data coming from the peripheral. So in the case
of weighing machine transmitting data to the mobile phone, the mobile phone
may always be scanning for packets while the weighing machine may just transmit
packets when it has some information to transmit. So the weighing machine will be
powered on for far lesser time as compared to the mobile phone.

Another important point is that, in the wireless radio world, transmitting pack-
ets consumes much less power than receiving packets. So LE tries to reduce the
time for which the peripherals are receiving packets. Instead of this the LE protocol
is designed in such a manner that the peripherals mostly transmit packets instead
of scanning and receive only for very short durations, if they really have to. So
in the case of weighing machine example, the weighing machine would transmit
(advertise) to consume less power while the mobile phone would receive (scan).
The weighing machine, may in fact never receive anything and may not even have
a receiver in it.

6.4.8 No Need for Continuous Polling

In the case of LE, for devices to remain connected, there is no need for continuous
exchange of packets as long as the link layer is synchronized to the timing, fre-
quency and access address parameters.

This is in contrast of BR/EDR where, to remain connected, continuous POLL/
NULL packets are exchanged even if there is no data to send. BR/EDR does pro-
vide the possibility to put the connection into low power mode to reduce the ex-
change of packets but packets are still exchanged leading to power consumption.

142 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

6.4.9 Backward Compatibility with BR/EDR

There are billions of BR/EDR device already in use. Mobile phones, tablets and
laptops have an attach rate of almost 100%. LE technology is designed in such a
manner that dual mode devices which are based on the BT 4.0 specification are
backward compatible with the existing devices. This means that the next genera-
tion of mobile phones, laptops and other devices can be upgraded to BT 4.0 devices
without breaking existing compatibility. Once these devices get upgraded to BT 4.0,
they will also be able to talk to LE devices in addition to BR/EDR. So LE builds on
to the ecosystem that has already been established by BR/EDR and paves the way
for next millions and billions of devices.

A summary of the key LE features is shown in Table 6.2.

6.5 LE Architecture

LE has a layered architecture just like BR/EDR. The architecture of LE is shown in
Figure 6.2. In many ways it’s similar to the architecture of classic BR/EDR stack. It
also uses the concept of protocols and profiles. (This was explained in Chapter 2).

The design of profiles is quite simplified in the case of LE. LE introduced the
concept of GATT based profiles. Most of the common functionality that is needed
by all profiles is moved into the ATT protocol and GATT profile. The profiles on
top of GATT use the services that are provided by GATT and only implement the
bare minimum things that are needed to support that specific use case.

In the next chapters, each of the protocol layers will be covered in details.
The mechanisms that are employed by each of the protocol layers to reduce the

Table 6.2 Summary of Key LE Features

Connection Type Frequency Hopping Spread Spectrum.

Spectrum 2.4 GHz ISM Band. Regulatory range: 2400 – 2483.5 MHz.

Frequency Hopping Across 40 RF channels. The channels are separated by 2 MHz.

Modulation Gaussian Frequency Shift Keying (GFSK).

Maximum Data Rate 305 kbps (4.0), 800 kbps (4.2)

Maximum Data Packet size 27 bytes (4.0), 251 bytes (4.2)

Typical Range 30 m to 100 m.

Topology Master Slave architecture. The number of slaves is limited only
by the availability of resources on the master.

Connection Time In the range of 2.5 milliseconds. LE supports a much lower
connection time as compared to BR/EDR. So it’s easier to just
re-establish the connection and transfer data in case of LE
instead of keeping the connection alive.

Data Security:
Authentication Key

AES 128 bit key.

Data Security: Encryption
Key

AES-128 (Stronger than BR/EDR)

Voice Channels Not supported.

Applicability Does not require line of sight.

Intended to work anywhere in the world since it uses
unlicensed ISM band.

6.6 Comparison between BR/EDR and LE 143

power consumption will also be pointed out specifically so that the reader is able
to appreciate the reasons why this technology is designed for ultra-low power
operations.

6.6 Comparison between BR/EDR and LE

The architectural comparison of the BR/EDR and LE protocol stack is shown in
Figure 6.3. The LE stack modifies some of the existing protocol layers and profiles
like the L2CAP layer and the GAP profile. The LE radio has also been modified
as explained above. LE also replaces some layers entirely to gain significant power
savings. For example the link layer is defined from scratch.

In the case of dual mode devices, the implementation of some of the layers can
be shared. For example a combined LE + BR/EDR radio can be used and the imple-
mentation of the L2CAP layer, HCI and GAP profile can be shared for the dual
mode devices. This helps in maintaining backward compatibility as well as re-using
the efforts that were spent already in developing code for these layers.

A broad level comparison between BR/EDR and LE is shown in Table 6.3.
There are several other differences besides these and those differences will be high-
lighted in the next chapters at the appropriate places.

Figure 6.2 LE architecture.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

…

Generic Access Profile (GAP)

Security Manager (SM)

GATT based
profiles

F
I
N
D

M
E

P
R
O
X
I

M
I
T
Y

B
A
T
T
E
R
Y

H
E
A
R
T

R
A
T
E

144 Bluetooth Low Energy—FundamentalsBluetooth Low Energy—Fundamentals

6.7 Summary

LE technology offers dual benefits. First, it builds on to the existing ecosystem of
Bluetooth devices, and secondly, it offers a drastic reduction in the power consump-
tion for LE only devices. This has opened up several new use cases where this tech-
nology can be effectively deployed.

Figure 6.3 BR/EDR protocol stack, LE protocol stack, and dual mode architecture.

L2CAP

BR/EDR Protocols

BR/EDR Radio

Link Controller

Generic Access Profile

BR/EDR Profiles

BR/EDR Protocol Stack

L2CAP

Link Layer

LE Radio

Generic Access Profile

LE Profiles

LE Protocol Stack

ATT SM

GATT

HCI HCI
Link Manager

L2CAP

BR/EDR
Protocols

LE + BR/EDR Radio

Link Controller

Generic Access Profile

BR/EDR Profiles

Dual Mode Architecture

HCI
Link Manager Link Layer

ATT SM

GATT

LE Profiles

6.7 Summary 145

The architecture of LE was introduced in this chapter. Besides this some of the
enhancements done by LE to reduce power consumption were briefly introduced.
These will be explained in depth in next chapters.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth SIG, Specifications of the Bluetooth System, Profiles http://www.bluetooth.org.
SIG Low Energy Training, http://www.bluetooth.org.
Bluetooth Assigned Numbers, https://www.bluetooth.org/assigned-numbers.

Table 6.3 Comparison of BR/EDR and LE
Feature BR/EDR LE Remarks

RF Channels and
spacing

79 channels spaced by 1
MHz each

40 channels spaced by
2 MHz each

Dedicated RF Channels No dedicated RF chan-
nels. All are used for data.

3 channels dedicated
for advertising.

37 channels dedicated
for data.

Range Typically 10m to 30m.
Can go to max of 100 m

Typically 30m to 50m.
Can go to a max of
100m.

Typically LE based devices have
a longer range

Connection time In the range of 20 ms Less than 3 ms Much less time required to
make a connection.

Maximum Packet Size 1021 bytes 27 bytes LE uses much smaller packets.

Maximum Data Rate BR: 721 kbps

EDR: 2.1 Mbps

305 kb/s LE supports much lower data
rates. Even these data rates are
seldom used.

Scatternet Support Yes No LE simplifies implementation
complexity by disallowing
scatternets.

Master/Slave Role
Switch

Supported Not Supported Simpler state machine.

Transmitter/Receiver Both transmitter and
receiver are mandatory

Device can have only
transmitter, only
receiver or both

LE saves a lot of silicon area if
the device has to only transmit
or only receive.

PDU Format Several One LE has only one PDU format.
This makes it simpler to create
and parse packets

CRC Strength 16-bit 24-bit Much more robust, especially in
noise environments.

Voice Channels Yes No No support for voice channels
in LE.

147

C H A P T E R 7

Physical Layer

7.1 Introduction

This chapter explains the operation of the physical layer of LE. As shown in Figure
7.1, this is the bottom most layer in the protocol stack. It is responsible for sending
and receiving data over the air.

7.2 Frequency Bands

Like BR/EDR, the LE radio also operates in the 2.4 GHz ISM band (ISM stands
for Industrial, Scientific and Medical). This frequency band is globally unlicensed
and is used by several other devices like remote control toys, cordless telephones,
NFC, Wireless LAN, etc. Some microwave ovens also generate interference in this
frequency band.

Since this band may be shared by multiple devices, there is a good possibility
that there may be interference from the other devices. So, the frequency is continu-
ously changed for subsequent transmissions so that a new frequency is chosen for
exchanging the data. The pattern of changing the frequencies is predefined so that
the devices that need to exchange data know which frequency to hop to for the
next data exchange. This is known as frequency hopping. LE uses frequency hop-
ping technique to combat interference and fading.

The frequency band is divided into 40 channels which are spaced 2 MHz apart.
(In contrast BR/EDR uses 79 channels which are spaced 1 MHz apart). The chan-
nels are numbered from 0 to 39 starting at 2402 MHz. The frequencies of various
channels are derived from the formula:

 f(k) = 2,402 + k * 2 MHz, k = 0, …, 39

The complete range used by LE is 2.400 to 2.4835 GHz. The frequency bands
used by LE are shown in Figure 7.2.

Figure 7.3 shows the sniffer capture of transactions between a mobile phone
and an LE device. It shows the transmissions on the 40 channels which include:

148 Physical LayerPhysical Layer

1. Data transmissions on channel 0 to 36.
2. Advertisements on channels 37, 38, and 39.

As seen in the figure, the channels are spaced 2 MHz apart.

7.3 Transmitter Only, Receiver Only, or Both

An LE radio may have only a transmitter, only a receiver or both. This is in contrast
to BR/EDR specification where it’s mandatory for the BR/EDR radio to have both a
transmitter and a receiver. This helps in reducing the cost and simplifying the design
of devices which only need to transmit or receive data.

An example of this could be an LE based TV remote control. The remote con-
trol may need to only transmit the commands based on which buttons the user
presses and not receive anything back from the TV. As per the LE specification,
such a device is allowed to have only a transmitter.

Figure 7.1 Bluetooth Radio in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

Figure 7.2 RF channels used by LE.

f(k) = 2402 + k * 2 MHz, k = 0, …, 39

RF Channels: 40 Channels with 2 MHz spacing between channels

 2402 MHz 2480 MHz

0 1 2 3 4 5 6 7 8 9 10 ... 30 31 32 33 34 35 36 37 38 39

7.4 Output Power 149

7.4 Output Power

LE defines the transmitter output power to be in the range of 0.01 mW (-20 dBm)
to 10 mW (+10 dBm). The device can change the output power dynamically to
optimize the power consumption and reduce the interference on other equipment.

7.5 Range

Based on the output power defined in the previous section, LE devices support a
range of about 30m to 100m.

7.6 Modulation Characteristics

LE uses Gaussian Frequency Shift Keying (GFSK) mechanism.
The bandwidth-bit period product BT=0.5 and the modulation index is be-

tween 0.45 to 0.55. A binary one is represented by a positive frequency deviation
and a zero is represented by a negative frequency deviation.

The reference signal is defined in Table 7.1.
Some of these terms are beyond the scope of this book and are provided here

just for reference. The details can be looked up in the Bluetooth specifications.

Figure 7.3 Sniffer capture of transmissions on LE channels.

150 Physical LayerPhysical Layer

What is GFSK modulation?

Modulation is the process of mixing one signal with another signal. The signal
that contains the information to be transmitted is called the modulating signal.
It is mixed with a high-frequency signal called the carrier signal. Generally the
frequency of the carrier signal is much higher than the modulating signals. For
example the carrier signal would be in the range of GHz (2.4 GHz for Bluetooth)
and the modulating signal would be in the range of MHz.

The three key properties of the carrier signal are: amplitude, phase, and frequency.
Any of these can be modified during the process of mixing with the carrier signal.
The resulting modulated signal is then transmitted to the remote side where it is
demodulated to reconstruct the original signal.

For example, when a binary number (string of 0s and 1s) is to be transmitted over
the air, it is mixed with a carrier signal, and then transmitted over the air. If the 0s
and 1s were mixed to the amplitude then one level of amplitude would represent
a 0 and another level of amplitude would represent a 1 after modulation. This
modulated signal is now in a state that can be transmitted over the air. At the re-
ceiver side, the receiver would interpret the different amplitude levels as 0 and 1
and reconstruct the binary number.

Frequency Shift Keying (FSK) conveys information by varying the carrier signal
frequency to represent a 0 or a 1. So a binary 1 can be represented by increasing
the frequency of the carrier signal and 0 can be represented by decreasing the fre-
quency of the carrier signal. One of the reasons for using frequency modulation to
encode data compared to amplitude modulation is that generally the noise signals
change the amplitude of a signal. So, modulation signals which ignore the ampli-
tude of the signal are relatively more immune to noise.

Gaussian Frequency Shift Keying (GFSK) applies Gaussian filter to the modulating
signal before it is mixed with the carrier signal. The Gaussian filter smoothens the
shape of the frequency pulse so that high frequencies at the time of switching can
be avoided. This helps to reduce the spectral width of the signal and is also called
pulse shaping.

Table 7.1 Reference Signal for LE

Modulation

GFSK (Gaussian
Frequency Shift
Keying)

Modulation Index 0.5 +/- 1%

Bandwidth Bit period Product, BT 0.5 +/- 1%

Bit Rate 1 Mbps +/- 1 ppm

Modulation data for wanted signal PRBS9

Modulation data for interference signal PRBS15

Frequency accuracy better than +/- 1 ppm

7.7 LE Timeline 151

7.7 LE Timeline

Figure 7.4 shows a typical timeline of transactions happening on the air for LE. The
air captures have been taken for one of the GATT profiles where initially the LE
device is advertising. Then later on a dual mode device tries to discover the services
and creates a connection to this device.

Some of the interesting points to note are:

1. The advertising packets are generally seen in sets of 3 packets. This is be-
cause the devices generally advertise consecutively on the three advertise-
ment channels and then wait for some time to restart the advertisement.

2. Most of the space is empty space. This means that for most of the time,
there are no transmissions happening. This confirms the statement in the
previous chapter that LE is a “mostly off” technology.

3. The average throughput is very low. For this particular capture, this is in
the range of 3 kbps. This is much lower than the average throughput seen
in classic Bluetooth systems.

4. There could be some instances where lot of data is exchanged. During that
time the throughput may go up, but even then it is peaking to a maximum
of 17 kbps in this particular example. This is still quite low.

7.8 Summary

This chapter explained the physical layer which is the bottom layer of the LE proto-
col stack and is responsible for sending and receiving data over the air. Like the BR/

Figure 7.4 LE timeline.

152 Physical LayerPhysical Layer

EDR radio, it operates in the 2.4 GHz ISM band though it uses only 40 channels as
compared to 79 channels in the case of Bluetooth.

The next chapter will focus on the link layer which is responsible for control-
ling, negotiating, and establishing the links. The link layer uses the services of the
physical layer to send and receive packets. It provides the packets to the physical
layer for transmission on the sender side and processes the received packets from
the physical layer on the receiver side.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.

153

C H A P T E R 8

Link Layer

8.1 Introduction

This chapter explains the operation of the link layer. This layer is responsible for
controlling, negotiating and establishing the links, selecting frequencies to transmit
data, supporting different topologies and supporting various ways for exchanging
data. The position of Link Layer in the LE Protocol stack is shown in Figure 8.1. It
sits on top of the Physical Layer and provides services to the L2CAP layer.

8.2 Overview of Link Layer States

The operation of the link layer can be described in terms of a very simple state ma-
chine with the following five states:

1. Standby State;
2. Advertising State;
3. Scanning State;
4. Initiating State;
5. Connection State.

In general LE devices support one single instance of the state machine, though
multiple instances of the state machine are also permitted by the specification. If a
device supports multiple instances of the state machine then only one state can be
active at a time for each state machine. Besides this, at least one state machine that
supports the advertising state or scanning state is mandatory.

The link layer state machine is shown in Figure 8.2. The five states are ex-
plained in brief below and will be explained in detail later in this chapter.

8.2.1 Standby State

This is the default state of the link layer. In this state, no packets are received or
transmitted. A device can enter into this state from any of the other states.

154 Link LayerLink Layer

8.2.2 Advertising State (Advertiser)

In the advertising state the link layer transmits advertising packets. It may also
listen to the devices that respond to the advertising packets and then respond to
those devices accordingly. This state can be entered from the standby state when
the link layer decides to start advertising. A link layer in this state is known as the
Advertiser.

An example of an Advertiser could be a thermometer which continuously ad-
vertises that “I’m a thermometer” to the devices around it. It may advertise ad-
ditional information as well. For example it may also advertise that it has data to
send. Any device in the vicinity that is in the scanning state may pick up that packet
and query the thermometer for additional information or decide to connect to the
thermometer.

Figure 8.1 Link layer in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

Figure 8.2 Link layer state machine—state diagram and roles.

(Scanner)

(Advertiser)

(Master)
(Slave)

(Initiator)

Scanning

Standby

Connection

Initiating Advertising

8.3 Device Address 155

8.2.3 Scanning State (Scanner)

In the scanning state the link layer listens to the packets from the Advertiser and
may request the Advertiser to provide some additional information. This state can
be entered from the standby state when the link layer decides to start scanning. A
link layer in this state is known as the Scanner.

8.2.4 Initiating State (Initiator)

In the initiating state the link layer listens to the packets from the Advertiser and
responds to those packets by initiating a connection. This state can be entered from
the standby state when the Scanner decides to initiate a connection with the Adver-
tiser. A link layer in this state is known as the Initiator.

8.2.5 Connection State (Master or Slave)

In the connection, the device is connected to another device. Two roles are de-
fined—Master Role and Slave Role. This state can be entered either from the initiat-
ing state or from the advertising state.

	• When entered from the initiating state, the device acts as a Master.

	• When entered from the advertising state, the device acts as a Slave.

As per specifications 4.0, a link layer in the Slave role could communicate with
only one device in the Master role. This means that the link layer did not support
scatternet scenarios similar to the ones that are supported in BR/EDR. This helped
in a simple design of the link layer.

Specifications 4.1 allowed the link layer to support scatternet scenarios similar
to the ones in BR/EDR. The link layer is allowed to be the Master of one piconet
and the Slave of another or to be the Slave in different piconets.

8.3 Device Address

In contrast to BR/EDR where a device has only one Bluetooth device address (BD_
ADDR), an LE device may either have a Public Address or a Random Address or
both. It is mandatory to have at least one of these addresses so that the device can
be identified.

8.3.1 Public Device Address

This address is similar to the BD_ADDR for BR/EDR devices. This was explained
in Chapter 2. In fact in case of dual mode devices, both the LE controller and the
BR/EDR controller should have the same address. The BD_ADDR of BR/EDR is
referred to as the public device address by LE. Public Device Address is a globally
unique 48-bit address. It is similar to an Ethernet MAC address and is, in fact, ad-
ministered by the same organization, IEEE.

The public device address (BD_ADDR) consists of two fields:

156 Link LayerLink Layer

1. 24-bit company id assigned by IEEE Registration authority. This is called
the Organizationally Unique Identifier (OUI) [24 most significant bits] and
is different for each company.

2. 24-bit unique number assigned by the company to each controller. [24 least
significant bits]. This is different for each controller manufactured by the
company.

8.3.2 Random Address

Random Address is a privacy feature of LE where the device can hide its real ad-
dress and use a random address that can change over time. So the real address is not
revealed at any time. This helps to ensure that a device cannot be tracked.

Consider an example where a person is wearing LE enabled shoes which keep
on transmitting data about the number of steps that the person has walked. Some-
body can listen to those packets and track the person. So wherever the person is
moving, he or she can be followed by just listening to the packet transmitted from
the shoes if the shoes are using a fixed address.

To prevent tracking, a random address can be used to transmit. A different
random address can be used every time the shoes transmit data. This ensures that
the person cannot be tracked. LE provides a mechanism to resolve that random
address so that only the intended recipient of the data keeps getting the data and
knowing that it is coming from the same device even though it may be from differ-
ent addresses.

The Generic Access Profile defines the random address to be of two types:

1. Static Address: A device may choose to initialize it’s static address to a new
value after each power cycle but cannot change it while it is still powered.
If the device changes its static address, the peer device will not be able to
connect to it with the old address that they may have stored.

2. Private Address: The private address may further be of following two types:
1. Non-resolvable private address: The peer device can never discover the

real address.

2. Resolvable private address: The peer device can derive the real address
using the random address and the link key of the connection.

The format of different types of device addresses is illustrated in Figure 8.34
towards the end of this chapter. These addresses will be explained further in Chap-
ter 14.

8.4 Physical Channel

As mentioned in the previous chapter, LE uses 40 RF channels in the 2.4 GHz ISM
band. These channels are spaced 2 MHz apart.

The RF channels are divided into two physical channels:
	• Advertising Physical Channel: This physical channel uses three RF channels,

viz channel 0, 12 and 39 for the following activities:

8.4 Physical Channel 157

•	 Discovering devices.

•	 Creating a connection.

•	 Broadcasting and receiving data.

	• Data Physical Channel: This physical channel uses the remaining 37 RF chan-
nels for communication between devices that are in the connection state.

The advertising channels are carefully chosen by the Bluetooth specification
to be spread far apart to ensure that if there is interference from other devices in
one of the frequency ranges, then at least other frequency ranges are available for
advertising. For example, if there is interference in the frequency band 2400 MHz
to 2420 MHz, then only channel 0 experiences interference and channels 12 and
39 can still be used for advertising.

Another reason behind the choice of these channels is to reduce interference
with WiFi. Many of the devices (like mobile phones, tablets, and laptops) which
support Bluetooth have a WiFi radio as well. So it’s important that the interference
with WiFi is reduced as much as possible.

When a WiFi device is switched on, it uses WiFi channels 1, 6, and 11 as de-
fault. The frequency range of the advertising channels is chosen carefully so as not
to overlap with channels 1, 6 and 11 of WiFi.

The 40 RF channels are mapped to either a Data Channel Index or an Advertis-
ing Channel Index. This is shown in Figure 8.3. For example:

	• RF Channel 1 is mapped to Data Channel 0.

	• RF Channel 2 is mapped to Data Channel 1.

	• RF Channel 12 is mapped to Data Channel 11.

	• RF Channel 0 is mapped to Advertising Channel 37.

Figure 8.3 Advertising physical channels, data physical channels, and mapping to RF channels.

Data Physical Channels Advertising Physical Channels

f(k) = 2402 + k * 2 MHz, k = 0, …, 39

RF Channels: 40 Channels with 2 MHz spacing between channels

Advertising Channel Index

Data Channel Index

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

3
7

0 1 2 3 4 5 6 7 8 9 1
0

3
8

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
9

158 Link LayerLink Layer

	• RF Channel 12 is mapped to Advertising Channel 38.

	• RF Channel 39 is mapped to Advertising Channel 39.

The link layer uses only one physical channel at any given time.

8.5 Channel Map

Similar to BR/EDR, the Master’s link layer classifies the data channels as used or
unused. If the Master’s link layer suspects interference on any of the channels, it can
mark the channel as unused. This has two advantages:

	• The channels which potentially have interference can be excluded from the
frequency hopping pattern. This reduces the number of retransmissions that
would have been done if the packets had been transmitted on those channels.

	• The channels which have interference may, in fact, be used by other tech-
nologies which are also sharing the ISM band. So this reduces the impact of
Bluetooth transmissions on those technologies.

The information about used and unused channels is provided as a bitmap by
the Master to the Slave so that both the devices can use the same hopping frequen-
cies. This channel bitmap is called a Channel Map.

The Master can keep on marking channels as unused if it suspects interference
until it reaches a minimum of 2 used channels. This is the minimum number of
channels that the Master has to use.

8.6 Adaptive Frequency Hopping

LE uses adaptive frequency hopping to hop frequencies across the 37 data channels.
The algorithm used is very simple:

 fn+1 = (fn + hopIncrement) mod 37

	• If fn is a used channel, then it is used as it is.

	• If fn is an unused channel, then it is remapped to the set of good channels.
(The link layer builds a remapping table to map all the unused channels to
used channels.)

The Master sets the hop increment value at the time of creation of a connec-
tion. It sets it to a random value between 5 and 16. It may be noted that hop incre-
ment is a new concept that has been introduced in LE to simplify the calculation
of the next hopping frequency. In BR/EDR, the next hop in the frequency hopping
pattern was a function of the Master’s parameters like clock and BD_ADDR. LE
simplifies this by just using a random value between 5 and 16 as a hop increment
to calculate the next hooping frequency. A simpler algorithm, of course, leads to
lesser number of gates when this is implemented in silicon (thereby reducing cost)

8.7 Events 159

and lesser amount of processing (thereby reducing power consumption). A random
value is needed since if, by chance, there is a collision with another Master on one
of the frequencies, the subsequent frequencies for the two Masters will be based on
different random numbers. So, further collisions can be avoided.

8.7 Events

The physical channel is subdivided into time units which are known as events.
There are two types of events:

	• Advertising Events.

	• Connection Events.

8.7.1 Advertising Events

Advertising events are used for transmissions on the advertising physical chan-
nels. At the start of each advertising event, the Advertiser sends an advertising
packet. The Scanner receives this packet and depending on the type of the advertis-
ing packet, it may send a request back to the Advertiser. The Advertiser responds
to that request within the same advertising event. After that the advertising event
is closed. The Advertiser uses the next advertising channel for the next advertising
packet. An example of three advertising events is shown in Figure 8.4.

Figure 8.5 shows a sniffer capture of six advertising events.

1. Frame #425: First advertising event (ADV_IND) on Channel 38.
2. Frame #426: Second advertising event (ADV_IND) on Channel 39.
3. Frame #427, #428, #429: Third advertising event on Channel 37. This

consists of three packets.
a. ADV_IND packet from Advertiser to Scanner.

b. SCAN_REQ packet from Scanner to Advertiser.

Figure 8.4 Advertising events.

Advertiser

Scanner

Advertising Physical Channels

Advertising Events

 f(k) f(k+1)

160 Link LayerLink Layer

c. SCAN_RSP packet from Advertiser to Scanner in response to the
SCAN_REQ packet.

d. All these packets comprise one single advertising event and are sent on
the same channel.

4. Frame #430: Fourth advertising event (ADV_IND) on Channel #38.
5. Frame #431: Fifth advertising event (ADV_IND) on Channel #39.
6. Frame #432: Fourth advertising event (ADV_IND) on Channel #37.

This indicates that the Advertiser is advertising on all the three advertising
channels consecutively in rotation: Channel 37, Channel 38, Channel 39 and then
again Channel 37, Channel 38, and so on.

There is one more thing worth noting from the Delta time stamps in the last
column. The Advertiser advertises on Channels 37, 38, and 39 in quick succession.
The approximate delta time between those is 300 to 400 microseconds. After that
the Advertiser waits for about 39 or 42 milliseconds before starting the next cycle
of advertisements. This means that there are quite big gaps between the advertise-
ments so that the Advertiser can save battery power during that time.

The timing of advertising events is determined by two parameters:

	• Advertising Interval (advInterval): The advertising interval ranges from 20
ms to 10.24 seconds.

	• Advertising Delay (advDelay): The advertising delay is a random value that
ranges from 0 to 10 ms.

The time between start of two consecutive advertising events, T_advEvent is
defined as follows:

 T_advEvent = advInterval + advDelay

The connection latency and advertising interval are inversely proportional. If
the advertising interval is high, it may take longer to establish connections, while a
lower advertising interval would lead to the establishment of a faster connection.
A lower connection interval would also mean that advertising packets are sent out
more frequently before a connection is established, thereby increasing the power

Figure 8.5 Example of advertising events.

8.7 Events 161

consumption. Hence, a trade-off needs to be made between connection setup time
and battery life.

Specifications 4.1 introduced a low duty cycle mode for directed advertising.
This is useful in cases where a reconnection is desired but a fast reconnection is not
mandatory, or if it is not known whether the device that is supposed to make a con-
nection is in range. With a low duty cycle, less power would be consumed because
the advertisement packets would be sent out at a lower rate. SIG recommends scan
intervals based on the mode of advertisement used, but it is up to the application
to select the desired mode and the interval as per preference (i.e., if the peripheral
wants a faster connection just after turning on, it can do a fast advertisement (low
advertisement interval), it may then subsequently ask for slower connections de-
pending on the type of application used).

8.7.2 Connection Events

Connection events are used to send data packets between the Master and Slave
devices. The start of a connection event is called an Anchor Point. At the Anchor
Point, the Master transmits a data channel PDU to the Slave. After that the Master
and Slave send packets alternately during the connection event. The Slave always
responds to a packet from the Master while the Master may or may not respond to
a packet from the Slave. The connection event can be closed by either the Master or
the Slave. All packets in a connection event are transmitted on the same frequency.
Channel hopping occurs at the start of every connection event. An example of three
connection events is shown in Figure 8.6.

The timing of connection events are determined by two parameters:

	• Connection Event Interval (connInterval): The connInterval is the interval
between two successive starting points of connection event. The start of a
connection event is called an anchor point. So the connInterval is the time
difference between two successive anchor points. It is a multiple of 1.25 ms
and in the range of 7.5 ms to 4.0s.

Figure 8.6 Connection events.

Master

Slave

Data Physical Channels

Connection Events

f(k)

Anchor Points

Connection Interval

f(k+1)

162 Link LayerLink Layer

	• Slave Latency (connSlaveLatency): The connSlaveLatency indicates the num-
ber of consecutive connection events that the Slave can skip before listening
to the Master. For example, if connSlaveLatency is set to ten then the Slave
has to listen to every tenth connection event. If it is set to 0, then the Slave
has to listen to every connection event.

Besides these, a Supervision Timeout (connSupervisionTimeout) parameter is
used by both the Master and the Slave to detect whether a connection has been lost.
If a packet has not been received for a duration of connSupervisionTimeout, then
the connection is considered to be lost and no further packets are sent. The host is
informed about the loss of connection.

The first connection event is scheduled after the CONNECT_REQ PDU. The
master provides two parameters in the CONNECT_REQ PDU to indicate the
transmit window:

	• transmitWindowOffset: This indicates the time difference between CON-
NECT_REQ PDU and the transmit window.

	• transmitWindowSize: This indicates the size of the transmit window.

The connection interval and advertising interval are two important parameters
that impact the battery life of a device. It is important to note that these parameters
are not related to each other. While the advertising interval plays a role during con-
nection establishment, connection interval plays a role during data transfer.

As an example, consider an art gallery where paintings are on display. Once
the user walks close to a painting, the particulars of the artist and description of
the painting may be sent to the user’s mobile phone. In this case, it may be accept-
able if it takes a few seconds to establish a connection (because the user behavior
in this case may be that users walk slowly from one painting to another and may
first study the painting before reading the particulars). However, once the connec-
tion is established, it would be expected that the data is transferred quickly. The
intervals may be fine-tuned accordingly; a higher advertising interval and a lower
connection interval would be more power efficient without compromising the user
experience.

8.8 Topology

The possible topologies for LE are shown in Figure 8.7. In scenario A, one Adver-
tiser is sending advertising packets on the advertising physical channel. There are
two scanners listening to those advertising packets. These scanners may request
more information from the Advertiser or send a request to connect on the advertis-
ing physical channel.

Scenario B shows a piconet where one Master is connected to three Slaves. The
data between the Master and the Slaves is exchanged on the data physical channels.
Besides this, the Master is also acting as a Scanner and listening to packets from
an Advertiser on the advertising physical channel. In this scenario if the Master/

8.9 Packet Format 163

Scanner decides to connect to the Advertiser, then it will send a connect request to
the Advertiser on the advertising physical channel. If the connection is established
successfully, the Advertiser will also join the same piconet and become a Slave of
the same Master. Then the Master will have four Slaves.

While the BR/EDR specification put an upper limit of up to seven Slaves con-
nected to a Master, the LE specification does not put any such upper limit. A Mas-
ter can connect to as many Slaves as it wants. This is only restricted by the amount
of resources available with the Master in terms of memory and processing power.

As with BR/EDR only one device can be a piconet Master and all other devices
are piconet Slaves. All the communication is between the Master and Slave devices.
The Slaves are not allowed to directly talk to each other.

As per specifications 4.1, an LE device could belong to only one piconet at a
particular time. Scatternets were not supported. This restriction helped in simplify-
ing the design of the link layer for LE devices.

Specifications 4.1 relaxed this restriction and allowed LE devices to be part of
multiple piconets (also known as scatternet). The device could either be a Master in
one piconet and Slave in another piconet, or a Slave in two piconets. This opened
up support for several new use case scenarios for LE devices. For example, a tem-
perature sensor can connect to two mobile phones and provide alerts to two mobile
phones that can be with different users. In that case, either of the users can act on
the alert, thereby making it more convenient.

8.9 Packet Format

The link layer has only one packet format that is used for both advertising and data
physical channels. This is in contrast to BR/EDR which has several packet formats

Figure 8.7 LE topology.

Advertiser

Scanners

An Advertiser advertising on the
advertising physical channel
and two Scanners listening.

Master/
Scanner

Slaves

A piconet with one Master and three
Slaves and Master acting as Scanner to
listen to another Advertiser

Advertising Physical Channels

Data Physical Channels

Advertiser

Scenario A Scenario B

164 Link LayerLink Layer

(ID, NULL, POLL, FHS, DM). This is another step towards simplification by LE.
The packet format is shown in Figure 8.8.

8.9.1 Preamble

The preamble is used by the receiver to perform frequency synchronization, symbol
timing estimation, and Automatic Gain Control (AGC) training. The Preamble is
an alternate sequence of 1s and 0s. So it can be 10101010b or 01010101b. The
receiver uses this sequence to synchronize its radio to the exact frequency and also
adjust the gain so that the remaining packet is correctly received.

8.9.2 Access Address

The access address is used as a correlation code by devices tuned to the physical
channel. Since LE uses a limited number of data channels, there is a possibility of
unrelated LE devices using the same RF channel at the same time. The access ad-
dress is used as a code to ensure that the transmission is indeed meant for the device
that is receiving it. The access address is different for each link layer connection
between any two devices.

A link layer is said to be connected to a channel if it is synchronized to the fol-
lowing parameters of the channel:

	• Timing.

	• Frequency.

	• Access Address.

It is not mandatory for the link layer to be actively involved in data exchange
to remain connected. This is another enhancement over BR/EDR. For the link layer
to remain connected, it doesn’t need to continuously send and receive data. In the
case of BR/EDR, if the link layers are connected and they have no data to send,
then they still exchange POLL/NULL packets continuously.

8.9.3 CRC

The CRC is a 24-bit checksum calculated over the PDU. One of the enhancements
done in LE is that the CRC is 24-bit as compared to 16-bit in the case of BR/EDR. A
24-bit CRC helps to check for many more types of bit-errors compared to a 16-bit
CRC. This leads to enhanced robustness especially in noise environments where the
chance of multiple bit errors is higher.

Figure 8.8 Link layer packet format.

MSBLSB

PREAMBLE
(1 octet)

ACCESS ADDRESS
(4 octets)

PDU
(2 to 39 octets: 4.0)
(2 to 257 octets: 4.2)

CRC
(3 octets)

8.9 Packet Format 165

8.9.4 PDU

The PDU is of two types:

	• Advertising channel PDU: To transmit a packet on the advertising physical
channel.

	• Data channel PDU: To transmit a packet on the data physical channel.

8.9.4.1 Advertising Channel PDUs

The format of the advertising channel PDUs is shown in Figure 8.9.
The PDU Type field indicates the type of the advertising channel PDU. The

TxAdd and RxAdd fields are defined for each PDU type separately and may not be
valid for all PDU types. These are used to indicate whether the address contained
in the payload is a public address (RxAdd/TxAdd = 0) or random address (RxAdd/
TxAdd = 1).

The Length field indicates the length of the payload field in octets.
There are three types of advertising channel PDUs:

	• Advertising PDUs: These PDUs are sent by the link layer in advertising state
and received by the link layer in the scanning state or initiating state. The
different type of advertising PDUs are shown in Table 8.1.

	• Scanning PDUs: These PDUs are used by the link layer of the Scanner to
request data from the Advertiser and by the Advertiser to respond to the
request from the Scanner. The different types of scanning PDUs are shown
in Table 8.2.

	• Initiating PDUs: These PDUs are used by the link layer to initiate a connec-
tion to the Advertiser. There is only one type of PDU and that is shown in
Table 8.3.

An example of the advertising and scanning PDUs was shown in Figure 8.5.

	• The Advertiser sent ADV_IND PDUs in Frames #425, #426, #427, #430,
#431 and #432.

Figure 8.9 Advertising channel PDU.

MSBLSB

HEADER
(2 octets)

PAYLOAD
(6 to 37 octets as per Length field in the header)

PDU Type
(4 bits)

RFU
(2 bits)

TxAdd
(1 bit)

RFU
(2 bits)

RxAdd
(1 bit)

Length
(6 bits)

166 Link LayerLink Layer

	• The Scanner sent SCAN_REQ PDU in Frame #428.

	• The Advertiser responded with SCAN_RSP PDU in Frame #429.

8.9.4.2 Data Channel PDUs

The format of the data channel PDUs is shown in Figure 8.10.
The Payload field is 0 to 251 octets in length. The Message Integrity Check

(MIC) field is included only in the case of encrypted link layer connection when the
payload field has a nonzero size. This is used to authenticate the data PDU.

The LLID indicates the type of the link layer PDU. There are two possible
types:

Figure 8.10 Data Channel PDU.

MSBLSB

HEADER
(2 octets)

PAYLOAD
(0 to 251 octets as per Length field in the header. Length field includes the MIC)

LLID
(2 bits)

NESN
(1 bit)

Length
(8 bits)

MIC
(4 octets)

SN
(1 bit)

MD
(1 bit)

RFU
(3 bits)

Table 8.1 Advertising PDUs

PDU Name Advertising Event Type
Sender Link
Layer State

Receiver Link
Layer State

ADV_IND Connectable Undirected Advertising Scanning/Initiating

ADV_DIRECT_IND Connectable Directed Advertising Scanning/Initiating

ADV_NONCONN_IND Non-Connectable Directed Advertising Scanning/Initiating

ADV_SCAN_IND Scannable Undirected Advertising Scanning/Initiating

Table 8.2 Scanning PDUs

PDU Name Scanning Event Type
Sender Link
Layer State

Receiver Link
Layer State

SCAN_REQ Scanner requesting data
from Advertiser

Scanning Advertising

SCAN_RSP Advertiser responding to
the request from Scanner

Advertising Scanning

Table 8.3 Initiating PDUs

PDU Name Initiating Event Type
Sender Link
Layer State

Receiver Link
Layer State

CONNECT_REQ Initiator requesting to
connect to Advertiser

Initiating Advertising

8.9 Packet Format 167

	• Link layer data PDU: This type of PDU is used to send L2CAP data.

	• Link layer control PDU: This type of PDU is used to control and negotiate
the connection between the two link layers. There are various types of link
layer PDUs defined for the link layer to exchange control information with
the link layer of the other device. The various layer control procedures and
corresponding PDUs will be explained later in this chapter.

MD indicates that the device has more data to send. It is used to decide whether
the current connection event can be closed or not. Length indicates the size in octets
of Payload and MIC fields. The SN field indicates the Sequence Number and the
NESN field indicates the Next Expected Sequence Number. These two bits provide
a very simple mechanism for acknowledgment and flow control of packets.

The SN bit identifies the current packet while the NESN bit identifies which
packet from the peer device is expected next. If a packet is correctly received then
the NESN bit is incremented. This serves as an acknowledgment to the sender that
the packet has been received. If the packet had an error, then NESN bit is not incre-
mented. This indicates to the sender that it has to resend the previous packet. This
is shown in Figure 8.11.

Figure 8.11 Acknowledgment and flow control using SN and NESN.

SN = 0, NESN = 0

Master Slave

transmitSeqNum (tSN), nextExpectedSeqNum (nESN) set to zero for both
Master and Slave when entering the connection state

tSN = 0, nESN = 0tSN = 0, nESN = 0

SN = 0, NESN = 1

SN = 1, NESN = 1

SN = 1, NESN = 1

NESN in received
packet is equal to
nESN. Means
previous packet
is not acknowledged.
Retransmit packet

SN = 1, NESN = 1

Retransmitted Packet

Increment SN
while sending
next packet and
Increment NESN
to ack previous
packet.

NESN in received
packet is not equal
to nESN. Means
previous packet
is acknowledged.

Let’s say this
packet has an
error. Don’t
increment
NESN

SN in received
packet = tSN.
Ack packet by
incrementing
NESN

168 Link LayerLink Layer

8.10 Bit Stream Processing

Figure 8.12 shows the sequence of steps that are carried out by the link layer before
transmitting data and the link layer on the other side after receiving the data. The
data to send is treated as a bit stream with the LSB first. At the time of transmission,
the different steps that are performed are encryption of the data follower by CRC

Low Energy Data Packet Extensions

One of the most important changes in 4.2 specifications is that the length field has
been increased from 5 bits to 8 bits. This has led to an increase in the supported
packet size for data packets from 27 to 251 bytes. This is an almost ten-fold in-
crease and is useful in the following cases:

1. Over the air (OTA) firmware upgrades: After the device has been deployed in
the field, there may be newer versions of the software containing additional fea-
tures and bug fixes. The most convenient way to update the firmware is through
OTA updates, but with a packet size of 27 bytes, an OTA update would take
a long time. Depending on the firmware size, this may take several minutes.
Besides taking time, this would also lead to significant power consumption be-
cause the device would have been active for a long duration, thereby reducing
its battery life. With the increase in packet size, the firmware updates would
take a fraction of the time and the energy as compared to the time and energy
taken by 4.0 compliant devices.

2. Uploading the logs: One of the primary usages of BLE devices is in sensor tags,
where the tags keep collecting the data and then upload it to the Internet. Some-
times, this data may be huge (i.e., a person’s temperature and heart rate during
the day if a reading is taken every minute), and transporting it on 27-byte data
packet sizes would take a lot of time. Transporting it on bigger packets would
be much faster and more power efficient.

 In general, larger packet sizes are more efficient when compared to smaller ones.
This is because the fractional overhead of the bytes used for the header is less. For
example, if a total of 6 bytes were used for the header (including bytes used in the
lower layers of the protocol stack and message integrity check), then the overhead
for 27-byte packets would be 6/27 (22%), while that for 251-byte packets would
be 6/251 (2%). Also, increased data transfer speeds and packet sizes reduce the
window and chances of transmission losses, which would help in getting the im-
portant packets in time to or from the sensor device (for example, a hearing aid or
a critical medical equipment).
 Besides this, there would be less processing power consumed in fragmenting the
packets at the transmitter end and reassembling them at the receiver end. Frag-
mentation also makes it worse because the packets are only sent at connection
intervals, and there is a dead time between connection intervals. This translates to
a longer transmission time, effectively keeping the device powered on longer.

8.10 Bit Stream Processing 169

generation and then finally whitening. When the data is received on the receiving
side, exactly the reverse of these steps are performed.

The Encryption stage on the transmitter side and the decryption stage on the
receiver side are optional. Encryption is done only if the host requested an en-
crypted link.

Data whitening is the process used to avoid long sequences of zeros or ones
while transmitting. Before transmitting the header and payload are scrambled with
a data whitening word. This randomizes the data to reduce the possibilities of long
sequences of zeros or ones. At the receiver end, the data is descrambled using the
same data whitening word to get back the original data.

When a packet is received, the first step is to check for errors. This includes the
following:

	• Check the Access address to ensure that the packet is meant for the channel
that the link layer is connected to.

	• CRC checking.

One of the optimizations done by LE is that the encryption is done before CRC
generation while transmitting data and decryption is done after CRC checking
while receiving data. This is opposite to BR/EDR where CRC generation is done
before encryption while transmitting and CRC checking is done after decryption
while receiving. So in the case of LE, there are the following advantages:

1. CRC checking takes far lesser time as compared to decryption while receiv-
ing. So if CRC checking is done before decryption:
a. The received packet can be acknowledged as soon as the CRC check

is complete. So the radio can be immediately switched off instead of
waiting for the complete decryption process.

b. The complete decryption process can then be done offline when the
radio is switched off. This helps in reducing the peak power consump-
tion since only decryption is going on and the radio has been switched
off.

c. If the packet got corrupted by the time it was received, then the CRC
check will detect it early and the packet can be dropped immediately.
For such packets power does not need to be consumed while doing the
decryption.

Figure 8.12 Link layer bit stream processing.

Tx Payload
LSB First

CRC
Generation Whitening Dewhitening Decryption

Rx Payload
LSB First

CRC
Checking

Encryption

170 Link LayerLink Layer

8.11 Link Layer States

The five link layer states were briefly introduced at the beginning of this chap-
ter. This section provides a detailed explanation of each of these states. Broadly
the states can be categorized into Non-Connected States and Connection States as
shown in Figure 8.13.

To reduce the complexity, LE does not allow scatternet scenarios. (Note that a
scatternet is a combination of multiple piconets. It is formed in BR/EDR scenarios
when one of the devices acts as Slave in two piconets or as Master in one piconet
and Slave in another piconet.)

This imposes the following restrictions on LE devices:

1. The device cannot act as Master and Slave at the same time.
2. The device cannot also act in initiating state if it is already in Slave role.

This is because it would lead to a Master connection in addition to the
Slave role.

3. The device cannot have more than one Slave connections.
4. If the device is already operating in Connection or Initiating state, it cannot

operate in Advertising state with advertising type that will lead to a Slave
role connection.

8.11.1 Nonconnected States

In the Nonconnected states the link layer can be in any one of the following four
states:

1. Standby State.
2. Advertising State.
3. Scanning State.
4. Initiating State.

Figure 8.13 Link layer states.

(Scanner)

(Advertiser)

(Master)
(Slave)

(Initiator)

Scanning

Standby

Connection

InitiatingAdvertising

Non-
Connected
States

Connection
State

8.11 Link Layer States 171

These states are explained in detail below.

8.11.1.1 Standby State

This is the default state of the link layer. No packets are sent or received in this state.
From this state, a device can enter advertising state, scanning state or initiating
state. It cannot go into connection state directly from the standby state.

A device can enter into this state from any other state. In fact, to aid simplicity
of the state machine and reduce the number of possible combinations of transitions
from one state to another, the link layer state machine has been designed to only
have the minimum needed transitions and this state is used as an intermediate state.
For example, to go from scanning state to initiating state the link layer first goes
from scanning state to standby and then from standby to initiating state.

8.11.1.2 Advertising State

In this state, the link layer transmits advertising PDUs in advertising events.
During an advertising event, the link layer transmits one or more advertising

PDUs on each of the used advertising channels (The host may request the link layer
to use either all or a subset of the three advertising channels—37, 38 and 39). The
device in this state is known as Advertiser.

The advertising events are of following four types. The advertising PDUs as-
sociated with each of these events were shown in Table 8.4.

1. Connectable undirected event.
2. Connectable directed event.
3. Non connectable undirected event.
4. Scannable undirected event.

Connectable Undirected Event
The connectable undirected event is sent by an Advertiser when it wants another
device to connect to it. It sends an advertising indication (ADV_IND) PDU on the
advertising channel. The other device may also request for additional information
before deciding to connect to the Advertiser.

Table 8.4 Advertising Event Types, PDUs Used and Acceptable Responses

Advertising Event Type PDU Used

Acceptable Response PDU from
Remote Device

Scanner
(SCAN_REQ)

Initiator
(CONNECT_REQ)

Connectable Undirected Event ADV_IND Yes Yes (From any
Initiator)

Connectable Directed Event ADV_DIRECT_IND No Yes (Only from the
addressed Initiator)

Nonconnectable Undirected Event ADV_NONCONN_IND No No

Scannable Undirected Event ADV_SCAN_IND Yes No

172 Link LayerLink Layer

The receiver of the connectable undirected event can be either in the scanning
state or initiating state.

	• If it’s in the scanning state, it may request for more information using SCAN_
REQ PDU.

	• If it’s in the initiating state, it may send a connect request using CONNECT_
REQ PDU.

The two scenarios are shown in Figure 8.14. A device may use the first one or
the second one or first one followed by the second one.

The payload in a connectable undirected event contains the following two
fields:

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by TxAdd field (See Figure 8.9).

	• AdvData (0-31 octets): This contains the advertising data from the Adver-
tiser’s host.

One possible example of this could be a thermometer that is placed in a building.

Figure 8.14 Connectable undirected advertising event.

Connectable Undirected Event

ADV_IND

Request additional information from Advertiser

SCAN_REQ

Respond to additional information request

SCAN_RSP

ScanningAdvertising

InitiatingAdvertising

ADV_IND

Connectable Undirected Event

CONNECT_REQ

Request for connection

Device may
decide to
move to
Initiating state

8.11 Link Layer States 173

	• The thermometer could keep on advertising—‘I am a thermometer’;

	• Any mobile phone in the vicnity could query—‘Do you display temperature
in Fahrenheit?’;

	• The thermometer could say—‘Yes’;

	• The mobile phone could then connect to the thermometer and get the
temperature.

An example of air logs for ADV_IND was shown in Figure 8.5. The Advertiser
sends an advertising PDU in frame #425, #426, etc. In response to the ADV_IND
packet sent in Frame #427, the Scanner requests for additional information using
the SCAN_REQ PDU.

Connectable Directed Event
The connectable directed event type is used when an Advertiser wants a particular
device to connect to it. It sends a directed advertising indication (ADV_DIRECT_
IND) PDU on the advertising channel. The other device may request to connect to
the Advertiser on receiving this PDU.

The ADV_DIRECT_IND PDU contains the device address of both the Initiator
and the Advertiser. So only the Initiator for which the address was contained in the
PDU is allowed to make a connection.

The payload in a connectable directed event contains the following two fields:

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by TxAdd field (See Figure 8.9).

	• InitA (6 octets): Public address or random address of the Initiator. The type
is indicated by RxAdd field (See Figure 8.9).

This is in contrast to connectable undirected event where any device in the
scanning or initiating state could request for additional information or connect
to the advertiser. Here the request for additional information is not permitted and
only a particular device can initiate the connection. The sequence diagram for this
is shown in Figure 8.15.

One possible example of this could be a pedometer placed in the jogger’s shoe.
The pedometer may need to send information to the person’s mobile phone.

	• The pedometer could advertise: ‘I’m a pedometer. I want to send data to
mobile phone A.’

	• Mobile phone A could receive this request and connect to the pedometer and
get the data and display to the person.

Nonconnectable Undirected Event
The nonconnectable undirected event type is used when an Advertiser wants to
provide some information to all devices but does not want the devices to connect
to it or ask for more information. It sends a nonconnectable advertising indication

174 Link LayerLink Layer

(ADV_NONCONN_IND) PDU on the advertising channel. The other device may
only listen to this information.

This is in contrast to connectable undirected and connectable directed events
because the receiver (which has to be in the scanning state) can just receive this
information. It can neither connect nor ask for more information.

The payload in a non-connectable undirected event contains the following two
fields:

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by TxAdd field (See Figure 8.9).

	• AdvData (0–31 octets): This contains the advertising data from the Adver-
tiser’s host.

The sequence diagram for this is shown in Figure 8.16.
One possible example of this could be a microwave oven.

	• The microwave could advertise: ‘I’m a microwave. The food is cooked.
Please take it out.’

	• The people in the house could receive this information on their mobile phone,
television or set top box and take appropriate action.

Figure 8.16 Nonconnectable undirected advertising event.

ScanningAdvertising

ADV_ NONCONN_IND

Non-connectable Advertising Event

Figure 8.15 Connectable directed advertising event.

InitiatingAdvertising

ADV_DIRECT_IND

Connectable Directed Event

CONNECT_REQ

Request for connection

8.11 Link Layer States 175

Another example could be an Advertiser at the airport:

	• The Advertiser could advertise that flight ABC will take off from gate 123.

	• Any person who is interested in the flight information could scan for that
information.

Scannable Undirected Event
The scannable undirected event type is used when an Advertiser wants to allow a
Scanner to request more information from it. It sends a scannable advertising indi-
cation (ADV_SCAN_IND) and the Scanner may request more information using
the SCAN_REQ PDU.

This is slightly different from the Nonconnectable Undirected advertising event
since in the nonconnectable advertising event, the Scanner cannot send any request
back. Here the Scanner may send a scan request to get more information.

The payload in a scannable undirected event contains the following two fields:

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by TxAdd field (See Figure 8.9).

	• AdvData (0–31 octets): This contains the advertising data from the Adver-
tiser’s host.

The sequence diagram for this is shown in Figure 8.17.
One possible example of this could be a remote control.

	• The remote control could advertise: ‘I’m a remote. A key has been pressed.’

	• The Scanner could send a SCAN_REQ PDU to gather information about
which key has been pressed.

A summary of the four advertising event types is provided in Table 8.4.

Figure 8.17 Scannable undirected advertising event.

ScanningAdvertising

ADV_ SCAN_IND

Scannable Undirected Advertising Event

Request additional information from Advertiser

SCAN_REQ

176 Link LayerLink Layer

8.11.1.3 Scanning State

In this state, the link layer listens on the advertising channels (Advertising channels
37, 38, 39) for any PDUs from the Advertiser. The device in this state is known as
Scanner.

The scanning events are of following two types:

	• Passive Scanning.

	• Active Scanning.

The advertising PDUs associated with each of these events were shown earlier
in Table 8.2

Passive Scanning
In passive scanning, the link layer only receives the packets. It does not send back any
packets. Once it receives the packets, it removes the duplicates and then sends the ad-
vertising reports to the host. The sequence diagram for this is shown in Figure 8.18.

Active Scanning
In active scanning, the link layer listens to the advertising PDUs and then depend-
ing on the advertising PDU type, it may request additional information from the
Advertiser using the SCAN_REQ PDU.

The Scanner is permitted to send a SCAN_REQ only if the Advertiser used a
connectable undirected event (ADV_IND PDU) or a scannable undirected event
(ADV_NONCONN_IND PDU). These are the ones that are marked as Yes in the
column for SCAN_REQ in Table 8.4.

The payload in a SCAN_REQ PDU contains the following two fields:

	• ScanA (6 octets): Public address or random address of the Scanner. The type
is indicated by TxAdd field (See Figure 8.9).

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by RxAdd field (See Figure 8.9).

The payload in a SCAN_RSP PDU contains the following two fields:

Figure 8.18 Passive scanning.

ScanningAdvertising

ADV_ IND

ADV_ IND

Advertising report
to the host

8.11 Link Layer States 177

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by TxAdd field (See Figure 8.9).

	• AdvData (0–31 octets): This contains the advertising data from the Adver-
tiser’s host.

The sequence diagram for this is shown in Figure 8.19.
A practical example of active scanning was shown in Figure 8.5. At Frame

#428, the Scanner sent a SCAN_REQ to get more information from the Advertiser.

8.11.1.4 Initiating State

In the initiating state, the link layer listens on the advertising channels (Advertising
channels 37, 38, 39) for any PDUs from the Advertiser and if it’s permitted, it sends
a connection request to the Advertiser.

The Initiator is permitted to send a CONNECT_REQ only if the Advertiser
used a connectable undirected event (ADV_IND PDU) or a connectable directed
event (ADV_DIRECT_IND PDU). In the latter case, the address of the Initiator
must match the address that was provided in the connectable directed event PDU.
These are the scenarios that are marked as Yes in the column for CONNECT_REQ
in Table 8.4. The sequence diagram for this is shown in Figure 8.20.

Figure 8.21 shows a sniffer capture of the connection initiation procedure. The
following things may be observed:

	• The Advertiser sent an advertising event (ADV_IND) in Frames #670, #671,
and #672.

	• The Initiator responded with a CONNECT_REQ in Frame #673 to create
a connection.

8.11.2 Connection State

This state is entered when the Initiator sends a CONNECT_REQ PDU to the Ad-
vertiser. As shown in Figure 8.13, this state can be entered in two ways.

Figure 8.19 Active scanning.

ScanningAdvertising

ADV_ IND or ADV_NONCONN_IND

SCAN_REQ

Advertising report
to the host

SCAN_RSP

178 Link LayerLink Layer

	• From a link layer in the initiating state. The Initiator becomes the Master of
the connection.

	• From a link layer in the advertising state. The Scanner becomes the Slave of
the connection.

After entering the connection state, the connection is considered to be cre-
ated (but not established). After the connection is created, once a data channel

Figure 8.21 Example of initiating a connection.

Figure 8.20 Initiating connections.

InitiatorAdvertising

ADV_ IND or ADV_DIRECT_IND

CONNECT_REQ

Connection
Indication to host

Connection
Indication to host

8.11 Link Layer States 179

packet has been received from the peer device, the connection is considered to be
established. There can only be one LE connection between two devices.

The payload in a CONNECT_REQ PDU contains the following three fields:

	• InitA (6 octets): Public address or random address of the Initiator. The type
is indicated by TxAdd field (See Figure 8.9).

	• AdvA (6 octets): Public address or random address of the Advertiser. The
type is indicated by RxAdd field (See Figure 8.9).

	• LLData (22 octets): This contains various parameters related to the
connection.

•	 AA (4 octets): The Access Address for the Link Layer’s connection.

•	 CRCInit (3 octets): Initialization value for the CRC calculation. (Random
value.)

•	 WinSize (1 octet): Indicates transmit window size.

•	 WinOffset (2 octets): Indicates transmit window offset.

•	 Interval (2 octets): Connection Interval (connInterval).

•	 Latency (2 octets): Connection Latency (connSlaveLatency).

•	 Timeout (2 octets): Connection Supervision Timeout
(connSupervisionTimeout).

•	 ChM (5 octets): Channel bitmap showing used and unused channels.

•	 Hop (5 bits): Hop increment to be used for frequency hopping algorithm.

•	 SCA (3 bits): Indicate worst case Master’s sleep clock accuracy.

Some of these parameters were already explained earlier in this chapter in the
section related to Connection Events. The sequence diagram for this is shown in
Figure 8.22. Once the connection is established, the Master and Slave can exchange
data channel PDUs in connection events.

Figure 8.21 showed a sniffer capture of the connection initiation procedure.
The parameters of the CONNECT_REQ PDU are shown on the left hand side.
These include the following:

	• InitA (6 octets): Public address of the Initator.

	• AdvA (6 octets): Public address of the Advertiser.

	• Access Address of the connection.

	• LLData (22 octets) containing the following:

•	 CRC Initialization value. Random value provided by Master to be used for
CRC calculations.

•	 transmitWindowSize = 3.75 ms.

•	 transmitWindowsOffset = 86.25 ms.

•	 connInterval = 86.25 ms.

•	 connSlaveLatency = 0 (This means that the Slave has to listen for each con-
nection event).

180 Link LayerLink Layer

•	 connSupervisionTimeout = 7000 ms. (This means that if no packet is re-
ceived for 7 seconds then the connection is considered to be lost).

•	 ChannelMap: Indicating which channels can be used for data transfer.

•	 HopIncrement: 10. This indicates the Hop Increment to be used in the
algorithm to calculate the next hopping frequency.

8.12 Link Layer Control Procedures

The Link Layer Control Protocol (LLCP) is used to control and negotiate the con-
nection between the two link layers. The summary of the link layer control pro-
cedures and the associated PDUs is shown in Table 8.5. Specifications 4.1 and 4.2
introduced certain new procedures and certain new PDUs within existing proce-
dures. These are mentioned in Table 8.5. The PDUs are encapsulated within the link
layer control PDUs that are part of the data channel PDUs. The format of the data
channel PDUs was explained earlier in Figure 8.10.

These procedures can only be invoked sequentially. This means that at any
given time only one link layer procedure is initiated. The next link layer procedure
can only be initiated after the previous one either completes or has a timeout. The
only exception is the termination procedure which can be initiated at any time.

Figure 8.22 Connection state.

InitiatorAdvertising

ADV_ IND or ADV_DIRECT_IND

CONNECT_REQ

Connection is created

SLAVE

Connection

MASTER

Connection

Data Channel PDU

Connection is established

8.12 Link Layer Control Procedures 181

8.12.1 Connection Update Procedure

The connection update procedure is used to update the following link layer param-
eters of the connection:

Table 8.5 Link Layer Control Procedures and PDUs
Link Layer Procedure Link Layer Control PDU Name Brief Purpose

Connection Update
Procedure

LL_CONNECTION_UPDATE_REQ This procedure is used by the Master any time
after entering the connection state to update
the link layer parameters of a connection.

Channel Map
Update Procedure

LL_CHANNEL_MAP_REQ This procedure is used by the Master after
entering the connection state to update
the channel map to be used for frequency
hopping.

Encryption Start
Procedure

LL_ENC_REQ This procedure is used by the Master to start
encryption or to re-start encryption after a
pause encryption procedure.

LL_ENC_RSP

LL_START_ENC_REQ

LL_START_ENC_RSP

Encryption Pause
Procedure

LL_PAUSE_ENC_REQ This procedure is used if the Master wants to
change the encryption key. A Pause procedure
is followed by the Encryption Start procedure
to change the link key.

LL_PAUSE_ENC_RSP

Feature Exchange
Procedure

LL_FEATURE_REQ This procedure is used by the Master after
a connection has been established to initiate
exchange of feature set information.

LL_FEATURE_RSP

Version Exchange
Procedure

LL_VERSION_IND This procedure is used by either the Master or
the Slave after entering the connection state to
exchange version information.

Termination
Procedure

LL_TERMINATE_IND This procedure is used in the connection state
by either the Master or the state to terminate
the connection.

Unused/
Unsupported PDU

LL_UNKNOWN_RSP This PDU is sent as a response if an unused or
unsupported PDU is received.

Rejection LL_REJECT_IND This PDU is sent if a request from the other
side is rejected. For example the Slave sends
this response to Master if the Master tries
to enable encryption and the Slave does not
support it.

Connection
Parameters Request
Procedure
(Enhancement in 4.1)

LL_CONNECTION_PARAM_REQ

LL_CONNECTION_PARAM_RSP

This procedure is used by the Master or the
Slave to request the remote device to update
the connection parameters.

LE Ping Procedure
(Enhancement in 4.1)

LL_PING_REQ

LL_PING_RSP

This procedure is used by the Master or the
Slave to verify the presence of the remote link
layer.

Data Length Update
Procedure
(Enhancement in 4.2)

LL_LENGTH_REQ

LL_LENGTH_RSP

This procedure is used by the Master or the
Slave to inform the remote link layer about
changes in the values of data PDU length and
PDU time.

Feature Exchange
Procedure
(Enhancement in 4.1)

LL_SLAVE_FEATURE_REQ This is an additional PDU defined by specifi-
cations 4.1 to allow the Slave to request the
features supported by the Master.

Rejection
(Enhancement in 4.1)

LL_REJECT_IND_EXT This is an additional PDU defined by specifica-
tions 4.1 to support extended reject indication
to the remote side.

182 Link LayerLink Layer

	• Connection Interval.

	• Connection Slave Latency.

	• Connection Supervision Timeout.

This procedure can only be initiated by the Master after entering the connec-
tion state.The sequence diagram for this procedure is shown in Figure 8.23.

8.12.2 Channel Map Update Procedure

The channel map procedure is used to update the channel map of the connection.
The channel map contains two parameters:

	• Channel Map: The bitmap indicating which channels are enabled.

	• Hop Increment: This indicates the number of channels to hop for each sub-
sequent hop.

This procedure allows the Master to disable frequency hopping on channels
which potentially have interference thereby reducing the number of retransmis-
sions that would have been required if the packets were transmitted on those chan-
nels. This is the key procedure that provides support for adaptive frequency hop-
ping (AFH).

This procedure can only be initiated by the Master after entering the connec-
tion state. The sequence diagram for this procedure is shown in Figure 8.24.

8.12.3 Encryption Procedure

8.12.3.1 Encryption Start Procedure

The encryption start procedure is used by the link layer to enable encryption of
packets. It is initiated by the host of the Master by sending a request to the link layer
to start encryption. The host of the link layer also provides the Long_Term_Key
(LTK). The Long_Term_Key is a 128-bit key used to generate the session key to be

Figure 8.23 Connection update procedure.

LL_CONNECTION_UPDATE_REQ

Master Slave

Old Connection Parameters

New Connection Parameters

8.12 Link Layer Control Procedures 183

used for the encrypted connection. If the connection is not already encrypted, then
the encryption start procedure is used.

If the connection is already encrypted, then the encryption pause procedure
followed by encryption start procedure is used. The encryption pause procedure
will be explained in the next section. The sequence diagram for this procedure is
shown in Figure 8.25.

Figure 8.25 Encryption start procedure.

LL_ENC_REQ

Master Slave

Host sends LE Start
Encryption with LTK

LL_ENC_RSP

Get LTK from the host

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP

Link is now encrypted

3-Way handshake
between the two link
layers

Figure 8.24 Channel map update procedure.

LL_CHANNEL_MAP_REQ

Master Slave

Old Channel Map, Hop Increment

New Channel Map, Hop Increment

184 Link LayerLink Layer

8.12.3.2 Encryption Pause Procedure and Encryption Restart Procedure

This procedure is used by the link layer if the link is already encrypted but a new
encryption key is to be used without disconnecting the link. So, the link layer pauses
encryption and then follows the same procedure as described in the previous section
with the new encryption key.

Encryption restart procedure is very useful when the level of encryption has to
be increased or decreased dynamically. So a link can be established with one level
of security, and later, if the security needs to be increased it can be done using this
procedure.

One example of this could be when a connection was established with a lower
level of security but the security level needs to be increased (for example) to trans-
mit some sensitive data. In that case, the encryption pause procedure is used fol-
lowed by changing the link key and finally the encryption restart procedure.

The sequence diagram for this procedure along with the procedure to restart
encryption with the new link key is shown in Figure 8.26.

8.12.4 Feature Exchange Procedure

The feature exchange procedure is used to exchange information about the current
supported feature set.

Feature set is a bitmap that provides the feature capabilities of the Master
or Slave. As per specifications 4.0, the feature set contained only information on
whether encryption was supported on not. Other fields of this bitmap were re-
served for future use. This procedure should only be initiated by the Master after

Figure 8.26 Encryption pause procedure and encryption restart procedure.

LL_PAUSE_ENC_REQ

Master Slave

Host sends LE Start
Encryption with new
LTK

LL_PAUSE_ENC_RSP

Link is now encrypted with new LTK

Link is already encrypted with old LTK

LL_PAUSE_ENC_RSP

Follow the same procedure as Encryption Start Procedure.

Encryption Pause
Procedure

8.12 Link Layer Control Procedures 185

entering the connection state. The sequence diagram for this procedure is shown
in Figure 8.27.

Specifications 4.1 and 4.2 made several enhancements to the feature set and
feature exchange procedure.

The information about the supported features can be exchanged at two levels:

	• Information sent from a Controller to the Host: In this case, the features that
are not supported are indicated by setting the corresponding bit to 0 in the
FeatureSet field.

	• Information sent from a Controller to the Peer Controller: In this case, if the
Controller allows a feature to be used, it sets the corresponding bit to 1 in
the FeatureSet field.

The following features were added to the Feature Set in Specifications 4.1:

	• Connection parameters request procedure;

	• Extended reject indication;

	• Slave-initiated features exchange;

	• LE ping.

Specifications 4.1 and above allow both the Master and the Slave to initiate a
feature exchange procedure. This is shown in Figure 8.27.

The following features were added to the Feature Set in Specifications 4.2 and
above:

	• LE data packet length extension;

Figure 8.27 Feature exchange procedure.

186 Link LayerLink Layer

	• LL privacy;

	• Extended scanner filter policies.

The details on bit positions, their corresponding features, and whether these
bits are valid from Controller to Host or Controller to Controller are show in Table
8.6.

8.12.5 Version Exchange Procedure

The version exchange procedure is used by either the Master or the Slave after en-
tering the connection state to exchange version information. The version informa-
tion consists of:

	• Company ID;

	• Link Layer Version;

	• Sub Version Number.

The remote side responds with its own version information using the same
PDU (LL_VERSION_IND) if it has not sent it in the past for the same connection.
This procedure can be initiated by either the Master or the Slave after entering the
connection state. The sequence diagram for this procedure is shown in Figure 8.28.

8.12.6 Termination Procedure

The termination procedure is used by either the Master or the Slave to terminate the
current connection. This procedure can be used after entering the connection state.
The sequence diagram for this procedure is shown in Figure 8.29.

Table 8.6 Bit Mapping for Feature Set

Bit
position Link Layer Feature

Specifications Ver-
sion in which this
was introduced

Valid from
Controller to
Host

Valid from
Controller to
peer Controller

0 LE Encryption 4.0 Y Y

1 Connection Pa-
rameters Request
Procedure

4.1 Y Y

2 Extended Reject
Indication

4.1 Y Y

3 Slave-initiated Fea-
tures Exchange

4.1 Y Y

4 LE Ping 4.1 Y N

5 LE Data Packet
Length Extension

4.2 Y Y

6 LL Privacy 4.2 Y N

7 Extended Scanner
Filter Policies

4.2 Y N

8–63 RFU

8.12 Link Layer Control Procedures 187

The procedures mentioned above are supported by specifications 4.0 and
above. Besides these, specifications 4.1 introduced two new procedures (the con-
nection parameters request procedure and the LE ping procedure). Specifications
4.2 introduced one additional procedure (the data length update procedure). These
procedures are described below.

8.12.7 Connection Parameters Request Procedure

The connection parameters request procedure is used by either the Master or the
Slave to request the remote device in order to update the connection parameters
during the connection state. The connection parameters include:

	• connInterval;

Figure 8.28 Version exchange procedure.

LL_VERSION_IND

Master Slave

LL_VERSION_IND

LL_VERSION_IND

LL_VERSION_IND

OR

Version Exchange
initiated by Slave

Version Exchange
initiated by Master

Figure 8.29 Termination procedure.

LL_TERMINATE_IND

Master Slave

LL ack

LL_TERMINATE_IND

LL ack

OR

Termination
initiated by
Slave

Termination
initiated by
Master

188 Link LayerLink Layer

	• connSlaveLatency;

	• connSupervisionTimeout.

If the parameters are not acceptable to the receiving device, it may respond
with either an alternative set of parameters or LL_REJECT_IND_EXT PDU. The
sequence diagram for this procedure is shown in Figure 8.30.

8.12.8 LE Ping Procedure

In the networking world, a ping command is used to check the reachability of a
remote host and whether or not it can accept and respond to requests. It is a very
powerful diagnostic tool and can be used to check connectivity to a remote device
and certain other metrics.

The specifications 4.1 introduced the ping procedure in order to verify the
presence of a remote link layer. Besides this, it can also be used to check message
integrity by requesting the remote ACL layer to send a data packet containing a
valid message integrity check (MIC).

This procedure may be initiated by the Master or the Slave by sending the
LL_PING_REQ PDU. The remote link layer responds with a LL_PING_RSP PDU.
If the remote link layer does not support the ping command, it sends an LL_UN-
KNOWN_RSP PDU. The sequence diagram for this procedure is shown in Figure
8.31.

8.12.9 Data Length Update Procedure

The data length ppdate procedure is used to inform the remote link layer about the
following parameters:

	• Maximum receive data channel PDU payload length (connMaxRxOctets);

Figure 8.30 Connection parameters request procedure.

8.13 Management of Link Layer Procedures 189

	• PDU time (connMaxRxTime);

	• Maximum transmit data channel PDU payload length (connMaxTxOctets);

	• PDU time (connMaxTxTime).

While responding, the remote entity provides its own parameters, which could,
for example, have changed because of the request that was just received.

This procedure may be initiated by the Master or Slave and allows the initiating
device to inform the remote entity whenever any of these parameters change. For
example, if the data buffers are getting full, it may inform the remote entity that the
maximum receive data channel PDU payload length has decreased. Once the buf-
fers are freed up, it may increase the maximum receive data channel PDU payload
length again. The sequence diagram for this procedure is shown in Figure 8.32.

8.13 Management of Link Layer Procedures

In order to have a smooth interaction between peer link layers, certain rules have
been defined regarding timeouts and the handling of collisions. These are explained
in the following sections.

8.13.1 Procedure Response Timeout

Since LE is a wireless protocol, it’s possible that the peer devices may go out of
range at any time and possibly come back in range within a certain time interval.
Besides this, it’s possible that the remote device may stop responding (i.e., if there is
a bug and the device hangs or the battery dies).

The link layer defines a procedure response timeout of 40 seconds. If a response
to a link layer PDU is not received within this timeout, the connection is considered
to have been lost and the Host is notified of this connection.

Figure 8.31 LE ping procedure.

190 Link LayerLink Layer

Please note that this is quite similar to the Link Supervision Timeout used in
BR/EDR to monitor link loss. A Link Supervision Timeout Event is indicated to the
Host if no packets are received from the remote side for that duration. The default
link supervision timeout is 20 seconds for BR/EDR as compared to 40 seconds
timeout used for link layer procedures.

8.13.2 Procedure Collisions

It is possible that the Master and Slave initiate the same procedure or procedures
that update the same link layer parameters. In that case, the procedure initiated by
the Master gets priority. Therefore, if the Master has initiated or is in the process of
initiating a similar procedure as the one initiated by the Slave, the Master will reject
the procedure initiated by the Slave.

8.13.3 LE Authenticated Payload Timeout

Specifications 4.1 introduced the support of having a maximum time interval within
which an authenticated packet must be received from the peer device. An authenti-
cated packet is a packet containing a valid MIC.

If a packet is not received during this interval and the timeout is about to ex-
pire, the link layer can send a ping request (LE_Ping procedure) in order to receive
an authenticated packet from the remote side.

The default value of authenticated payload timeout is 30 seconds.

8.14 Link Layer Privacy 1.2

Since many of the LE devices are supposed to be carried or worn by people (like
shoes, watch, heart rate sensor, etc.), tracking those devices would allow a person

Figure 8.32 Data length update procedure.

8.14 Link Layer Privacy 1.2 191

to be tracked by tracking the transmissions from his or her devices. This could
compromise a person’s privacy.

Take, for example, a fitness band which is worn on the user’s wrist. Whenever it
has to transmit data to a mobile phone, it begins advertisement. The mobile phone
will receive these advertisement packets, initiate a connection, and transfer the
data. These advertisement packets can be picked up by sniffers or other malicious
devices to determine the user’s location. Thus, tracking the advertisement packets
over a period of time could be used as a mechanism with which to track the user.

The privacy feature is used to prevent the tracking of devices over a period of
time. This is done by changing the Bluetooth device address frequently. Instead
of sending out the real address in advertisement packets, a pseudo-random value
that changes over time is inserted. The information on how to resolve this random
address to know the real address of the device is known only to the peer device be-
cause it is exchanged when the devices are paired. (As explained briefly in Chapter
3, pairing is the process of associating two devices with each other and creating a
trust relationship between the two by exchange security keys. It will be covered at
length in Chapter 11.) During pairing, identity resolution keys (IRK) are exchanged
between the two devices, and only the device that has an IRK can resolve a pseu-
dorandom address to the real address. The pseudorandom addresses change at
frequent intervals that are known to both the devices.

This is an optional feature and was introduced in specification 4.0. The pro-
cessing related to privacy was done by the upper layers of the protocol stack (usu-
ally running in the Host).

One of the key enhancements introduced in specifications 4.2 is privacy at the
link layer level. This will be described in the following sections.

8.14.1 Address Resolution in the Controller Instead of the Host

Consider the previous example of a user wearing a fitness band. The address of
the fitness band keeps on changing in order to maintain privacy. When the mobile
phone receives the advertisement packet from the fitness band, the link layer (run-
ning in the Controller) can ascertain whether the packet is coming from the fitness
band by resolving that address. Therefore, the link layer passes on the information
to the Host for only the selected devices instead of all devices. In specifications 4.0,
the private addresses were generated and resolved by the Host. In specifications
4.2, the private addresses are generated and resolved by the Controller without in-
volving the Host. The Host provides the Controller with information called device
identity information; this allows the Controller to resolve the addresses.

This can lead to a huge power savings in case there are several devices around
and the Host is not interested in transmissions from all the other devices.

8.14.1.1 Device Identity and Resolving List

The Host provides the device identity information to the Controller. Thereafter, the
Controller can resolve the addresses on its own without any involvement from the
Host.

192 Link LayerLink Layer

A device identity contains the peer device’s identity address and the local and
peer’s key pair needed to resolve identities. These keys are called identity resolution
keys (IRK) and will be discussed in Chapter 11.

The Host and the Controller refer to the peer device by the identity address
when communicating with each other. This means that the Host refers to the peer
device by providing the device identity address (i.e., while creating an LE connec-
tion). If the Controller is able to resolve the peer device, it sends the device identity
address in the events (i.e., when providing an LE advertising report event).

A resolving list is a set of device identities for all bonded devices. The Host
maintains this list and provides it to the Controller. It may add or remove device
identities at any stage using the HCI commands LE_Add_Device_To_Resolving_
List and LE_Remove_Device_From_Resolving_List.

There may be cases where the Controller cannot store all the device identities.
In such cases, the Host may provide a subset of the resolving list to the controller.

8.14.2 Better Privacy

The private address of the device is used within advertisement packets and is used
by the peer device for creating connections. This address changes at periodic inter-
vals. The peer device resolves this address before initiating a connection.

8.14.2.1 Private Address Generation Interval

The link layer uses a timer to generate private addresses at periodic intervals. The
private address is generated under the following two conditions: the Link Layer is
reset or the timer expires.

Once the new address is generated, the timer is restarted. The specification
recommends the timer to be 15 minutes.

8.14.2.2 Privacy in Different States

The link layer uses the private address during advertising, scanning, and initiating
state.

Continuing the previous example, when the fitness band wants to create a
connection with the mobile phone, it sends its private address in the advertisement
packets (ADV_IND or ADV_DIRECT_IND). The mobile phone then resolves this
address, and it may send its own private address in the scanning and initiating re-
quests while also using the private address of the fitness band.

8.15 Device Filtering and White List

One of the important power savings mechanisms introduced by LE is device filter-
ing. With the use of device filtering, the link layer can be restricted to respond to
only a certain set of devices. This is done through white lists that are maintained by
the link layer. This is nothing but the set of devices that the link layer responds to
(advertisers, scanners or initiators).

8.15 Device Filtering and White List 193

The transmissions from devices that are not in the white list are simply ignored.
This reduces the number of transmissions made by the link layer thereby reducing
the power consumption of the controller. In addition to this, it also reduces the
communication the controller has with the host thereby reducing both the host’s
and controller’s power consumption.

Besides power savings, the white list also eases the host processing in use cas-
es where a host may wish to establish a connection with any one of the devices
amongst a list of devices (for example, if those devices provide similar data). At
the time of LE connection, the host can specify a list of devices to connect to using
white list. The controller connects to one of the available devices. The address to
which the connection was established is returned in the Peer_Address parameter
of LE_Connection_Complete Event. White List is very useful in such a scenario
because the host does not have to repeatedly attempt making connections to each
of the devices till the time it is able to successfully make a connection. This eases
the host processing and lowers power consumption by reducing the communica-
tion between the host and the controller. The white list is initialized to empty by
the controller at the time of reset. There are three filter policies that make use of the
white lists. These are described below.

8.15.1 Advertising Filter Policy

This policy determines how the link layer of the Advertiser processes scan and con-
nection requests.

There are four possible modes and one of these can be selected by the host by
using the HCI command HCI_LE_Set_Advertising_Parameters.

	• Process scan and connect requests only from devices in white list.

	• Process scan and connect requests from all device (White list not in use). This
is the default on reset.

	• Process scan request from all devices but connect request from only devices
in the white list.

	• Process connect request from all devices but scan request from only devices
in the white list

This policy is used only when the link layer is not using connectable directed
advertising. In the case of connectable directed advertising, the Advertiser accepts
the scan or connect request only from the device which it addresses in the advertis-
ing events. So this policy is not needed.

8.15.2 Scanner Filter Policy

This policy determines how the Scanner’s link layer processes advertising packets.
There are two possible modes and one of these can be selected by the host by using
the HCI command HCI_LE_Set_Scan_Parameters.

	• Process advertising packets only from devices in the white list.

194 Link LayerLink Layer

	• Process all advertising packets. (White list is not in use). This is the default
on reset.

As per specifications version 4.0, a connectable directed advertising packet that
did not contain the scanner’s address was ignored. This simply meant that all of the
packets that were not meant for the scanner were ignored. This is not useful if the
scanner is using a resolvable private address because whether the packet is meant
for the scanner or not would be known only after the address is resolved.

Specifications version 4.2 provided support for extended scanner filter policies.
With this, two new scanner filter policies were added:

	• Process advertising packets only from devices in the White List (same as 4.0)
and do not ignore a connectable directed advertising packet if the initia-
tor address (InitA field in ADV_DIRECT_IND PDU) is a resolvable private
address.

	• Process all advertising packets (same as 4.0) and do not ignore a connectable
directed advertising packet if the initiator address (InitA field in ADV_DI-
RECT_IND PDU) is a resolvable private address.

The default on reset is still the same as specifications 4.0—process all advertis-
ing packets and the White List is not in use.

This mechanism has strengthened the Link Layer Privacy. Now the scanner
can enable the filter policy and both the advertiser and the scanner can use the
resolvable private address of the scanner instead of using a public address. The
filter policy would enable the resolving of the address before deciding to accept or
discard the advertising PDU.

8.15.3 Initiator Filter Policy

This policy determines how the Initiator’s link layer processes advertising packets.
There are two possible modes and one of these is selected at the time of creation of
a connection using the HCI_LE_Create_Connection command.

	• Process connectable advertising packets from all devices in the white list.

	• Process connectable advertising packets from a specific single device speci-
fied by the host. (White list is not in use). This is the default on reset.

8.16 Practical Examples

Figure 8.33 shows an air log capture of the transactions happening between the link
layers of two devices to support the Proximity profile. These procedures are carried
out after a connection has been established between the two devices.

The sequence of procedures that are carried out is as follows:

8.17 Summary 195

	• Frames #676 and #677: The link layer of the Master and Slave exchange
information about the versions that they support.

	• Frames #702 to #708: These frames are used to start encryption on the link.

	• Frames #2628, #2985, #3578: The link layer of the Master provides updated
Channel Map to the Slave.

	• Frame #4785: The Slave requests the link to be terminated.

8.17 Summary

As the name suggests, the link layer is responsible for the maintenance of the link.
This includes establishing the link, selecting the frequencies, supporting different to-
pologies and disconnecting the link. LE uses a very simple architecture for link layer
with just five states. It imposes several restrictions in order to make the link layer
state machine very simple, thereby reducing both the silicon cost of implementation
as well as the power consumption.

LE uses dedicated channels for advertisement and data. The PDUs that can be
exchanged between the link layers of the two devices were explained in detail in
this chapter.

The next chapter will focus on HCI interface. The HCI interface is used by the
upper layers to interface with the link layer.

Figure 8.33 Practical example of link layer transactions.

196 Link LayerLink Layer

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth Low Energy Training and Marketing information from the Bluetooth SIG website.
http://www.bluetooth.org.

Figure 8.34 Format of various types of device addresses.

197

C H A P T E R 9

Host Controller Interface and Commands

9.1 Introduction

The host controller interface (HCI) provides a standard method of communication
between the upper and lower layers of the protocol stack. In many implementa-
tions, the upper layers generally reside on a host and the lower layers reside on a
separate Bluetooth controller chip. The HCI interface provides a communication
mechanism between the host and the Bluetooth controller. The position of HCI
interface in the LE protocol stack is shown in Figure 9.1.

The HCI was explained in detail in Chapter 3. LE reuses the specification of
the HCI layer for BR/EDR and extends it with commands related to Low Energy.
The LE controllers implement a reduced set of HCI commands and events that are
only related to Low Energy while Dual mode controllers may implement both BR/
EDR and LE commands.

Since the HCI layer is reused from the BR/EDR specification, it provides fol-
lowing major advantages:

1. All the code written for the HCI layer in BR/EDR can be reused with LE.
This means the code to transmit commands, receive events, transmit, and
receive data packets can be completely reused for LE. Only the support for
LE specific commands and events needs to be added.

2. If the controller supports dual mode, then it is fully backward compatible
with the BR/EDR controller. This means that a BR/EDR controller can be
replaced with a dual mode controller without compromising on any exist-
ing BR/EDR functionality.

3. No software change is needed when replacing a BR/EDR controller with
dual mode controller.

Before going further, it will be useful to read the sections related to Host Con-
troller Interface in Chapter 3 because those are broadly applicable to LE as well.
This chapter will provide details on the LE specific parts only.

198 Host Controller Interface and CommandsHost Controller Interface and Commands

9.1.1 HCI Packet Types

The different packet types that can be exchanged between the host and controller
on the HCI interface were explained in Chapter 3. These are described here briefly
for ease of reference. The format of HCI Command Packets and HCI ACL Data
Packets is the same in the case of LE. The format of HCI Event Packets is slightly
enhanced in the case of LE. All event packets are returned with the same event code
(LE Meta Event) and a subevent code is used to identify the exact LE event. LE
interface does not support Synchronous (SCO/eSCO) packets.

9.1.2 HCI Command Packets

The format of HCI Command packets was explained in Chapter 3. It is shown
again in Figure 9.2. It consists of a 16-bit OpCode followed by an 8-bit Parameter
Total Length field. The Parameter Total Length field specifies the total length of all
parameters that are contained in the remaining packet measured in octets. This is
followed by the command parameters. For the LE commands, the OGF (Opcode
Group Field) is set to 0x08. The OGF occupies upper 6 bits of the opcode.

9.1.3 HCI Event Packet

The format of HCI Events Packets is shown in Figure 9.3. In the case of LE, all the
events are encapsulated into one single event code called the LE Meta Event. The
event code of LE Meta Events is 0x3E.

The Subevent code is used to identify the exact LE event that was generated by
the controller. The remaining parameters depend on the type of the Subevent code.

9.1.4 HCI ACL Data Packet

The format of HCI ACL data packet is shown in Figure 9.4. All the data fields were
explained in Chapter 3 and are valid for LE as well.

Figure 9.1 HCI in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

9.2 HCI Commands and Events 199

9.2 HCI Commands and Events

The HCI commands are classified into several groups. The LE related commands
in different groups are shown in Table 9.1. The commands that are applicable only
to LE start with the HCI_LE prefix. The commands applicable to BR/EDR control-
lers as well as LE controllers start with HCI prefix. Similarly, the events specific to
LE only start with an LE prefix while the events applicable to both BR/EDR and
LE controllers do not have any prefix. LE specification tries to reuse the same HCI
commands as BR/EDR whereever possible for LE functionality as well.

Note: the HCI commands and events that have been introduced in specifica-
tions 4.1 and 4.2 have been highlighted in italics in Table 9.1.

Figure 9.3 HCI event packet and LE meta event packet formats.

Parameter
Total Length

Event
Parameter

0

Event
Parameter

1

Event
Parameter

…

Event
Code

 Sub Event
Code

Sub Event
Parameter

0

Sub Event
Parameter

…

Event
Code = 0x3E

Format of BR/EDR Event Packet Types

Format of LE Meta Event Packet Types
Used to identify the exact LE event

BIT

0 8 16 24 32

Parameter
Total Length

Figure 9.2 HCI command packet format.

OpCode

OCF OGF = 0x08

Parameter
Total Length

Parameter
0

Parameter
1

Parameter
…

BIT

0 8 16 24 32

Figure 9.4 HCI ACL data packet.

 B
C

Data Total Length Data … Handle P
B

BIT

0 8 16 24 32

200 Host Controller Interface and CommandsHost Controller Interface and Commands

Table 9.1 LE Related HCI Commands and Events
Group Commands Events

Device Setup HCI_Reset

Controller Flow
Control

HCI_Read_Buffer_Size Number_Of_Completed_Pack-
ets_Event

HCI_LE_Read_Buffer_Size

Host Flow Control HCI_Host_Buffer_Size Data_Buffer_Overflow_Event

HCI_Set_Event_Mask

HCI_Set_Controller_To_Host_Flow_Control

HCI_Host_Number_Of_Completed_Packets

HCI_LE_Add_Device_To_White_List

HCI_LE_Clear_White_List

HCI_LE_Read_White_List_Size

HCI_LE_Remove_Device_From_White_List

HCI_LE_Set_Event_Mask

HCI_LE_Add_Device_To_Resolving_List

HCI_LE_Remove_Device_From_Resolving_List

HCI_LE_Clear_Resolving_List

HCI_LE_Read_Resolving_List_Size

HCI_LE_Read_Peer_Resolvable_Address

HCI_LE_Read_Local_Resolvable_Address

HCI_LE_Set_Address_Resolution_Enable

Controller
Information

HCI_Read_Local_Version_Information

HCI_Read_Local_Supported_Commands

HCI_Read_Local_Supported_Features

HCI_LE_Read_Local_Supported_Features

HCI_LE_Read_Supported_States

HCI_LE_Read_Maximum_Data_Length

Remote Information HCI_Read_Remote_Version_Information Read_Remote_Version_Informa-
tion_Complete

HCI_LE_Read_Remote_Used_Features LE_Read_Remote_Used_Features_
Complete

Controller
Configuration

HCI_LE_Set_Advertise_Enable

HCI_LE_Set_Advertising_Data

HCI_LE_Set_Advertising_Parameters

HCI_LE_Set_Random_Address

HCI_LE_Set_Scan_Response_Data

HCI_Read_LE_Host_Support

HCI_Write_LE_Host_Support

HCI_LE_Set_Resolvable_Private_Address_
Timeout

Device Discovery HCI_LE_Set_Scan_Enable LE_Advertising_Report_Event

HCI_LE_Set_Scan_Parameters LE_Direct_Advertising_Report_
Event

Connection Setup HCI_Disconnect Disconnect_Complete_Event

HCI_LE_Create_Connection_Cancel LE_Connection_Complete_Event

HCI_LE_Create_Connection LE_Enahanced_Connection_Com-
plete_Event

9.2 HCI Commands and Events 201

This section explains the various LE commands very briefly. The Bluetooth
specification may be referred for a detailed explanation including the parameters
of each command and event and the significance of each parameter.

Some of the HCI commands and events are explained in further details below.

9.2.1 Device Setup

The device setup commands are used to initialize the controller and put it in a
known state. Generally these are among the first commands sent to the controller.

There is only one command in this group for LE:

	• HCI_Reset: This command is used to reset the controller. It also resets the
link layer and puts it in the standby state with default values for all param-

Table 9.1 (continued)
Group Commands Events

Connection State HCI_LE_Connection_Update LE_Connection_Update_Com-
plete_Event

HCI_LE_Remote_Connection_Parameter_Re-
quest_Reply

LE_Remote_Connection_Param-
eter_Request_Event

HCI_LE_Remote_Connection_Parameter_Re-
quest_Negative_Reply

LE_Set_Data_Length LE_Data_Length_Change_Event

LE_Read_Suggested_Default_Data_Length_
Command

LE_Write_Suggested_Default_Data_Length_
Command

Physical Links HCI_LE_Set_Host_Channel_Classification

Link Information HCI_Read_Transmit_Power_Level

HCI_Read_RSSI

HCI_LE_Read_Advertising_Channel_Tx_Power

HCI_LE_Read_Channel_Map

Authentication and
Encryption

HCI_LE_Encrypt Encryption_Change_Event

HCI_LE_Long_Term_Key_Request_Reply Encryption_Key_Refresh_Com-
plete_Event

HCI_LE_Long_Term_Key_Request_Nega-
tive_Reply

LE_Long_Term_Key_Requested_
Event

HCI_LE_Rand

HCI_LE_Start_Encryption

HCI_Write_Authenticated_Payload_Timeout Authenticated_Payload_Timeout_
Expired_Event

HCI_Read_Authenticated_Payload_Timeout

HCI_LE_Read_Local_P-256_Public_Key LE_Read_Local_P-256_Public_
Key_Complete_Event

LE_Generate_DHKey LE_Generate_DHKey_Complete_
Event

Testing HCI_LE_Receiver_Test

HCI_LE_Transmitter_Test

HCI_LE_Test_End

202 Host Controller Interface and CommandsHost Controller Interface and Commands

eters for which default values are defined. Once the reset of the controller is
complete, it sends back a Command_Complete_Event event back to the host.

9.2.2 Controller Flow Control

The controller flow control commands and events are used to control the data flow
from the host to the controller. The buffers in the controller can either be separate
for BR/EDR and LE or combined.

	• If the buffers are separate, then the HCI_LE_Read_Buffer_Size command
returns the number of LE buffers and HCI_Read_Buffer_Size returns the
number of BR/EDR buffers.

	• If the buffers are shared, then HCI_LE_Read_Buffer_Size returns 0 as the
length of ACL data packets and HCI_Read_Buffer_Size is used to read the
number of shared buffers.

Some of the commands and events in this group are:

	• HCI_Read_Buffer_Size: This command is used at the time of initialization
to find out the number of ACL data packet buffers in the controller, size of
each buffer etc. The host can send as many data packets to the controller as
the number of buffers reported by the controller. Then it has to wait for a
Number_Of_Completed_Packets_Event to find out how many packets were
processed. This gives an indication of how many buffers in the controller got
freed up. After that it can send those many more ACL data packets.

	• HCI_LE_Read_Buffer_Size: This command is used to find out the total num-
ber of LE ACL data buffers in the controller and the maximum size of each
buffer.

	• Number_Of_Completed_Packets_Event: This event is sent by the controller
to indicate the number of packets that it has processed (either transmitted or
flushed). This indicates to the host that those buffers have been emptied and
the host can send more data to the controller. This provides a flow control
mechanism between the host and the controller.

The Host to Controller Data Flow Control was explained in Chapter 3 for BR/
EDR. The Data Flow Control for LE is also similar. This is shown in Figure 9.5.

During initialization the host sends the HCI_LE_Read_Buffer_Size command
to the controller to get information about the LE buffers in the controller. The con-
troller returns the following parameters:

1. Size of each LE ACL buffer (HC_LE_ACL_Data_Packet_Length).
2. Number of LE ACL buffers (HC_Total_Num_LE_ACL_Data_Packets).

If the controller returns the first parameter as 0, then it means that the control-
ler is using shared ACL buffers for BR/EDR and LE. Subsequently, the HCI_Read_
Buffer_Size command can be used to find the length and number of these shared
buffers. Once the host has information on the number of ACL buffers, it knows

9.2 HCI Commands and Events 203

that at any given time, it can have a maximum of that many packets outstanding
(to be processed) on the controller side. For example if the Number of ACL buffers
was four, then the host can have a maximum of four packets outstanding on the
controller side.

The host maintains a count of the number of ACL buffers available in the
controller. It initializes this value to the number of ACL buffers it received in the
response to Read Buffer Size command. After that, every time it sends a packet to
the controller, it decreases this count by one. Once the controller has completed
processing one or more packets, it sends that count in the Number of Completed
Packets event. The host knows that some additional buffers have been freed up on
the controller side and it increases its count by the number of packets reported in
the Number of Completed Packets event.

9.2.3 Host Flow Control

The host flow control commands and events allow the flow control to be used to-
wards the host. In most implementations host flow control is not used. This may
still be used if the host has a slow processor or limited memory space.

The following commands are included in this category:

	• Host_Buffer_Size_Command: This command is used by the host to provide
the controller information about the data buffers present in the host.

Figure 9.5 Host to controller data flow control.

Packets
Transmitted on
LE-U logical link

Number of Completed
Packets Event

Host Controller

HCI LE Read Buffer Size
HCI Read Buffer Size

LE ACL Buffer Size, Number
of LE buffers

HCI ACL Data Packet

Initialize count
of buffers to
Number of buffers

Decrement count
by number of
packets sent to
the controller.

If count > 0

Increment count
by number of
packets reported
as processed
by the controller

Separate Buffers

Shared Buffers

204 Host Controller Interface and CommandsHost Controller Interface and Commands

	• Set_Controller_To_Host_Flow_Control_Command: This command is used
to turn the flow control on and off for the data flowing from the controller
to the host.

	• Host_Number_Of_Completed_Packets_Command: This command is used
by the host to indicate to the controller the number of packets that it has
processed. The controller can use this information to send additional packets
to the host.

	• Data_Buffer_Overflow_Event: This event is used by the controller to indi-
cate that its data buffers have overflowed because the host has sent more
packets than the number of free buffers in the controller.

	• Set_Event_Mask: This command is used to configure which events are gener-
ated by the controller for the host.

The following commands for the white list are also included in this category:

	• HCI_LE_Read_White_List_Size: This command is used to read the total
number of white list entries that can be stored in the controller.

	• HCI_LE_Clear_White_List: This command is used to clear the whole white
list.

	• HCI_LE_Add_Device_To_White_List: – This command is used to add a de-
vice to the white list.

	• HCI_LE_Remove_Device_From_White_List: This command is used to re-
move a device from the white list.

The white lists were explained in Chapter 8 and some of the use case scenarios
of white lists are shown at the end of this chapter.

As explained in Chapter 8, specifications 4.2 allowed the address resolution to
happen in the Controller instead of the Host. In order to perform this resolution,
the Host needs to provide details of the peer address to the Controller so that the
Controller can perform the address resolution independently. The Controller stores
this information in the resolving list. The commands related to resolving list are:

	• HCI_LE_Add_Device_To_Resolving_List: This command is used to add a
peer device to the resolving list. The information added includes the identity
address of the peer device and the identity resolution key (IRK) of the local
and peer device.

	• HCI_LE_Remove_Device_From_Resolving_List: This command is used re-
move a peer device from the resolving list.

	• HCI_LE_Clear_Resolving_List: This command is used to remove all devices
from the resolving list.

	• HCI_LE_Read_Resolving_List_Size: This command is used to read the total
number of peer devices entered into the resolving list.

	• HCI_LE_Read_Peer_Resolvable_Address: This command is used to read the
resolvable address of the peer that is currently being used by the controller.
The peer’s address may change over time because the private addresses keep

9.2 HCI Commands and Events 205

changing. This command provides the identity address as an input parameter
and receives back the currently used resolvable address in the response.

	• HCI_LE_Read_Local_Resolvable_Address: This command is used to read
the local resolvable private address being used by the controller for a par-
ticular peer device.

	• HCI_LE_Set_Address_Resolution_Enable: This command is used to enable
or disable address resolution in the Controller. The default value on reset is
address resolution disabled.

Typical usage of these commands is shown in Figure 9.6.

Figure 9.6 Typical usage of resolving lists.

206 Host Controller Interface and CommandsHost Controller Interface and Commands

9.2.4 Controller Information

The controller information commands are used by the host to find out the informa-
tion about the controller.

Some of the commands in this category are:

	• HCI_Read_Local_Version_Information: This command reads the values of
version information from the controller. It can be used to detect whether the
controller supports LE functionality or not.

	• HCI_Read_Local_Supported_Command: This command reads a bit mask
indicating which of the HCI commands are supported by the controller.

	• HCI_Read_Support_Features_Command: This command reads a bit mask
indicating which of the features are supported by the controller.

	• HCI_LE_Read_Support_Features_Command: This command reads a bit
mask indicating which of the LE features are supported by the controller. At
present it contains only one bit indicating whether the controller supports
encryption or not. It may be extended in further versions of the specification.

	• HCI_LE_Read_Supported_States: This command is used to retrieve the set of
states and state combinations that the controller supports. For example this
command is used to know whether directed advertising state is supported.

As explained in Chapter 8, specifications 4.2 allowed LE data packet exten-
sions. This provided support of packet size of up to 251 bytes. The following HCI
command was added to allow the Host to read the maximum supported payload
length:

	• HCI_LE_Read_Maximum_Data_Length: This command is used to read the
maximum size of transmit and receive PDUs at the link layer and the maxi-
mum time duration the Controller supports for transmission or reception of
a link layer PDU.

9.2.5 Remote Information

The remote information commands and events allow the device to find out infor-
mation about the remote device’s configuration.

Some of the commands and events in this category are:

	• HCI_LE_Read_Remote_Used_Features: This command requests a list of
used features from the remote device. At present the used features bit mask
only provides information whether encryption is supported on the remote
side or not.

	• LE_Read_Remote_Used_Fetures_Complete: This event is generated once the
reply from the remote side is received. It reports back to the host the bitmap
of features that the remote side supports.

9.2 HCI Commands and Events 207

9.2.6 Controller Configuration

The controller configuration commands are used by the host to configure the
controller.

Some of the commands in this category are:

	• HCI_LE_Set_Advertise_Enable: This command is used to request the con-
troller to start or stop advertising.

	• HCI_LE_Set_Advertising_Data: This command is used to set the data used
in advertising packets. A maximum of 31 bytes of advertising data can be
included.

	• HCI_LE_Set_Advertising_Parameters: This command is used to set various
parameters related to advertising like the type of advertising, which channels
to advertise on, minimum and maximum advertising interval, etc.

	• HCI_LE_Set_Random_Address: This command is used to set the random
address.

	• HCI_LE_Set_Scan_Response_Data: This command is used to provide data
in scanning packets.

	• HCI_Read_LE_Host_Support: This bit is used to read the current setting of
the following two bits in the controller:

•	 LE_Supported_Host.

•	 Simultaneous LE and BR/EDR to same device capable host.

	• HCI_Write_LE_Host_Support: This bit is used to indicate that the host sup-
ports LE and whether it supports simultaneous LE and BR/EDR links to the
same device. The local host sets these bits in the controller to indicate to
remote devices about its LE capabilities:

•	 LE_Supported_Host.

•	 Simultaneous LE and BR/EDR to same device capable host.

As explained in Chapter 8, specifications 4.2 allowed the private address to be
generated periodically. The following command was introduced to support:

	• HCI_LE_Set_Resolvable_Private_Address_Timeout: This command is used
to specify the time a particular resolvable private address is used before a
new one is generated. The default value is 15 minutes, though it can be as
low as every 1 second to as high as every 11.5 hours, depending on the level
of privacy protection required.

9.2.7 Device Discovery

The device discovery commands and events allow the device to discover other de-
vices in the vicinity.

Some of the commands and events in this group are:
	• HCI_LE_Set_Scan_Enable: This command is used to enable and disable

scanning. Scanning is used to discover devices in the vicinity.

208 Host Controller Interface and CommandsHost Controller Interface and Commands

	• HCI_LE_Set_Scan_Parameters: This command is used to set the parameters
like scan type, scan interval, etc.

	• HCI_LE_Advertising_Report_Event: This event is used to indicate to the
host that an advertising report has been received. Multiple reports can be
sent in one single event.

Specifications 4.2 introduced another event:

	• HCI_LE_Direct_Advertising_Report_Event: This event indicates that a di-
rected advertisement has been received from a peer device that is using a
resolvable private address of the local device.

9.2.8 Connection Setup

The connection setup commands and events allow a device to make a connection
to another device.

Some of the commands and events in this group are:

	• HCI_LE_Create_Connection: This command is used to create a connection
to an Advertiser which is connectable.

	• LE_Connection_Complete_Event: This event is received on both the Master
and Slave side once a connection has been created.

	• HCI_Disconnect: This command is used to terminate an existing connection.

	• Disconnection_Complete_Event: This event is used to indicate that a connec-
tion has been terminated.

Specifications 4.2 introduced an enhanced connection complete event:

	• HCI_LE_Enhanced_Connection_Complete_Event: This event indicates that
a new connection has been created and is received by Hosts of both the lo-
cal side and peer side on connection establishment. This event contains ad-
ditional information about the local and peer resolvable private addresses.

9.2.9 Connection State

The connection state commands and events allow the host to configure the link.
Some of the commands and events in this group are:

	• HCI_LE_Connection_Update: This command is used to change the param-
eters related to a connection, like connection interval, supervision timeout,
etc.

	• LE_Connection_Update_Complete_Event: This event is used to indicate to
the host that the parameters related to a connection have been changed.

Specifications 4.1 introduced additional commands and events related to con-
nection parameters update:

9.2 HCI Commands and Events 209

	• HCI_LE_Remote_Connection_Parameter_Request_Event: This event is used
to indicate to the Host that the remote device is requesting a change to the
connection parameters.

	• HCI_LE_Remote_Connection_Parameter_Request_Reply: This command is
used by the Host to reply to HCI_LE_Remote_Connection_Parameters_Re-
quest_Event to accept the changes to the connection parameters provided by
the remote device.

	• HCI_LE_Remote_Connection_Parameter_Request_Negative_Reply: This
command is used by the Host to reply to HCI_LE_Remote_Connection_Pa-
rameters_Request_Event to reject the changes to the connection parameters
provided by the remote device.

Specifications 4.2 introduced commands and events to support LE data packet
extensions. These are:

	• HCI_LE_Write_Suggested_Default_Data_Length_Command: This com-
mand is used by the Host to specify its preferred values for maximum trans-
mission size and maximum transmission time for all new connections that
will be established in the future.

	• HCI_LE_Read_Suggested_Default_Data_Length_Command: This com-
mand is used by the Host to read its preferred values for maximum transmis-
sion size and maximum transmission time to be used for all new connections.

	• HCI_LE_Set_Data_Length: This command is used by the Host to suggest the
preferred maximum transmission packet size and length for a particular con-
nection. In comparison to the previous command, this one is used to specify
the data length for a particular connection. The Controller may use a differ-
ent value than what is suggested by the Host based on certain parameters.

	• HCI_LE_Data_Length_Change_Event: This event is used by the Controller
to indicate to the Host about a change in the maximum transmission size or
maximum transmission time.

9.2.10 Physical Links

The physical link commands and events allow the configuration of a physical link.
There is only one command related to LE in this group:

	• HCI_LE_Set_Host_Channel_Classification: This command is used by the
host to provide a channel map to the controller. The channel map indicates
to the controller which of the 37 data channels it can use.

9.2.11 Link Information

The link information commands and events allow the host to read information
about a link.

Some of the commands in this group are:

210 Host Controller Interface and CommandsHost Controller Interface and Commands

	• HCI_Read_Transmit_Power_Level: This command is used by the host to get
the value of the transmit power level used to transmit for a given connection
handle.

	• HCI_Read_RSSI: This command reads the Received Signal Strength Indica-
tor (RSSI) value from a controller.

	• HCI_LE_Read_Advertising_Channel_Tx_Power: This command is used to
read the transmit power level that is used for advertising channel packets.

	• HCI_LE_Read_Channel_Map: This command is used to read the current
channel map used for the specified connection handle.

9.2.12 Authentication and Encryption

The authentication and encryption commands and events allow authentication of a
remote device and then encryption of a link.

Some of the commands and events in this group are:

	• HCI_LE_Encrypt: This command is used by the host to request the control-
ler to encrypt some data. The host provides the key and data to be encrypted.
The controller encrypts the data and returns the encrypted data in a com-
mand complete event.

	• HCI_LE_Long_Term_Key_Requested_Event: This event is used by the con-
troller to request the Long Term Key from the host.

	• HCI_LE_Long_Term_Key_Request_Reply: This command is used by the
host to provide the Long Term Link Key.

	• HCI_LE_Long_Term_Key_Request_Negative_Reply: This command is used
by the host to refuse to provide the Long Term Link Key.

	• HCI_LE_Rand: This command is used by the host to request to the control-
ler to generate an 8 octet random data and send to the host.

	• HCI_LE_Start_Encryption: This command is used to request the controller
to encrypt a connection.

	• Encryption_Change_Event: This event is used to indicate that the change of
encryption mode has been completed.

	• Encryption Key_Refresh_Complete_Event: This event is used to indicate
to the host that the encryption key was refreshed on the given connection
handle.

As described in Chapter 8, specifications 4.1 introduced the support of having
a maximum time interval wherein an authenticated packet must be received from
the peer device. The commands and events related to this feature are:

	• HCI_Write_Authenticated_Payload_Timeout: This command is used to set
the authenticated payload timeout for a particular connection.

	• HCI_Read_Authenticated_Payload_Timeout: This command is used to read
the Authenticated Payload Timeout for a particular connection.

9.2 HCI Commands and Events 211

	• Authenticated_Payload_Timeout_Expired_Event: This event is used to in-
dicate that a packet containing a valid message integrity check (MIC) was
not received from the peer side in the specified timeout. This command can
be used in conjunction with the LL_Ping request (refer to Section 8.12.8) to
solicit a MIC-enabled packet from the remote device

Specifications 4.2 introduced the secure connections feature and upgraded LE
pairing to use FIPS-approved algorithms, including AES-CMAC and P-256 elliptic
curve. The additional HCI commands and events to support this higher security
are:

	• HCI_LE_Read_Local_P-256_Public_Key: This command is used to return
the local P-256 public key from the Controller. The Controller generates a
new P-256 public/private key pair and returns it to the Host.

	• HCI_LE_Read_Local_P-256_Public_Key_Complete_Event: This event is
generated once the Controller finishes the generation of the P-256 key pair.
It returns the local P-256 public key.

	• LE_Generate_DHKey: This command is used to initiate the generation of a
Diffie-Hellman key. The P-256 key of the peer device is provided as an input
to generate the Diffie-Hellman key.

	• LE_Generate_DHKey_Complete_Event: This event is used to indicate that
the Diffie-Hellman key has been generated by the controller. It returns the
DHKey.

9.2.13 Testing

The testing commands allow the controller to be put in a special test mode so that
testing can be performed. These consist of commands to test the receiver and the
transmitter.

Some of the commands in this group are:

	• HCI_LE_Receiver_Test: This command is used to test receiver functionality
of the device. The remote tester generates reference test packets which are
received by the receiver.

	• HCI_LE_Transmitter_Test: This command is used to request the controller
to start transmitting test reference packets. The remote tester can read and
verify these packets.

	• HCI_LE_Test_End: This command is used to stop any test which is in
progress.

9.2.14 Usage of White Lists

The commands to reset and set the devices in the white list were described earlier.
Once a white list has been set, the following commands are used to enable the use
of white list:

212 Host Controller Interface and CommandsHost Controller Interface and Commands

	• The HCI_LE_Set_Advertising_Parameters command takes the parameter
Advertising_Filter_Policy which is used to select whether to allow scan and
connect requests from all devices or just the devices present in White List.

	• The HCI_LE_Set_Scan_Parameters command takes the parameter Scan-
ning_Filter_Policy which is used to select whether to accept advertising pack-
ets from all devices or just devices present in the white list.

	• The HCI_LE_Create_Connection command takes the parameter Initiator_
Filter_Policy which is used to determine which Advertiser to connect to.

Figure 9.7 Typical sequence for passive scanning.

Host Controller

Controller Host

Device A Device B

Link Layer State: Standby Link Layer State: Standby

Set Advertising
Parameters

HCI_LE_Set_Advertising_
Parameters (Advertising_Type
= Connectable_Undirected

Set Advertising Data

HCI_LE_Set_Advertis
ing_Data

Enable Advertising

HCI_LE_Set_Advertise_Enable
(Advertising_Enable = 1)

LL State: Advertising

ADV_IND

ADV_IND

ADV_IND

Advertising Report

LE_Advertising_
Report_Event

Set Scan
Parameters

HCI_LE_Set_Scan_P
arameters

(LE_Scan_Type=
0x00 for passive

scanning)

Enable Scanning
LE_Set_Scan_Enable

Link Layer State: Scanning

9.3 Practical Sequence Diagrams 213

9.3 Practical Sequence Diagrams

This section provides sequence diagrams for some of the commonly used proce-
dures. The interaction of the link layer with the host, along with the corresponding
HCI Commands and Events, is also shown to provide the complete view on how
each of the procedures are used in practical scenarios. In the interest of simplicity,

Figure 9.8 Typical sequence for active scanning.

Host Controller Controller

Device A Device B

Link Layer State: Standby Link Layer State: Standby

Set Advertising
Parameters

HCI_LE_Set_Advertis
ing_Parameters

(Advertising_Type =
Connectable_Undirect

ed or
Scannable_Undirected
Set Advertising Data

HCI_LE_Set_Advertising_Data

Enable Advertising

HCI_LE_Set_Advertise_Enable
(Advertising_Enable = 1)

ADV_IND or
ADV_SCAN_IND

SCAN_REQ

SCAN_RSP
Advertising Report

LE_Advertising_Report_Event

Set Scan
Parameters

HCI_LE_Set_Scan_P
arameters

(LE_Scan_Type=
0x01 for active

scanning)

Enable Scanning

LE_Set_Scan_Enable

Link Layer State: Scanning

LL State: Advertising

Host

214 Host Controller Interface and CommandsHost Controller Interface and Commands

the command status and command complete events are not shown. These will also
be generated when these commands are sent out in practice.

9.3.1 Passive Scanning

A typical sequence for passive scanning is shown in Figure 9.7.

9.3.2 Typical Sequence for Active Scanning

A typical sequence for active scanning is shown in Figure 9.8.

Figure 9.9 Typical sequence for connection establishment.

Host Controller

Controller

Host

Device A Device B

Link Layer State: Standby Link Layer State: Standby

Set Advertising
Parameters

HCI_LE_Set_Advertising_
Parameters

(Advertising_Type =
Connectable_Undirected

Set Advertising Data

HCI_LE_Set_Advertising_Data

Enable Advertising

HCI_LE_Set_Advertise_Enable
(Advertising_Enable = 1)

LL State: Advertising

ADV_IND

CONNECT_REQ
Connection Complete

Create Connection

HCI_LE_Create_Connection

Link Layer State: Initiating

Connection Complete

LE_Connection_Complete_Event

Link Layer State:
Connection (Master)

Link Layer State:
Connection (Slave)

Data Channel PDU

Data Channel PDU

LE_Connection_Complete_Event

9.4 Summary 215

9.3.3 Connection Establishment

A typical sequence for connection establishment is shown in Figure 9.9.

9.3.4 Setting up White list

Figure 9.10 shows a typical sequence for setting up a white list and then various
scenarios in which a white list may be used.

9.4 Summary

The host controller interface provides a communication interface between the up-
per layers and lower layers. LE specification has reused the HCI layer and enhanced
it to add support for LE related commands and events. This chapter explained
many of the LE related commands and events. It also provided sequence diagrams
for some of the typical use cases of LE.

This chapter completes the information about the LE lower layers. Subsequent
chapters will focus on the LE upper layers and profiles.

Figure 9.10 Usage of White Lists.

Host Controller

Add Device(s)

HCI_LE_Add_Device_To_White_List

White list initialized to empty at the time of reset

HCI_LE_Set_Advertising_Parameters

Allow Scan/Connect requests from selected devices

HCI_LE_Set_Scan_Parameters

Allow advertising packets from selected devices

HCI_LE_Create_Connection

Connect to one of the advertisers in the white list

Usage 1

Usage 2

Usage 3

216 Host Controller Interface and CommandsHost Controller Interface and Commands

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.

217

C H A P T E R 1 0

Logical Link Control and Adaptation
Protocol (L2CAP)

10.1 Introduction

The Logical Link Control and Adaptation Protocol (L2CAP) layer acts as an in-
terface between the higher layer protocols and the lower layers. The position of
L2CAP in the LE protocol stack is shown in Figure 10.1.

L2CAP for BR/EDR was explained in detail in Chapter 4. LE reuses the L2CAP
functionality of BR/EDR and simplifies the functionality in a major way to make it
suitable for LE devices. A significant part of the L2CAP functionality is not needed
for LE devices. That functionality has been removed in order to keep the implemen-
tation small and simple.

The Bluetooth specification defines the HCI interface as an optional interface.
In case of systems which include the HCI interface, the L2CAP layer uses the HCI
layer to send data by encapsulating it into HCI ACL Data packets. In the systems
in which the HCI layer is not present, the L2CAP layer invokes the functionality
of Link Layer directly (maybe through some API mechanism) to send the packets.

Before going further, it will be useful to read the sections related to L2CAP in
Chapter 4 because those are broadly applicable to LE as well. This chapter will
provide details on the LE specific modifications to L2CAP.

10.2 PDU and SDU

An SDU (Service Data Unit) is a packet that contains data originating from the up-
per layers (For example Attribute protocol). The L2CAP entities transfer this SDU
transparently from the upper layer of one side to the upper layer of the other side.

A PDU (Protocol Data Unit) is a packet containing L2CAP protocol informa-
tion and may contain data from upper layers as well (SDU). So an SDU will be en-
capsulated into an L2CAP PDU before transmitting to the remote side. The remote
side L2CAP will extract the header information and provide the SDU to the upper
layers on the remote side. All SDUs are encapsulated into one or more L2CAP
PDUs. The PDU and SDU are illustrated in Figure 10.2.

218 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

10.3 Basic Assumptions

The L2CAP protocol is designed with the following basic assumptions about the
controller:

1. The packets are delivered in the correct sequence by the controllers on both
sides. This means that the packet which was transmitted first by the host on
the transmitter side will be received first by the host on the receiver side.

2. Only one LE-U logical link exists between the two devices.
3. The controllers provide a degree of reliability by including error detection,

and retransmission mechanisms.
4. The controllers provide flow control mechanisms for data going over the

air as well as data going over the HCI transport layer. This ensures that
data does not get overwritten at any stage.

10.4 Maximum Transmission Unit (MTU)

The MTU is used to inform the other side the maximum size of SDU it is capable
of accepting. The minimum MTU for LE is 23 octets. This means that an LE device
will certainly receive a packet of 23 octets, but, it may receive a bigger packet as
well. It is possible that the two devices which are connected may have different

Figure 10.1 L2CAP in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

Figure 10.2 L2CAP PDU and SDU.

Attribute Protocol

L2CAP

Attribute Protocol

L2CAP

Device BDevice A

L2CAP PDU

SDU SDU

Maximum size depends on MTU

10.5 L2CAP Features 219

MTU sizes. The sender always keeps the MTU size of the receiver in mind when
sending a packet and does not exceed that MTU size. In case the sender transmits
a packet that exceeds the MTU size of the receiver, the receiver sends back a Com-
mand_Reject to indicate that it cannot accept this packet.

The minimum supported MTU for LE is much smaller than that of BR/EDR.
In the case of BR/EDR, the minimum supported MTU is 48 octets if extended flow
specification is not supported and 672 if extended flow specification is supported.
The smaller MTU size of 23 octets in the case of LE helps to keep the packet sizes
of LE smaller, thus, leading to savings of buffer space needed for transmit/receive
and the power consumed in exchanging the packets.

10.5 L2CAP Features

Similar to BR/EDR, L2CAP provides the abstraction of channels to layers on top of
it. It provides the following features:

1. Fixed Channel Identifiers.
2. Fragmentation and Defragmentation of data.
3. Multiplexing and Demultiplexing of various channels over a shared logical

link (LE-U).

10.5.1 Fixed Channel Identifiers

As explained in Chapter 4, L2CAP is based on the concept of channels. A chan-
nel identifier (CID) is a local name representing a logical channel end point on the
device. All channels going over an LE physical link are mapped to a single LE-U
logical link.

In the case of BR/EDR, CID 0x0001 is fixed for signaling and CID 0x0002 is
fixed for connectionless data. The remaining CIDs are dynamically allocated. So,
for example, if SDP layer wants to create a connection, L2CAP dynamically assigns
a CID to it.

In the case of LE, the CID assignment is simplified by using only fixed CIDs.
The fixed CIDs for LE are shown in Table 10.1. CID 0x0005 is fixed as the L2CAP
signaling channel. Only two protocols can use the services of L2CAP layer in the
case of LE, viz Attribute Protocol and Security Manager Protocol. Both of these are
assigned fixed CIDs. This is very much simplified as compared to BR/EDR where
the CIDs for various protocols are allocated dynamically.

All these channels are available as soon as the LE-U logical link is setup. The
higher layers can start sending data to L2CAP for these channels that is transmitted
to the remote device. So ATT protocol can send data over CID 0x0004 as soon as

Table 10.1 CID Name Space for LE
CID Description

0x0004 Attribute Protocol. Attribute Protocol will be covered in detail in later chapters.

0x0005 LE L2CAP Signaling Channel.

0x0006 Security Manager Protocol (SMP). SMP will be covered in detail in later chapters.

220 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

the link layer creates a connection to the remote device. This is much simpler than,
for example, SDP sending data over L2CAP in the case of BR/EDR. In the case of
BR/EDR the Connect and Configure signals need to be exchanged between the two
devices to establish an L2CAP connection before any data can be sent. This is one
of the significant enhancements made in LE toward faster connection setup time.
The number of PDUs exchanged between the two devices to setup the connection
before transferring higher layer data is reduced to zero in the case of L2CAP.

Specifications 4.1 defined additional CID name space to support credit based
flow control. This is shown in Table 10.2

10.5.2 Fragmentation and Defragmentation of Data

L2CAP allows higher layer protocols to send bigger chunks of data to it even
though the LE PDUs at the link layer are restricted to much smaller sizes. In such
cases, L2CAP fragments the data according to the size of the ACL buffers that are
present for LE in the controller before sending it to the controller for transmission.
At the time of reception, L2CAP re-assembles the data to reconstruct the original
packet that was sent by the higher layers. It then sends the reconstructed packet to
the higher layers.

10.5.3 Channel Multiplexing

As shown in Table 10.1, three L2CAP channels are defined in the case of LE:

1. ATT with CID = 0x0004.
2. SMP with CID = 0x0006.

Figure 10.3 Channel multiplexing.

L2CAP

ATT
CID = 0x0004

SMP
CID = 0x0006

LE Controller

LE-U Logical Link

L2CAP Signaling
CID = 0x0005

Table 10.2 Additional CID Name Space for LE Specifications 4.1 Onwards
CID Description

0x0020–0x003E As per SIG assigned numbers page

0x0040–0x007F Dynamically allocated during credit based connection
mechanisms

10.6 Data Packets 221

3. L2CAP’s own signaling channel with CID = 0x0005.

L2CAP performs the multiplexing and demultiplexing of these three channels
on top of the shared LE-U logical link. This means that it accepts data from these
three channels and multiplexes it on the shared link at the time of transmitting. At
the time of receiving, it demultiplexes the data and provides the data to the appro-
priate higher layer entity.

As shown in Table 10.3, additional L2CAP channels were defined starting from
specifications 4.1. Channels are assigned numbers with CID 0x0020–0x003E and
dynamically allocated channel numbers with CID 0x0040–0x007F.

10.6 Data Packets

As mentioned in Chapter 4, L2CAP supports five modes of operation for BR/EDR.

	• Basic L2CAP Mode (used in LE as well);

	• Flow Control Mode;

	• Retransmission Mode;

	• Enhanced Retransmission Mode;

	• Streaming Mode.

Out of these five modes of operation, only the Basic Mode is used for LE. The
PDU that is exchanged in the Basic L2CAP Mode is also referred to as a B-Frame.
The format of B-Frame is shown in Figure 10.4.

The Length field indicates the size of the information payload. It can go up to
65535 bytes and is used during recombination when the different fragments are
reassembled at the receiver side to reconstruct the whole packet. The Channel ID is
0x0004 for ATT and 0x0006 for SMP. The Information Payload contains the high-
er layer data. So in the case of LE it contains the data that is sent by ATT or SMP.

As compared to BR/EDR, L2CAP supports only the Basic L2CAP mode. This
simplifies the design of the L2CAP layer to a large extent while still not compromising

Figure 10.4 LE L2CAP data packet format (B-Frame).

MSBLSB
Length

(2 octets)
Information PayloadChannel ID

(2 octets)

Table 10.3 L2CAP Parameters for ATT and SMP
Parameter Value

MTU 23

Flush Timeout 0xFFFF (Infinite)

Quality of Service Best Effort

Mode Basic Mode

222 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

on the functionality required by the layers that sit on top of L2CAP(ATT and
SMP). This is another major step towards decreasing the cost and power consump-
tion of LE devices.

Specifications 4.1 defined an additional mode of operation for LE, known as
LE credit-based flow control mode.

The LE credit-based flow control mode is used for L2CAP data on connection
oriented channels. It uses a credit based scheme that will be explained in Sections
10.8 and 10.9. It is not used for signaling packets.

The LE connection-oriented channels and LE credit-based flow control mode
are heavily used by Internet protocol support profile (IPSP) to allow Bluetooth de-
vices to connect to the Internet through gateways. This will be explained in detail
in Chapter 15.

10.7 L2CAP Parameters

Table 10.2 shows the L2CAP Parameters that are used by both ATT and SMP.
A Flush Timeout of 0xFFFF means that the baseband continues to do retrans-

missions until the link is dropped if the packet is not acknowledged.
LE requires only Best Effort service. This means that there is no guarantee that

the data will be received by the remote side. (In the case of BR/EDR, L2CAP also
supports Guaranteed QoS option which guarantees a specific amount of bandwidth
for the particular L2CAP channel. This option is not supported in the case of LE.)

10.8 L2CAP Signaling

As shown in Table 10.1 LE uses channel 0x0005 as the Signaling channel. The sig-
naling channel is available as soon as the lower layer logical transport is set up and
L2CAP traffic is enabled. The commands on the signaling channel are in the form
of requests and responses.

LE simplifies the procedure for sending commands on the signaling channel.
While on the BR/EDR signaling channel (0x0001) multiple commands can be sent
within a single PDU, in the case of LE signaling channel (0x0005) only one com-
mand can be sent per PDU. This makes the logic for decoding the packets simpler
on the receiving L2CAP entity.

The PDUs that contain L2CAP signaling messages are known as C-Frames
(Control Frames). These are used only on the L2CAP Signaling channel. The for-
mat of C-frames is shown in Figure 10.5.

The code identifies the type of command that is being sent on the Signaling
channel. The commands that are allowed on LE Signaling channel are shown in
Table 10.4. This list is much smaller than the number of commands that are sup-
ported on the BR/EDR signaling channel. This allows the LE software to be simpler
in terms of the number of commands that it needs to process. The LE credit-based
flow control request, LE credit-based flow control response, and LE flow control
credit commands were introduced in the specifications 4.1 to support credit-based
flow control for connection-oriented channels. These are shown in italics in Table
10.3

10.8 L2CAP Signaling 223

The identifier field is used to match the responses with the requests. This field
is set by the requesting device and the responding device uses the same value while
responding. When the requesting device receives the response back, it can identify
which request that response is for. The length field indicates the size of the Data
field. The Data field is variable in length and the size depends on the command that
is being sent.

10.8.1 Command Reject

The command reject PDU is sent as a response if the command code was not identi-
fied or the length was incorrect. It contains a reason field to indicate why the packet
was rejected. The reason can be any of the following:

	• Command not understood;

	• Signaling MTU exceeded;

	• Invalid CID in request.

10.8.2 Connection Parameter Update Request

This packet is sent by the LE Slave to the LE Master to request a set of new connec-
tion parameters. The connection parameters include:

Table 10.4 L2CAP Signaling Commands
Code Command Direction

0x01 Command Reject Both Directions

0x12 Connection Parameter Update Request Slave to Master

0x13 Connection Parameter Update Response Master to Slave

0x14 LE Credit Based Connection Request Both Directions

0x15 LE Credit Based Connection Response Both Directions

0x16 LE Flow Control Credit Both Directions

Figure 10.5 L2CAP PDU on signaling channel (C-Frame).

MSBLSB
Length

(2 octets)
Information Payload

(6 to 37 octets as per Length field in the header)

Channel ID
(2 octets)
= 0x0005

Code
(1 octet)

DataLength
(2 octets)

Identifier
(1 octet)

Format of L2CAP Commands

224 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

	• Interval Min: The minimum value for the connection event interval.

	• Interval Max: The maximum value for the connection event interval.

	• Slave Latency: This defines the Slave latency of the connection in number of
connection events. For example if Slave Latency is 4, then it will listen to a
packet from the Master on every 4th anchor point. If it is 0, then the Slave
will listen to a packet from the Master on every anchor point.

	• Timeout Multiplier: The connection supervision timeout can be calculated
from this field as follows:

•	 Connection Supervision Timeout = Timeout Multipler * 10 ms.

If the Master decides to accept this request, then it sends the new set of connec-
tion parameters to the Slave using the link layer connection update procedure. The
connection update procedure at the link layer level was explained in Chapter 8. If
the Master decides not to accept the parameters, then it rejects the request using
the Command Reject.

It may be noted that this command can only be sent from the LE Slave to the
LE Master and not the other way round. If the LE Master needs to change the con-
nection parameters, then it can directly use the link layer procedure.

10.8.3 Connection Parameter Update Response

This packet is sent by the LE Master to the LE Slave in response to the connection
parameter update request. If the Master accepts the parameters sent by the Slave,
it also sends the connection parameter update to the controller using the HCI_LE_
Connection_Update command so that the controller can start the link layer pro-
cedure to update the connection. A typical sequence for updating the connection
parameters is shown in Figure 10.6.

10.8.4 LE Credit-Based Connection Request

This command is used to create and configure an L2CAP channel between two
devices. The parameters of this command are:

	• LE Protocol Service Multiplexer (PSM): This specifies the PSM value of the
higher layer protocol for which the L2CAP connection is being created. It
could either be a fixed value assigned by Bluetooth SIG or a dynamic value
assigned by GATT.

	• Source CID: This is the channel identifier that will be used to receive packets.
The sender will send all packets to this CID once the channel is established.

	• Maximum Transmission Unit (MTU): This indicates the maximum SDU size
that L2CAP can accept. An SDU may be split across several PDUs

	• Maximum PDU Size (MPS): This indicates the maximum payload size that
L2CAP can accept.

	• Initial Credits: This indicates the number of LE-frames that the peer device
can send.

10.8 L2CAP Signaling 225

10.8.5 LE Credit-Based Connection Response

This packet is used to respond to an LE credit-based connection request. The pa-
rameters of this packet are:

	• Destination CID: This specifies the channel end point of the device that is
sending the response.

	• Maximum Transmission Unit: This indicates the maximum SDU size that
L2CAP can accept.

	• Maximum PDU Size: This indicates the maximum payload size that L2CAP
can accept.

	• Initial Credits: This indicates the number of LE-frames that the peer device
can send.

	• Result: This field indicates the outcome of the connection request. A value of
0x0000 indicates success.

10.8.6 LE Flow Control Credit

This packet is sent by a device when it is capable of accepting additional LE-frames.
For example, once it has processed 5 frames, it may send this packet to indicate 5
credits. The parameters of this packet are the CID (which indicates the source chan-
nel endpoint on which additional LE-frames can be sent) and the credits (which
represents the number of additional LE-frames that can be sent to this device).

Figure 10.6 Typical connection parameter update sequence.

LE_Connection_
Update_complete

Command_Status

LL_CONNECTION_UPDATE_REQ

Link Layer

Old Connection Parameters

New Connection Parameters

L2CAP Link Layer L2CAP

Master Slave

Connection Parameter Update Request

Connection Parameter Update Response

HCI_LE_Connec
tion_Update

LE_Connection_
Update_complete

226 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

Once the receiver is ready to take more packets, it will send the credits to the
transmitter.

10.9 Credit-Based Flow Control

One of the enhancements made in specifications 4.1 is the introduction of connec-
tion-oriented channels and the usage of credit-based flow control for these channels.

An LE information frame (also called an LE-frame PDU) is used to exchange
data with the peer entity. The format of an LE-frame is shown in Figure 10.7

The length field specifies the length of the information payload.
The Channel ID identifies the destination channel end point.
The L2CAP SDU length field is only present in the first PDU and specifies the

length of the entire SDU (higher layer protocol packet), which will be transported
in L2CAP packets. For subsequent L2CAP packets that contain the same SDU, this
field is absent.

The credit-based flow control used in LE is very similar to the credit-based
flow control that was described in Chapter 4 for RFCOMM over BR/EDR. At the
time of connection establishment, the remote entity provides initial credits. This
is the maximum number of LE-frames that can be sent to the remote entity. One
credit represents permissions to send one LE-frame. Whenever an LE-frame is sent
to the remote entity, the number of credits is reduced by 1. If the number of credits
reaches 0 at any time, no further packets are sent until more credits are received
from the remote entity. Once the remote entity processes these packets and is ca-
pable of receiving more packets, it sends an equivalent number of credits using the
LE flow control credits packet.

The credit-based flow control provides a simple yet effective mechanism for
flow control between peer devices. It is particularly useful when the receiving en-
tity has large buffers and is capable of storing or processing multiple packets. The
transmitter does not need to wait for a response from each packet; rather, it can
send a set of packets (determined by the credits received). While this is happening,
the transmitter can send additional packets without interrupting the flow of pack-
ets if more credits are received from the remote side.

The credit-based flow control mechanism is also useful in scenarios where the
transmitter is a fast device (e.g., a smartphone), while the receiver is a slow or
memory-constrained device (e.g., a sensor). The sensor can control the pace at
which the smartphone sends packets to it.

The LE connection-oriented channels and LE credit-based flow control modes
are heavily used by the IPSP in order to allow Bluetooth devices to connect to the
internet through gateways. This will be discussed in detail in Chapter 15.

Figure 10.7 Format of an LE information frame (LE-frame).

10.10 Practical Examples 227

10.10 Practical Examples

Figure 10.8 shows a practical example of the L2CAP PDUs being exchanged be-
tween two devices. The following points may be observed:

	• The CID used for ATT is 0x0004 and CID used for SMP is 0x0006.

	• There are no CONNECT and CONFIGURE requests as in the case of BR/
EDR. In the case of L2CAP, once the connection is established at the link
layer level, data PDUs can be exchanged.

Figures 10.9, 10.10, and 10.11 show another practical example of L2CAP
credit-based flow control. The LE credit-based connection request is sent by the
source device shown in Figure 10.11. During this request, the source device pro-
vides an initial number of credits (in this example, 10 credits). This means that
the destination would be allowed to send up to 10 packets once the connection is
established.

Figure 10.8 Example of L2CAP exchanges.

Figure 10.9 LE credit-based connection request.

228 Logical Link Control and Adaptation Protocol (L2CAP)Logical Link Control and Adaptation Protocol (L2CAP)

	• The LE credit-based connection response is sent by the destination device in
Figure 10.11. During this response, the destination device provides an initial
number of credits (in this example, 11 credits). This means that the source
device would be allowed to send up to 11 packets once the connection is
established.

	• The LE flow control credit is used to send additional credits to the peer de-
vice. As show in Figure 10.12, one additional credit is sent to the peer device.
This means that the peer device can send one additional packet in addition
to the ones that it could send based on the credits that it received in the past.

Figure 10.10 LE credit-based connection response.

Figure 10.11 LE flow control credit.

10.11 Summary 229

10.11 Summary

The L2CAP layer provides data services to SMP and ATT protocols. Since there are
only two layers on top of it, L2CAP layer use fixed CIDs for signaling leading to a
simpler implementation.

In the case of LE, the L2CAP layer is simplified in a major way. It includes only
three signaling commands: Command Reject, Connection Parameter Update Re-
quest, and Response. Even these commands don’t need to be sent in the beginning
to start data exchange between two layers. As soon as the link layer connection
is established, the upper layers can provide data to L2CAP to send to the remote
device.

The next two chapters will focus on Security Manager and Attribute Protocol.
These are the two entities which use the services provided by L2CAP.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.

Figure 10.12 Flow control chart.

231

C H A P T E R 11

Security Manager (SM)

11.1 Introduction

The security manager defines the procedures for pairing, authentication, and en-
cryption between LE devices. This is needed once a link layer connection has been
established and if security is requested on that particular connection. As shown in
Figure 11.1, the security manager is located above L2CAP in the LE architecture. It
uses the services of L2CAP to carry out its different procedures.

The security manager protocol is used to generate and store various keys (like
encryption and identity). It uses a key distribution approach where each device gen-
erates and controls the keys it distributes. The security manager is also responsible
for generating random addresses and resolving random addresses to known device
identities. The security manager allows for keys from 56-bits to 128-bit length in
8-bit steps. The key length is defined by the profile or application that requests se-
curity. If devices have lower processing power or need less security, then they need
not generate all bits of the 128-bit keys. They can generate a lesser number of bits
(subject to a minimum of 56-bits) and set the remaining bits to 0.

Specifications 4.2 introduced a major enhancement in security by defining LE
secure connections. The method defined by specifications 4.0 are now referred to
as LE legacy pairing.

11.2 Security in Host Instead of Controller

One major difference between the security architecture of BR/EDR and LE is that
the security in BR/EDR is handled in the link manager, while in the case of LE, the
security related procedures are moved to the host. So all procedures related to key
generation and distribution of keys are performed by the host. This helps to keep
the cost of LE-only controllers low and also provides more flexibility to the host.
If the key generation algorithms need to be upgraded (for example, to increase the
level of security offered by the device) then only the software in the host needs to
be changed without any modification in the controller. The encryption of data just
before transmitting the packets over the air is still done by the controller in both
LE and BR/EDR.

232 Security Manager (SM)Security Manager (SM)

11.3 Asymmetrical Architecture

The security manager has an asymmetrical architecture. This means that the ar-
chitecture is designed so that the memory and processing requirements for the re-
sponding device are much lower than the memory and resource requirements of the
initiating device.

This is another enhancement done by LE to optimize the power consumption
of the peripheral devices. In general the initiating device could be a dual mode de-
vice like a mobile phone which has much higher memory, processing power, and
battery power available. In comparison a peripheral device like a key fob could
have limited memory, processing power, and battery power. So the architecture is
designed in such a manner that more processing power and memory is used on the
mobile phone resulting in lesser memory and processing power used at the key fob
end.

11.4 Security Breaches

Before going into the details of security manager, it is important to understand the
possible security breaches in a wireless system. These will be explained in this sec-
tion. Later sections will explain how the security manager helps to prevent these
security breaches.

11.4.1 Passive Eavesdropping

Passive Eavesdropping attacks occurs when an attacker starts listening to the data
being exchanged between two devices. If the attacker is present at the time of initial
pairing, it can listen to the keys that are being exchanged during pairing. After that
it can use the same keys to decrypt all the information being sent between the two
devices.

Passive eavesdropping is difficult to detect. This is because, the passive eaves-
dropper can be anywhere in the Bluetooth range (anywhere between 10 meters to

Figure 11.1 Security manager in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

11.4 Security Breaches 233

100 meters). So the eavesdropper need not be visible to the user. Eavesdropping can
be done, for example, from another room. This is shown in Figure 11.2.

11.4.2 Man-in-the-Middle (MITM) (Active Eavesdropping)

MITM was explained in Chapter 3. The explanation is repeated here for conve-
nience. An MITM attack occurs when a rouge device attacks by sitting in the mid-
dle of two devices that want to connect and relays messages between them. The two
devices believe that they are directly talking to each other without knowing that all
their messages are being intercepted and relayed by a third device which is between
them. This is also known as active eavesdropping.

Let’s say devices A and B want to make a connection and M is an attacking
device (as shown in Figure 11.3). M receives all information from A and relays it
to B and vice versa. So, A and B have an illusion that they are directly connected.
They are not aware of the existence of M between them. Since M is relaying the

Figure 11.2 Example of Passive Eavesdropping.

Device A Device B Attacker eavesdropping
from another room

Figure 11.3 Example of MITM attack.

Device A
Device B

Device M: MITM Attacker

Expected Communication Path

Actual Communication Path

Device A
Device B

234 Security Manager (SM)Security Manager (SM)

information between the two devices, it can interpret all this information and mis-
use it. Besides this, M can also attack by inducing rogue information between the
two devices.

11.4.3 Tracking

Since many of the LE devices are intended to be carried by the user, an attacker
can potentially try to track the transmissions coming from these devices to track
the person. For example, if a person is wearing an LE watch or carrying a key fob
which are advertising, then an attacker can read those advertising packets and fol-
low the person by just following the advertising packets.

LE provides a privacy feature in which the LE devices can use a random ad-
dress and change this random address frequently. So only devices that are previ-
ously authenticated by the person can resolve that address. This means that only
the authenticated devices can map the random address to find out the exact device
from which the packets are being transmitted. This prevents tracking from any
unauthorized person.

11.5 Pairing Methods

The pairing method used to pair the devices depends on the Input/Output capabili-
ties of the two devices. For example, if one of the devices is capable of entering
a 6-digit number and another is capable of displaying a 6-digit number, then the
Passkey entry method can be used.

Security Manager provides four types of pairing methods:

1. Just Works.
2. Numeric Comparison (introduced in specifications 4.2 for LE secure

connections).
3. Passkey Entry.
4. Out of Band.

11.5.1 Just Works

In the case of Just Works pairing no passkeys are exchanged at the UI level. This is
used when at least one of the devices does not have a mechanism to either display
a 6-digit number or enter 6-digit numbers. An example of this could be a mono
headset which does not have display capability or the ability to enter a passkey.

11.5.2 Numeric Comparison

In this method, the two devices each compute 6-digit confirmation values that are
displayed to the users on their respective devices. The users are expected to check
that these 6-digit values match and to confirm whether or not there is a match. If
there is no match, the protocol aborts.

11.6 Security Properties 235

11.5.3 Passkey Entry

This method is designed for use when one device has input capability and the other
device has display capability. In this method, a 6-digit numeric passkey is displayed
on one of the devices and the user is asked to enter that passkey on the second de-
vice. For example, if a keyboard is being paired to a PC, then the PC may display a
6-digit numeric passkey which can be entered from the keyboard. Another example
could be a remote being paired to a TV. The TV can display the passkey which is
entered from the remote control.

11.5.4 Out of Band

This is designed for scenarios where an Out-of-Band mechanism can be used to
transfer security information. For example, if NFC is used, then the user may touch
the two devices to exchange the security information.

These four pairing methods will be explained in further detail later in this
chapter.

11.6 Security Properties

Security Manager provides four types of security:

1. LE secure connections pairing.
2. Authenticated MITM protection.
3. Unauthenticated No MITM protection.
4. No security.

The LE secure connections pairing is one of the key enhancements introduced
by specifications 4.2. It uses P-256 elliptic curve cryptography and Diffie-Hellman
public key exchanges.

The methods of pairing specified by specifications 4.0 and 4.1 are now referred
to as LE legacy pairing.

In LE legacy pairing, none of the pairing methods provide protection against
passive eavesdropper if the eavesdropper starts listening during the pairing pro-
cess. This is because, at present, predictable or easily established values are used
as temporary keys in the beginning of the pairing. If the pairing is done when the
eavesdropper is not listening, then the communication channel is secure from any
passive eavesdroppers and further communication can go on without any risk.

11.6.1 LE Secure Connections Pairing

LE secure connections pairing uses P-256 elliptic curve cryptography. This method
generates the LTK, which is a 128-bit key that will be used to encrypt the connec-
tion after pairing and also for encrypting subsequent connections. These will be
explained in detail in Section 11.8.2.5.

236 Security Manager (SM)Security Manager (SM)

11.6.2 Authenticated MITM Protection

In LE legacy pairing, authenticated MITM protection can be achieved by using the
passkey entry pairing method or by using Out Of Band (OOB) pairing.

	• In the case of the passkey entry pairing method the passkey is displayed
on one device and entered from another device. So there is no way that an
MITM can relay this information between these two devices.

	• In the case of Out Of Band, some other technique apart from Bluetooth is
used for exchanging the pairing information. For example, NFC could be
used where the two devices touch each other to exchange the pairing infor-
mation. Here again, if the OOB method being used provides MITM protec-
tion, only then the MITM attacks can be prevented.

In LE secure connections pairing method, MITM protection is obtained by
numeric comparison method in addition to the two methods listed above.

	• Numeric Comparison method: In this method, the two devices each compute
6-digit confirmation values that are displayed to the users on their respective
devices. The users are expected to check that these 6-digit values match and
to confirm whether or not there is a match. If there is no match, the protocol
aborts.

11.6.3 Unauthenticated no MITM Protection

Unauthenticated no MITM protection does not provide protection from MITM at-
tacks. This is achieved by using the Just Works pairing method. In this method, no
passkeys are exchanged at the UI level. It is still more secure than No security since
the keys are exchanged between the two devices though they are not exchanged at
the UI level. In this case the keys are automatically generated by the two devices.

11.6.4 No Security

In the no security mode, there is no support for authentication or encryption. In
this case the information transferred may not be sensitive. For example, an LE
thermometer sending temperature data may use No Security Mode. Similarly No
Security Mode may be used to fetch information like the device manufacturer’s
name, device model number, etc.

11.7 Cryptographic Functions

Security manager provides the following cryptographic functions which serve as
enablers for various security operations described later.

1. Security function e.
2. Random address function ah.
3. Confirm value generation function c1.
4. Key generation s1.

11.7 Cryptographic Functions 237

The following cryptographic operations are defined by specifications 4.2 to
support LE Secure Connections:

	• Security function AES-CMAC;

	• LE Secure Connections Confirm Value Generation function f4;

	• LE Secure Connections Key Generation function f5;

	• LE Secure Connections Check Value Generation function f6;

	• LE Secure Connections Numeric Comparison Value Generation function g2;

	• LE Secure Connections Link Key Conversion function h6.

The building block for cryptographic functions ah, c1, and s1 is the security
function e.

The building block for the cryptographic functions f4, f5, f6, g2, and h6 is the
security function AES-CMAC.

11.7.1 Security Function e

The security function e is used to generate 128-bit encrypted data from 128-bit
plain text data. It uses the AES-128 bit cypher.

encryptedData = e(key, plaintextData)

This function can be implemented in the host or the controller. If this function-
ality is implemented in the controller, then the host can use it via the HCI command
HCI_LE_Encrypt. This function is used by the next three cryptographic functions.

11.7.2 Random Address Function ah

The random address function ah is used in generating a hash value used in the re-
solvable private address.

11.7.3 Confirm Value Generation Function c1

The confirm value generation function c1 is used to generate the confirm values
used during the confirm procedure of the Security Manager Protocol.

11.7.4 Key Generation Function s1

The key generation function s1 is used to generate the Short Term Key (STK) during
the pairing process.

11.7.5 Security Function AES-CMAC

Cipher-based message authentication code (CMAC) is a block cipher-based message
authentication code algorithm. It provides a stronger assurance of data integrity
than a checksum or an error-detecting code. While checksum and error-detecting

238 Security Manager (SM)Security Manager (SM)

code only detect accidental modifications to data, CMAC is designed to detect in-
tentional, unauthorized modifications of data, as well as accidental modifications.
It uses AES-128 symmetric keys and is defined by RFC-4493. It is Federal Informa-
tion Processing Standards (FIPS) approved.

Like any symmetric authentication algorithm, it takes a key and data as input
and generates the authentication code. This is shown below:

 MAC = AES-CMAC(k, m, len)

The inputs are:

k: 128-bit key

m: message to be authenticated

len: length of the message to be authenticated

The output is:

MAC: Message Authentication Code

This function may be implemented in either the Host or the Controller. If it
is implemented in the Controller, the Host uses the HCI_LE_Encrypt command
in order to generate the MAC. The HCI_LE_Encrypt command was explained in
Chapter 9.

11.7.6 LE Secure Connections Confirm Value Generation Function f4

This function is used to generate the confirm values that are exchanged during the
LE secure connections pairing process.

11.7.7 LE Secure Connections Key Generation Function f5

This is an intermediate function that is used to generate the derived keying values
that would be used by function f6. It uses an AES-CMAC function with a pre-
defined key to generate a key, T, and the same function once more to use that key T
to generate the long term key (LTK) and MacKey.

The inputs of this function are random numbers generated by Master and
Slave, BD_ADDR of Master and Slave and a shared Diffie-Hellman key.

The outputs of this function are LTK and MacKey.

11.7.8 LE Secure Connections Check Value Generation Function f6

This function is used to generate the check values during the authentication stage 2
in the pairing process.

The inputs of this function depend on the association model that is used (i.e.,
Just Works, Numeric Comparison, Out-Of-Band, or Passkey Entry).

The output of this function is a check value.

11.8 Pairing 239

11.7.9 LE Secure Connections Numeric Comparison Value Generation
Function g2

This function is used to generate the numeric comparison values during authentica-
tion stage 1 in the pairing process.

The output of this function is a 6-digit decimal value that will be used for nu-
meric comparison.

11.7.10 LE Secure Connections Link Key Conversion Function h6

This function is used to convert a BR/EDR link key into an LE LTK or an LE LTK
into a BR/EDR link key.

11.8 Pairing

The pairing process is used to establish the keys used to encrypt the link. Once the
link is encrypted, the various keys to resolve the random address, verify signed data
and encrypt future links are exchanged between the Master and the Slave.

Pairing is a three phase process. The first two phases are mandatory while the
third phase is optional. The three phases are:

1. Pairing Feature Exchange.
2. Authentication and Encryption

•	 Short-term key (STK) generation in case of LE legacy pairing.
•	 Long-term key (LTK) generation in case of LE secure connections.

3. Transport Specific Key Distribution [Optional].

Phase 1 and Phase 2 may be performed on a link (encrypted or not encrypted)
while Phase 3 is only performed on a link which is encrypted using the STK gener-
ated in Phase 2. These three phases are shown in Figure 11.4 and will be explained
in detail in the next sections.

11.8.1 Phase 1: Pairing Feature Exchange

In this phase, the devices exchange their authentication requirements, capability in-
formation, key sizes, the keys that they can distribute, and the keys that they expect
the remote side to distribute. This phase is also used in identifying which method
of pairing they can use in the second phase. Pairing procedure is always initiated
by the device in the Master role. The following is the set of features which are ex-
changed between the Master and the Slave during this phase.

11.8.1.1 IO Capability

The IO Capability provides information about the input and output capabilities of
the device. It is used during the pairing feature exchange procedure (step 1 of the
pairing process) to inform the IO capabilities of the device. Based on the IO capa-
bilities of the two devices, the appropriate pairing procedure is selected in Phase 2
of the pairing process.

240 Security Manager (SM)Security Manager (SM)

There are three possibilities with regards to the input capabilities of the device:

1. No Input: The device does not have any capability to take user input. An
example of this could be a weighing machine which may not have buttons
on it to take user inputs.

2. Yes/No: The device has some mechanism which can be used to indicate
a ‘yes’ or ‘no’ input from the user. An example of this could be a key fob
which has a couple of buttons which the user can use to indicate a ‘yes’ or
a ‘no’.

3. Keyboard: The device has a numeric keyboard which can be used to input
the numbers ‘0’ to ‘9’ and two buttons to indicate ‘yes’ and ‘no’. An exam-
ple of this could be a remote control which has a numeric keypad which
can be used to input the numbers ‘0’ to ‘9’.

There are two possibilities with regards to output capabilities of the device:

1. No Output: The device does not have any display capability to display
a 6-digit decimal number. An example of this could be a remote control
which does not have display capability.

2. Numeric Output: The device has the ability to display or communicate a
6-digit decimal number to the user. An example of this could be a watch
which can display the 6-digit decimal number to the user.

Based on the input and output capabilities of the device, the IO capability field
is mapped as shown in Table 11.1. As an example, a device which has No Input
capability and Numeric Output is termed as DisplayOnly since it can only display
but it cannot take user input.

Figure 11.4 Three phase pairing process.

Initiator Responder

Both Master and Slave are in the Connection State

Phase 1: Pairing Feature Exchange
(Master and Slave come to know about each other’s features supported)

Phase 2: Authentication and Encryption
(Master and Slave generate the keys to authentication and encrypt the link)

The link is encrypted with the STK

Phase 3: Transport Specific Key Distribution
(Distribute the various keys depending on features supported)

Master
Slave

11.8 Pairing 241

The IO capability of the two devices is used to decide the appropriate pairing
method to use in Step 2 out of the following four possibilities:

1. Just Works.
2. Numeric Comparison.
3. Passkey Entry.
4. Out of Band (OOB).

11.8.1.2 OOB Authentication Data

In order to have additional security, an LE device may support the use of an external
mechanism to generate data to authenticate the device. For example, an LE device
may use the NFC protocol to generate authentication data. This provides additional
security because the NFC protocol may involve touching the two devices and data
exchange on a different protocol than LE. So the possibility of an intruder listening
to that data is significantly reduced.

11.8.1.3 Encryption Key Size

LE supports an encryption key between 7 octets (56-bits) and 16 octets (128-bits).
The higher the number of bits used, the higher the level of encryption. So the devices
can select the encryption key size based on the resources available (memory, pro-
cessing power) and the level of security needed. This value is exchanged between the
two devices during Phase 1, and the lesser of the two values is used as the encryp-
tion key size for the next phases.

11.8.1.4 Repeated Attempts

This feature is similar to the support provided in BR/EDR for repeated attempts.
This feature is invoked when a pairing procedure fails. If the pairing procedure
fails, the device has to wait a certain interval before again trying to pair to a remote
device or allowing a new pairing procedure from a remote device. This waiting in-
terval increases exponentially with each failed attempt. The waiting interval keeps
increasing with each failed attempt until the time it reaches an implementation
defined maximum value. It helps to prevent an intruder from repeatedly trying the
pairing procedure with several different keys.

For example, if an intruder device A tries to connect to device B. If the pairing
procedure fails, then B sets the waiting interval to i. During this waiting interval i it

Table 11.1 IO Capability

Input Capability

Output Capability

No Output Numeric Output

No Input NoInputNoOutput DisplayOnly

Yes / No NoInputNoOutput DisplayYesNo

Keyboard KeyboardOnly KeyboardDisplay

242 Security Manager (SM)Security Manager (SM)

does not respond to any Pairing Request command or Security Request command
from A. If A tries to pair after this waiting interval, and if the pairing procedure
fails again, then B increases the waiting interval to 2 * i. If the pairing procedure
fails a third time, the waiting interval increases to 4 * i. This makes it increasingly
time consuming (and therefore difficult) for the intruder device A to try several dif-
ferent keys in order to pair to B.

11.8.2 Phase 2: Authentication and Encryption

After the Pairing Feature Exchange, both devices are aware of the capabilities of
each other. Based on these capabilities, an appropriate paring method is selected.
This can be one of the following four methods.

1. Just Works.
2. Numeric Comparison
3. Passkey Entry.
4. Out of Band (OOB).

The selection of the method is done as follows:

1. In LE legacy pairing, if both devices support the OOB pairing method, then
the OOB pairing method is used.

2. In LE secure connections, if one or both devices support OOB pairing
method, then the OOB pairing method is used.

3. If both devices have not set the MITM option, then the Just Works associa-
tion model is used.

4. Otherwise, the IO capabilities of both the devices are used to determine the
appropriate method.

In this phase, for LE legacy pairing, a Temporary Key (TK) is generated by each
device based on the pairing method that is selected. This TK is used to generate the
STK and encrypt the link. The formulae for generating TK and STK are explained
in the Bluetooth specification.

The LE legacy pairing methods generate two keys, the temporary key (TK) and
the short-term key (STK).

The LE secure connections pairing methods generate and use one key, the long-
term key (LTK).

11.8.2.1 Just Works

This is the simplest pairing mechanism. It does not provide protection against eaves-
dropping and MITM attacks during the pairing process. Once the pairing process is
over, this procedure provides security by using encryption.

11.8.2.2 Numeric Comparison

This method involves generating a 6-digit confirmation code on each of the devices.
This confirmation code is presented to the users of the respective devices. If the

11.8 Pairing 243

confirmation codes match, the users confirm this on their devices. Otherwise, the
pairing process is aborted.

11.8.2.3 Passkey Entry

This method is used if one of the devices supports display capability and the other
device supports keyboard capability. In this method, a 6-digit numeric passkey is
displayed on one of the devices and the user is asked to enter that passkey on the
second device. For example, if a TV is being paired with a remote, then the passkey
will be displayed on the TV and the user will be asked to enter that passkey on the
remote. This method provides protection against MITM attacks but limited protec-
tion against eavesdropping.

11.8.2.4 Out of Band (OOB)

This method is used if both the devices support the OOB Authentication Data
feature. In this method the level of security depends on the security offered by the
OOB mechanism used.

11.8.2.5 LE Secure Connections Pairing Phase 2

The detailed steps for LE Secure Connections Pairing Phase 2 are shown in Figure
11.5. The mains steps are:

 1. Each device generates its own ECDH (Elliptic-Curve Diffie-Hellman) pub-
lic-private key pair.
•	 The key pair contains a private (secret) key and a public key. The public

key (PK) can be shared with other devices while the private key (SK) is
kept within the device and never goes out.

2. Pairing is initiated by each device sending its public key to the peer device.
3. Each device computes the Diffie-Hellman key (DHKey) as follows

•	 DHKey = P256(SK of local device, PK of remote device)
 4. Authentication Stage 1

•	 Depending on the pairing method used (Just Works, Numeric Key Com-
parison, Out of band), the devices exchange the pairing information by
using f4, f6 and g2 functions.

5. Authentication Stage 2
•	 This stage confirms that both the devices have successfully completed the

exchange.
•	 Each device calculates the MacKey and LTK based on the keys exchanged

in previous steps.
•	 The initiating device then calculates a new confirmation value and trans-

mits it to the responding device. The responding device checks the con-
firmation value.

•	 The responding device then calculates a new confirmation value and
transmits it to the initiating device. The initiating device checks the con-
firmation value.

244 Security Manager (SM)Security Manager (SM)

11.8.3 Phase 3: Transport Specific Key Distribution

This phase is optional and is performed only on a link which is encrypted using
STK. In this phase, the Master and Slave distribute the keys to each other.

The various keys that are distributed in this phase for LE legacy pairing are:

	• Long Term Key (LTK).

	• Encrypted Diversifier (EDIV) and Random Number.

	• Identity Resolution Key (IRK).

	• Public Device Address or Static Random Address.

	• Connection Signature Resolving Key (CSRK).

Figure 11.5 Pairing Phase 2 details for LE secure connections.

11.8 Pairing 245

The various keys that are distributed in this phase for LE secure connections
are the identity resolution key (IRK) and the connection signature resolving key
(CSRK). These keys are briefly described below.

11.8.3.1 Long Term Key (LTK)

The Long Term Key (LTK) is a 128-bit key that is used to generate the key for an
encrypted connection. The LTK is provided by the host to the controller on both
the Master and the Slave side. The Master and Slave controllers use a combination
of LTK, EDIV and Rand for LE legacy pairing and LTK in case of LE secure con-
nection to encrypt the link.

11.8.3.2 Encrypted Diversifier (EDIV) and Random Number (Rand)

Encrypted Diversifier (EDIV) is a 16-bit stored value to identify the LTK. A new
EDIV is generated every time a unique LTK is distributed. Random Number (Rand)
is a 64-bit value used to identify the LTK. A new Rand is generated every time a
unique LTK is distributed. A combination of LTK, EDIV and Rand is used by the
Master and the Slave to encrypt the link.

11.8.3.3 Identity Resolution Key (IRK)

Identity Resolution Key (IRK) is a 128-bit key used to generate and resolve random
addresses. Random address is a privacy feature that is introduced in LE. This allows
a device to frequently use a different random address so that it’s difficult to track
that device. The random address can be resolvable or non-resolvable: This will
be explained in detail in Chapter 14. The resolvable address is generated in such
a manner that it can be resolved by the peer device if the peer device has the IRK
along with the random address. In that case, the peer device will be able to identify
the device transmitting data.

The IRK is used along with a random number to generate the random address.
This random address is used for all further interactions with other devices. If a
device wants a remote device to identify it, then it provides the IRK to that device.
The remote device can then identify which device the packet is coming from by
using a combination of the IRK and the random address. All other devices which
don’t have the IRK cannot identify which device is sending the packet and therefore
cannot know if the random address belongs to the same device.

A Master that receives an IRK from a Slave can resolve the Slave’s random
device address. Similarly a Slave that receives an IRK from the Master can resolve
the Master’s random device address.

11.8.3.4 Connection Signature Resolving Key (CSRK)

LE provides the feature to sign the data. To sign the data, the sending device ap-
pends a 12-octet signature after the data PDU. The receiving device verifies the
signature to check if the data is coming from a trusted source.

246 Security Manager (SM)Security Manager (SM)

Connection Signature Resolving Key (CSRK) is a 128-bit key used to sign data
and verify signatures on the receiving side. A different CSRK is used for each peer
device to which signed data is to be sent.

11.9 Security Manager Protocol

The Security Manager Protocol (SMP) is used for pairing and key distribution. The
L2CAP CID 0x0006 is used for all SMP commands. The format of the SMP com-
mands is shown in Figure 11.6.

The Code field identifies the type of the command. The length and format of
the Data field depends on the type of the command.

A timer of 30 seconds is used for all SMP procedures. If the timer expires, then
the SMP procedure is considered to have failed and the higher layers are notified. If
the higher layers need to restart the procedure, then a new physical channel needs
to be established.

The various command codes supported by SMP are shown in Table 11.2. The
command codes that have been introduced in specifications 4.2 to support LE se-
cure connections are showin in italics in Table 11.2.

Figure 11.6 Format of SMP commands.

MSBLSB

Code
(1 octet)

Data
(0 to 22 octets)

Table 11.2 SMP Command Codes
Code Description Phase

0x00 Reserved —

0x01 Pairing Request Phase 1

0x02 Pairing Response Phase 1

0x03 Pairing Confirm Phase 2

0x04 Pairing Random Phase 2

0x05 Pairing Failed Phase 2

0x06 Encryption Information Phase 3

0x07 Master Identification Phase 3

0x08 Identity Information Phase 3

0x09 Identity Address Information Phase 3

0x0A Signing Information Phase 3

0x0B Security Request Phase 1 (Used if Slave requests
initiation of security procedures)

0x0C Pairing Public Key Phase 2

0x0D Pairing DHKey Check Phase 2

0x0E Pairing Keypress Notification Phase 2

0x0F – 0xFF Reserved —

11.9 Security Manager Protocol 247

11.9.1 Commands Used During Phase 1 (Pairing Feature Exchange)

In this phase, the Initiator (Master) and the Responder (Slave) exchange the in-
formation about paring features that they support so that the appropriate set of
features can be used in Phase 2. The commands that are used during Phase 1 are
shown in Figure 11.7. At the end of this phase, a pairing method is selected based
on the Pairing Request and Pairing Response.

11.9.1.1 Security Request

This command is used by the Slave if it wants to request the Master to initiate
security. In response to this command, the Master may send the Pairing Request
command.

11.9.1.2 Pairing Request

The Pairing Request command is used to start the first phase of the pairing process
which is Pairing Feature Exchange. The Initiator provides the set of features it sup-
ports in this command to the remote device. This includes the following:

	• IO Capability: This indicates the IO capabilities of the device like Display-
Only, KeyboardOnly, KeyboardDisplay etc. The different IO Capabilities
were shown in Table 11.1.

	• OOB Data Flag: This indicates whether Out Of Band data is available or not.

	• AuthReq Flag: This indicates the requested authentication requirements. For
example, whether bonding is requested or not or whether MITM protection
is requested.

The various fields that are a part of this flag are as follows:

	• Bonding Flag: indicates the type of bonding being requested.

	• MITM: indicates whether MITM protection is requested.

	• SC: indicates a request for LE secure connection pairing. This is a new flag
introduced in specifications 4.2 to support LE secure connections.

Figure 11.7 Sequence of commands used in Phase 1.

Security Request

Pairing Request

Pairing Response

Master Slave

Sent only if Slave
requests Master
to initiate security

248 Security Manager (SM)Security Manager (SM)

	• Keypress: indicates that keypress notifications will be generated and sent to
the remote side. This is a new flag introduced in specifications 4.2.

	• Maximum Encryption Key Size: This indicates the maximum encryption key
size that is supported by the device.

	• Initiator Key Distribution: This field indicates which keys the Initiator is
requesting to distribute in Phase 3 of the pairing process.

	• Responder Key Distribution: This field indicates which keys the Initiator is
requesting the Responder to distribute during Phase 3 of the pairing process.

The format for the Initiator Key Distribution and Responder Key Distribution
field is shown in Figure 11.8. A Practical example of Pairing Request is shown in
Figure 11.12.

11.9.1.3 Pairing Response

The Pairing Response command is used by the responding device to respond to the
paring request. This command completes Phase 1 of the pairing process.

The different fields of this command are similar to the ones used in the Pairing
Request command. In this command, the Responder confirms the exact Initiator
and Responder keys to be used in Phase 3. If the Master had set any of the fields
to zero in the Pairing Request command, then the Slave does not set them to one.
Then, depending on its own capabilities, the Slave sets the remaining bits in the
initiator key distribution and responder key distribution fields.

Once the Master receives the pairing response command, both devices know
which keys will be exchanged in Phase 3. A practical example of pairing response
is shown in Figure 11.11.

11.9.2 Commands Used During Phase 2 (Key Generation)

This phase is started after successful completion of Phase 1. After the Pairing Fea-
ture Exchange has completed, a paring method is selected for Phase 2. As men-
tioned earlier, there are four pairing methods that can be used:

1. Just Works.
2. Numeric Comparison.
3. Passkey Entry.

Figure 11.8 Format of initiator key distribution and responder key distribution.

MSBLSB

EncKey
(1 bit)

Reserved
(5-bits)

IdKey
(1 bit)

Sign
(1 bit)

CSRK will be exchanged

IRK will be exchanged

LTK will be exchanged followed by EDIV and Rand

11.9 Security Manager Protocol 249

4. Out of Band Pairing.

In this phase a short term key (STK) is generated and the link is encrypted us-
ing that STK in the case of LE legacy pairing. In the case of LE secure connections,
a long-term key (LTK) is generated and the link is encrypted using that LTK. The
commands that are used during Phase 2 for LE legacy pairing are shown in Figure
11.9.

11.9.2.1 Pairing Confirm

The pairing confirm command is used by both devices to send the confirm value to
the peer device. This is a 128-bit value which is generated by the Master and the
Slave based on the pairing method that is selected. The Master generates a 128-bit
Mconfirm and sends it to the Slave and the Slave generates a 128-bit Sconfirm and
sends it to the Master.

Figure 11.9 Sequence of commands used in Phase 2.

Pairing Confirm (Mconfirm)

Pairing Random (Srand)

Master Slave

Generate Srand
and Sconfirm

Selection of the pairing method to use is already done during Step 1

Pairing Confirm (Sconfirm)

Pairing Random (Mrand)

Calculate STK. Link is encrypted using STK

This is based
on the pairing
method used

Generate Srand
and Sconfirm

Calculate confirm value
and check if it matches the

value sent by Master

Calculate confirm value
and check if it matches the

value sent by Slave

250 Security Manager (SM)Security Manager (SM)

11.9.2.2 Pairing Random

The pairing random command is used by both devices to send the random number
used in generating the confirm value that was sent in the previous pairing confirm
command.

The Master sends the Mrand value to the Slave. The Slave calculates the con-
firm value based on this Mrand and checks if the value matches the value sent by
the Master in the previous step (Mconfirm). If the value matches, then the Slave
sends its own random number (Srand) to the Master. The Master does a similar
calculation to check if the calculated value matches the confirm value that was sent
by the Slave. After the Master verifies the confirm value, it calculates the STK and
encrypts the link with the STK.

11.9.2.3 Pairing Failed

The pairing failed command is used if there is a failure during pairing. For example,
if the confirm value received from the remote side does not match the confirm value
calculated, then a Pairing Failed command is sent. A practical message sequence
chart of these procedures is shown in Figure 11.12.

11.9.2.4 Pairing Public Key

This message was introduced in specifications 4.2 to support LE secure connec-
tions. It is used to transfer the device’s own public key to the remote device. The
initiator and the responder both use this method to provide their public key to the
peer device.

The public key contains two parts referred to as X and Y coordinates. Each
part is 32 octets in length.

11.9.2.5 Pairing DHKey Check

This message was introduced in specifications 4.2 to support LE secure connections.
It is used to transmit the 128-bit DHKey check values generated using the LE secure
connections check value generation function, f6. This message is used by both the
initiator and the responder to provide the DHKey check value to the peer device.

11.9.2.6 Pairing Keypress Notification

This message was introduced in specifications 4.2 to support LE secure connec-
tions. It is used during passkey entry to inform the peer device that the keypad keys
have been entered or erased. This method is used only by the device with Keyboar-
dOnly IO capabilities.

The keypress notifications are used to indicate the following events to the re-
mote side:

	• Passkey entry started;

	• Passkey digit entered;

	• Passkey digit erased;

11.9 Security Manager Protocol 251

	• Passkey cleared;

	• Passkey entry completed.

11.9.3 Commands Used During Phase 3 (Transport Specific Key Distribution)

This phase is optional and started after successful completion of Phase 2. By the end
of Phase 2, the link is encrypted and during this phase the transport specific keys
can be distributed from the Master to the Slave and vice versa. The various keys
that can be distributed are shown in Figure 11.10.

The keys are distributed first by the Slave and then by the Master in the se-
quence that is shown in Figure 11.10. Some or all of these keys may be distributed
depending on what was agreed during Phase 1. The keys to be distributed during
this phase were indicated in Phase 1 in the Key Distribution Field of the Pairing
Request and Pairing Response commands. For example, the LTK is distributed
from the Slave to the Master only if the Slave had earlier set the EncKey bit in the
Key Distribution Field of the Paring Response command that it sent to the Master
in Phase 1. (See Figure 11.8).

Figure 11.10 Distribution of transport specific keys in Phase 3.

Encryption Information (LTK)

Master Slave

Link already encrypted using STK during Phase 2

Identity Address Information (AddrType, BD_ADDR)

Signing Information (Signature Key)

Master Identification (EDIV, Rand)

Identity Information (IRK)

Encryption Information (LTK)

Identity Address Information (AddrType, BD_ADDR)

Signing Information (Signature Key)

Master Identification (EDIV, Rand)

Identity Information (IRK)

The keys to
be exchanged
depend on the
Pairing Request/
Response in
Phase 1

252 Security Manager (SM)Security Manager (SM)

11.9.3.1 Encryption Information

The Encryption Information command is used to distribute the LTK to be used for
encrypting the connection. It contains the following parameter:

	• LTK: 128-bit.

This command is only sent when the link has been encrypted with STK.

11.9.3.2 Master Identification

The Master Identification command is used to distribute the EDIV and Rand to be
used for encrypting the connection. It contains the following parameters:

	• EDIV: 16-bit.

	• Rand: 64-bit.

This command is only sent when the link has been encrypted with STK.

11.9.3.3 Identity Information

The Identity Information command is used to distribute the IRK to be used for
resolving the device. It contains the following parameter:

	• IRK: 128-bit.

This command is only sent when the link has been encrypted with STK.

11.9.3.4 Identity Address Information

The Identity Information command is used to distribute the public device address
or the static random address. It contains the following parameters:

	• AddrType: 8-bit: To identify whether the address is a public device address
or a static random address.

	• BD_ADDR: 48-bit: The public device address or the static random address.

This command is only sent when the link has been encrypted with STK.

11.9.3.5 Signing Information

The Identity Information command is used to distribute the CSRK to be used for
signing the data. It contains the following parameter:

	• CSRK: 128-bit.

11.10 Practical Examples 253

11.10 Practical Examples

11.10.1 Message Sequence for LE Legacy Pairing

Sample air sniffer captures of SMP transactions between an Initiator and Responder
are shown in Figure 11.11 and Figure 11.12. The security procedures start at Frame
#690 with a Pairing Request. There are two devices that are identified as Side 1 and
Side 2. Side 1 is the Initiator and Side 2 is the Responder.

The parameters of the Pairing Request procedure are shown on the left side of
Figure 11.11. The main points to note are:

1. IO Capabilities are set to KeyboardDisplay. This means that the device has
a Keyboard and a Display.

2. MITM Protection has been set to Yes.
3. The Initiator Key Distribution specifies the keys that the Initiator will dis-

tribute. In this example the Initiator specifies the following:
a. Encryption Key: Initiator shall distribute LTK followed by EDIV and

Rand.

b. Id Key: Initiator shall distribute IRK followed by its address.

c. Sign: Initiator shall distribute CSRK.

4. The Responder Key Distributor specifies the keys that the Initiator requests
the Responder to distribute. In this example, the Initiator has specified the
following keys for the Responder to distribute.
a. Encryption Key: Responder shall distribute LTK followed by EDIV

and Rand.

b. Id Key: Responder shall distribute IRK followed by its address.

c. Sign: Responder shall distribute CSRK.

The Paring Response procedure is shown in Figure 11.12. The parameters of
the Pairing Response are shown on the left side of the figure. The main points to
note are:

Figure 11.11 Example of Pairing Request.

254 Security Manager (SM)Security Manager (SM)

1. IO Capabilities are set to NoInputOutput. This means that the device nei-
ther has a Keyboard nor a Display.

2. MITM Protection has been set to No.
3. The Responder Key Distribution specifies the keys that the Responder will

distribute. In this example the Responder specifies only the following:
a. Encryption Key: Initiator shall distribute LTK followed by EDIV and

Rand.

Since one device supports KeyboardDisplay while the other supports NoInput-
NoOutput, the Just Works pairing method would be used.

The detailed message sequence chart corresponding to the air logs in Figure
11.11 and Figure 11.12 is shown in Figure 11.13. The SMP_M indicates the Mas-
ter and SMP_S indicates the Slave.

The various phases of the pairing procedure are depicted as follows:

1. Phase 1: Phase 1 consists of the Master sending the Pairing Request and the
Slave responding with a Pairing Response.
a. Pairing Request from the Master specifies the IO Capabilities as Key-

boardDisplay and the MaxKeySize to be 16 octets.

b. Pairing Response from the Slave specifies the IO Capabilities of the
Slave as NoInputNoOutput and the MaxKeySize as 16 octets.

2. Phase 2: Phase 2 consists of Pairing Random and Pairing Confirm ex-
changed between the Master and the Slave.
a. The Master sends a Pairing Confirm which includes a 128-bit

Mconfirm.

b. The Slave responds with a Pairing Confirm which includes a 128-bit
Sconfirm.

c. After this the Master sends the Pairing Random with the Mrand val-
ue. The Slave calculates the confirm value based on this Mrand and
checks if this matches the value sent by the Master in the Pairing Con-
firm Request.

Figure 11.12 Example of Pairing Response.

11.10 Practical Examples 255

d. The Slave checks that the value matches and then sends the Pairing
Confirm with its own Mrand value. The Master calculates the confirm
value based on this Srand and checks if this matches the value sent by
the Slave in the pairing confirm request.

3. Phase 3: After successful completion of Phase 2, the link is encrypted and
the key distribution can start. The set of keys that will be distributed was
specified in Phase 1.
a. Encryption Information is used to distribute the 128-bit LTK.

b. Master Identification is used to distribute 16-bit EDIV and 64-bit
Rand.

11.10.2 Message Sequence for LE Secure Connections

Figures 11.14–11.16 illustrate the typical sequence of steps in setting up an LE
secure connection.

11.10.2.1 Pairing Phase 1

The two sides involved in LE secure connections setup are termed as Side 1 and
Side 2. Side 1 is the Master in this particular case. The sequence starts with Side 1

Figure 11.13 Example of SMP message sequence chart.

256 Security Manager (SM)Security Manager (SM)

sending a pairing request to Side 2. This is shown in Figure 11.14. The main points
to note are:

	• IO capabilities are set to NoInputNoOutput.

	• The secure connections pairing flag is set to Yes.

	• Keypress notifications are set to Yes. If both sides set this field, then keypress
notifications will be generated and sent.

	• Key distribution is set to No. This means that no keys will be distributed by
the master in Phase 3.

Side 2 responds with a pairing response as shown in Figure 11.15. The main
points to note are:

	• IO capabilities are set to KeyboardDisplay.

	• Secure connections pairing is set to Yes.

	• Keypress notification is set to No. Because one side has set this to Yes and the
other side has set this to No, keypress notifications will not be used.

	• Key distribution is set to No. This means that no keys will be distributed by
the Slave in Phase 3.

11.10.2.2 Pairing Phase 2

The sequence of steps that happens after the two sides exchange feature informa-
tion is shown in Figure 11.16. These steps are:

1. Pairing public key rxchange

Figure 11.14 Example of a Pairing Request.

11.10 Practical Examples 257

•	 The public key exchange happens when the devices exchange public keys.
The Master sends its public key to the Slave, followed by the Slave send-
ing its public key to the Master.

2. After public key exchange, each side generates a random number that will
be used in subsequent stages.

3. Authentication Stage 1
•	 As seen in Frame #1002, the Slave calculates a confirmation value and

sends it to the Master using pairing confirm. This is generated using the

Figure 11.16 Example of Pairing Phase 2.

Figure 11.15 Example of a Pairing Response.

258 Security Manager (SM)Security Manager (SM)

previously-generated random numbers and the public key received from
the Master.

•	 The Master sends the random number that it generated to the Slave in
Frame #1149, and the Slave sends its random number to the Master in
Frame #1154.

4. Each side calculates the DHKey
5. Authentication Stage 2

•	 The Master sends the DHKey check value to the Slave in Frame #1155,
and the Slave sends the DHKey check value to the Master in Frame #1160

6. Each side checks the DHKey check value that it received from the remote
side. If is the DHKey check values are correct, an LE secure connection is
established.

11.10.2.3 Pairing Phase 3

The pairing Phase 3, transport-specific key distribution does not happen in this
particular sequence. This is because both master and slave indicated during Phase 1
that no keys will be distributed in Phase 3.

11.11 Summary

The security manager is responsible for carrying out security related procedures
like pairing, authentication, and encryption. The security manager architecture in
LE introduces several enhancements as compared to BR/EDR. This includes mov-
ing the security manager block into the host in the controller to keep the controller
requirements to a minimum as well as using asymmetrical architecture to perform
less processing in one device at the cost of performing more processing on the peer
device. This is done because generally in LE communication one device (like a mo-
bile phone) has abundant resources while the other device (like a sensor) has very
restricted resources and the device with limited resources tries to conserve battery
power by doing as little processing as possible.

The pairing process is one of the important processes defined by security man-
ager. It uses a three phase process. The first phase broadly includes exchange of
capabilities, the second phase includes exchanging of short term keys, and the
third phase involves the exchange of actual keys that will be used in subsequent
procedures.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
NIST Publication FIPS-197 (http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf).
IETF RFC 4493 (https://tools.ietf.org/html/rfc4493).

259

 C H A P T E R 12

Attribute Protocol (ATT)

12.1 Introduction

The attribute protocol provides a mechanism for discovering attributes of a remote
device, reading the attributes and writing the attributes. As shown in Figure 12.1
ATT sits above L2CAP layer and uses L2CAP as the transport mechanism for trans-
ferring data. In turn, ATT provides services to the Generic Attribute Profile.

Attribute protocol follow a client server model. The server exposes a set of at-
tributes to the client. The client can discover, read and write those attributes. The
server can also notify or indicate the client about any of the attributes.

A device can implement only a client role, only a server role, or both client and
server roles. At any given time, only one server can be active on a device.

12.2 Attribute

An attribute is something that represents data. It could be thought of as just any
data at any given time when the device is in any given state. It could be the position,
size, mass, temperature, speed, or any other data that the device wants to share
with other devices. ATT protocol is designed to push or pull that data to or from
a remote device. Besides that ATT protocol also supports setting notifications and
indications so that the remote devices can be alerted when that data changes.

Some examples of attributes are:

	• The temperature provided by a thermometer.

	• The unit in which the temperature is provided.

	• The name of a device.

	• The manufacturer name and model number of a device.

Besides containing the value of the data, an attribute has three properties as-
sociated with it:

260 Attribute Protocol (ATT)Attribute Protocol (ATT)

1. Attribute Type.
2. Attribute Handle.
3. Access Permissions.

The structure of an attribute is show in Figure 12.2.
The clients can discover the handles of the various attributes on the server and

can read or write these attributes provided they have sufficient permissions to do
so. The server can also inform the client of the value of the attribute at any particu-
lar time. The various operations that can be carried out between the client and the
server will be explained in detail in further sections.

12.2.1 Attribute Type

The attribute type specifies what that particular attribute represents. This allows
the client to understand the meaning of that particular attribute. Some examples of
attribute type are:

	• <<Primary Service>>

	• <<Health Thermometer Service>>

	• <<Manufacturer Name>>

	• <<Serial Number>>

Figure 12.1 ATT protocol in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

Figure 12.2 Attribute structure.

Attribute Handle (2 octets)

 Attribute Type (2 octets or 16 octets)

 Attribute Value (Fixed or Variable length)

 Attribute Permissions (Established by GATT profile)
Length depends on
whether 16-bit UUID
or 128-bit UUID is
used

12.2 Attribute 261

The attribute type is identified by a Universally Unique Identifier (UUID). A
UUID is a 128-bit value which is considered to be unique over space and time. The
implementation could either use the set of predefined UUIDs defined by the Blue-
tooth SIG or define its own UUIDs.

In general, a shorter form of UUIDs is used. This shorter form is 16-bit. The
16-bit UUIDs are assigned by the Bluetooth SIG and share the same namespace as
the 16-bit SDP UUIDs. These are published on the Bluetooth Assigned Numbers
page on the Bluetooth SIG website.

The 128-bit value can be derived from the 16-bit value by combining it with
the Bluetooth_Base_UUID as follows:

128-bit UUID = 16-bit UUID * 296 + Bluetooth_Base_UUID
Note: This can also be derived by replacing the xxxx in the following with the

hexadecimal value of the 16-bit UUID 0000xxxx-0000-1000-8000-00805F9B34FB.

12.2.2 Attribute Handle

All attributes on the server are assigned a unique, non-zero attribute handle. This
handle is used by the client in all operations with the server to identify the attribute.

It is allowed to dynamically add or remove attributes on the server as long as
the new attributes are not assigned a handle which has already been used by any
other attribute in the past (even if that attribute has been deleted). This ensures that
clients always get a unique attribute handle.

Once an attribute has been assigned an attribute handle, it should not change
over time. This ensures that the clients can keep accessing that attribute with the
same handle.

The attributes on the server are ordered by the attribute handle.
An attribute handle of 0x0000 is reserved and an attribute handle of 0xFFFF is

known as the maximum attribute handle.

12.2.3 Attribute Permissions

Each attribute has a set of permissions associated with it which determines the level
of access that is permitted for that particular attribute. The attribute permissions
are used by a server to determine whether a client is allowed to read or write an
attribute value and whether Authentication or Authorization is required to access
that particular attribute.

Attribute permissions are a combination of following four permissions:

1. Access Permissions: This could be set to one of the following:
•	 Readable.
•	 Writable.
•	 Readable and Writable.

2. Encryption Permissions: This could be set to one of the following:
•	 Encryption Required.
•	 No Encryption Required.

3. Authentication Permissions: These are used by the server to determine if
an authenticated physical link is required when a client attempts to access

262 Attribute Protocol (ATT)Attribute Protocol (ATT)

that attribute or when the server has to send a notification or indication to
client. This could be set to one of the following:
•	 Authentication Required.
•	 No Authentication required.

4. Authorization Permissions: These are used by the server to determine if a
client needs to be authorized before accessing an attribute value. This could
be set to one of the following:
•	 Authorization Required.
•	 No Authorization Required.

If the client does not have sufficient permissions an error code is returned.
Some of the error codes are shown below:

	• Read Not Permitted: The attribute cannot be read.

	• Write Not Permitted: The attribute cannot be written.

	• Insufficient Authentication: The attribute requires authentication before it
can be read or written.

	• Insufficient Authorization: The attribute requires authorization before it can
be read or written.

	• Insufficient Encryption Key Size: The Encryption Key Size used for encrypt-
ing this link is insufficient.

	• Insufficient Encryption: The attribute requires encryption before it can be
read or written.

12.2.4 Attribute Value

An attribute value is an octet array that contains the actual value of the attribute.
The length of the attribute can be either fixed or variable:

	• Fixed length—The length can be one octet, two octet or four octet.

	• Variable Length—The attribute can be a variable length string.

To simplify things, ATT does not allow multiple attribute values to be transmit-
ted in a single PDU. A PDU contains only one attribute value and if the attribute
value is too long to transmit in a single PDU, it can be split across multiple PDUs.
There are some exceptions to this though—when a client requests for multiple at-
tributes to be read and the attributes have a fixed length, then the response can
contain multiple attributes.

12.2.5 Control Point Attributes

The attributes that cannot be read, but can only be written, notified or indicated are
called control point attributes. These are generally used to control the behavior of
a device and therefore called control point attributes.

One example of Control Point Attribute is the Alert Level characteristic defined
by the Immediate Alert Service. The remote devices can write the alert level into

12.3 Attribute Protocol 263

this attribute (It can be one of “No Alert, “Mid Alert”, or “High Alert”). Once the
alert level is written the device may take some specific action like flashing an LED
or sounding an alarm. This characteristic can only be written but cannot be read.

12.2.6 Grouping of Attribute Handles

ATT allows a set of attributes to be grouped together. In this case, a specific attri-
bute is placed at the beginning of the other attributes that form the group. The cli-
ents can request the first and the last handle associated with the group of attributes.

The groups are defined by the higher layer profile, GATT. GATT defines group-
ing of attributes for three attribute types:

	• <<Primary Service>>

	• <<Secondary Service>>

	• <<Characteristic>>

Once the attributes are grouped together, operations like Read By Group Type
can be done on those attributes.

These will be explained in detail in the next chapter.

12.2.7 Atomic Operations

At any point of time, multiple clients may be connected to a server. The server treats
each operation from the client as an atomic operation which is not impacted by any
other client initiating an operation at the same time.

For example if a client is writing a large amount of data by splitting it into
chunks, then the server treats this as an atomic operation. The commands to do
this, viz Prepare Write Request and Execute Write Request, will be explained in
further detail later in this chapter. This operation is not impacted if another client
starts doing another write operation in parallel.

12.3 Attribute Protocol

The attribute protocol defines how a device will discover, read and write the attri-
butes of another device. The following two roles are defined.

1. Attribute Server—The attribute server exposes a set of attributes and their
associated values to a peer device.

2. Attribute Client—The attribute client can discover, read and write the at-
tributes on a server. In addition to this it can be indicated and notified by
the server.

The attribute protocol supports data to be transferred both from the client to
server and vice versa. The client can read or write the attributes of the server. In
addition to this the server can also notify the client about any attribute.

The PDUs supported by ATT can be of following six method types:

264 Attribute Protocol (ATT)Attribute Protocol (ATT)

1. Request—This PDU is sent by the client to the server and the server re-
sponds with a response.

2. Response—This PDU is sent by the server in response to a request from the
client.

3. Command—This PDU is sent by the client to the server. No response is
received for this PDU.

4. Notification—This PDU is sent by the server to the client. The client does
not send anything back.

5. Indication—This PDU is sent by the server to the client and the client re-
sponds with a confirmation.

6. Confirmation—This PDU is sent by the client to confirm the receipt of an
indication.

These are shown in Figure 12.3.

12.3.1 PDU Format

The format of Attribute protocol PDUs is shown in Figure 12.4.
The Opcode contains the following:

	• Method—Identifies the method for which this PDU is sent.

	• Command Flag—Indicates whether this is a command. There is no acknowl-
edgement from the server for a command.

Figure 12.3 Attribute Client and Server.

Attribute Client

Attribute Server

Attribute Type

 Attribute Handle

 Attribute Value

 Attribute Permissions

Request

Response

Command

Indication

Confirmation

Notification

.

.

.

Attribute Type

 Attribute Handle

 Attribute Value

 Attribute Permissions

Attribute

Method Type

.

.

.

.

.

.
.
.
.

12.3 Attribute Protocol 265

	• Authentication Signature Flag—If this is 1, then an Authentication Signature
is appended to the PDU. (Authentication Signature will be explained shortly.)

The Attribute Parameters contain the data as per the specified Method.
The Authentication Signature is an optional field and is used for signing the

data that is present in this PDU. If this field is present, then it provides a signature
for the Opcode and Attribute Parameters fields. This field may be used if the link is
not encrypted but security is required.

12.3.2 Sequential Transactions

The Attribute protocol is a sequential request-response, indication-confirmation
protocol.

	• For commands and responses—The client sends one request to the server and
then waits for the response before sending the next request.

	• For indications and confirmations—The server sends one indication to the
client and then waits for the confirmation from the client before sending the
next indication.

This introduces a flow control mechanism for request-response and indication-
response transactions. The flow control mechanism is valid only for request-re-
sponse pairs and indication-confirmation pairs. So it is possible to have sequences
like request-indication-response-confirmation or request-notification-response.

Flow control of each client and server is independent.
A request-response pair or an indication-confirmation pair is called a transac-

tion. ATT defines a transaction timeout of 30 seconds. This means that if a request
is sent from the client to the server and the response is not received within 30 sec-
onds, then the transaction is considered to have timed out and the client can inform
the higher layers which initiated the transaction about the failure.

For notifications and commands, there is no response from the other side.
These can be sent at any time and there is no flow control. The notifications and
commands that cannot be processed are just discarded. So these PDUs are consid-
ered to be unreliable.

Figure 12.4 Format of attribute protocol PDU.

LSB

Opcode
(1 octet)

Attribute Parameters
(Variable Length)

Auth
Signature

Flag (1-bit)

Command
Flag (1-bit)

Method
(6-bit)

MSB

Authentication Signature
(Optional – 12 octets)

266 Attribute Protocol (ATT)Attribute Protocol (ATT)

One example of notifications is the intermediate temperature measurements
sent by a server acting as a thermometer. If the client receives those notifications,
then it displays the intermediate temperature value, otherwise those values just get
discarded.

12.4 Methods

As mentioned previously, the PDUs supported by ATT can be of following six
method types:

1. Request: Invokes a Response;
2. Response;
3. Command;
4. Notification;
5. Indication: Invokes a Confirmation;
6. Confirmation.

12.4.1 Request and Response Type Methods

The different PDUs for Request and Response type method are shown in Table
12.1. These PDUs are sent from the client to the server. The response that can be
sent by the server for each request is also shown. Besides that response, an Error
Response can also be sent from the server to the client.

12.4.1.1 Exchange MTU Request

The Exchange MTU Request is sent by the client to the server to:

	• Inform the server of the client’s maximum receive MTU size.

	• Request the server to respond with the server’s maximum MTU size.

Table 12.1 Methods of Request and Response Type
Request Response

Exchange MTU Request Exchange MTU Response

Find Information Request Find Information Response

Find By Type Value Request Find By Type Value Response

Read By Type Request Read By Type Response

Read Request Read Response

Read Blob Request Read Blob Response

Read Multiple Request Read Multiple Response

Read By Group Type Request Read By Group Type Response

Write Request Write Response

Prepare Write Request Prepare Write Response

Execute Write Request Execute Write Response

12.4 Methods 267

This request has the following parameter:

	• Client Rx MTU: Client Receive MTU Size.

This request is sent only by the client to the server. It is sent only once during
the connection.

The default value of ATT_MTU is 23 octets for LE. The exchange MTU re-
quest is used by the client if it wants to use an ATT_MTU bigger than this value. A
bigger value will finally be used if both client and server support that bigger value.

The message sequence chart of the Exchange MTU Request is shown in Figure
12.5.

12.4.1.2 Exchange MTU Response

The Exchange MTU Response is sent by the server to the client in response to the
Exchange MTU Request. It contains the server’s receive MTU size

This response has the following parameter:

	• Server Rx MTU: Server Receive MTU Size.

The message sequence chart of the Exchange MTU Response is shown in Fig-
ure 12.5.

After Exchange MTU request and response is complete, both the client and
server set their MTU_SIZE (ATT_MTU) to the minimum of server and client receive
MTU sizes. Both of them use the same size for all further requests and responses.

A practical example of Exchange MTU Request and Response is shown in Fig-
ure 12.19 towards the end of this chapter.

12.4.1.3 Find Information Request

The Find Information Request is sent by the client to the server to get a list of at-
tribute handles and their types. The structure of an attribute was shown in Figure

Figure 12.5 Exchange MTU Request and Response.

Client Server

Exchange MTU Request (Client Rx MTU)

Exchange MTU Response (Server Rx MTU)

ATT_MTU = Min(Client Rx MTU, Server Rx MTU)

268 Attribute Protocol (ATT)Attribute Protocol (ATT)

12.2. This request is used to get the first two fields (Attribute Handle, Attribute
Type) of that structure for a range of attributes.

The range of attributes is specified by two parameters:

	• Starting Handle: Starting handle of the range of handle numbers to search.

	• Ending Handle: Ending handle of the range of handle numbers to search.

The message sequence chart of the Find Information Request is shown in Fig-
ure 12.6.

12.4.1.4 Find Information Response

The Find Information Response is sent by the server to the client in response to the
Find Information Request. It contains the handle-UUID pairs (Attribute Handle,
Attribute Type) for the range of Attribute Handles that was provided by the client.

The parameters of this response are:

	• Format—Specifies the format of information data—Whether the handles
contain 16-bit UUID or 128-bit UUID.

	• Attribute Data List—handle-value pairs containing Attribute Handle and
Attribute Value.

The UUID can be either 16-bit or 128-bit. The type that is returned is con-
tained in the Format field.

Since the range of attributes can be long, this response can be split across mul-
tiple response packets but the handle-UUID pairs are not split across packets. The
handle-UUID pairs are sent in ascending order of the handle value.

The message sequence chart of the Find Information Response is shown in
Figure 12.6.

12.4.1.5 Find By Type Value Request

The Find By Type Value Request is sent by the client to the server to get a list of at-
tributes which contain a particular Attribute Type and Attribute Value.

The parameters of this request are:

Figure 12.6 Find information Request and Response.

Client Server

 Find Information Response (Format, Attribute Data List)

Find Information Request (Starting Handle, Ending Handle)

12.4 Methods 269

	• Starting Handle: Starting handle of the range of handle numbers to search.

	• Ending Handle: Ending handle of the range of handle numbers to search.

	• Attribute Type: UUID that specifies the Attribute Type to find.

	• Attribute Value: Attribute Value to find.

The UUID can be specified as only 16-bit.
The message sequence chart of the Find By Type Value Request is shown in

Figure 12.7.

12.4.1.6 Find By Type Value Response

The Find By Type Value Response is sent by the server to the client in response to
the Find By Type Value Request. It contains the list of handles that correspond to
attributes which exactly match the Attribute Type and Attribute Value provided by
the client in the Find By Type Value Request.

The parameters of this response are:

	• Handle Information List: List of handles that match the Attribute Type and
Attribute Value.

The message sequence chart of the Find By Type Value Response is shown in
Figure 12.7.

12.4.1.7 Read By Type Request

The Read By Type Request is sent by the client to the server to get a list of attributes
of a particular Attribute Type.

The parameters of this request are:

	• Starting Handle: Starting handle of the range of handle numbers to search.

	• Ending Handle: Ending handle of the range of handle numbers to search.

	• Attribute Type: UUID that specifies the Attribute Type to find.

The UUID can be specified as either 16-bit or 128-bit.

Figure 12.7 Find by type value Request and Response.

Client Server

Find By Type Value Request (Starting Handle,
Ending Handle, Attribute Type, Attribute Value)

Find By Type Value Response (Handle Information List)

270 Attribute Protocol (ATT)Attribute Protocol (ATT)

The message sequence chart of the Read By Type Request is shown in Figure
12.8.

12.4.1.8 Read By Type Response

The Read By Type Response is sent by the server to the client in response to the
Read By Type Request. It contains the list of handle-value pairs (Attribute Handle,
Attribute Value) that correspond to attributes which exactly match the Attribute
Type provided by the client in the Read By Type Request.

The parameters of this response are:

	• Length: The size of each attribute handle-value pair.

	• Attribute Data List: handle-value pairs containing Attribute Handle and At-
tribute Value.

Since the range of attributes can be long, this response can be split across mul-
tiple response packets but the handle-value pairs are not split across packets. The
handle-value pairs are sent in ascending order of the handle value.

The message sequence chart of the Read By Type Response is shown in Figure
12.8.

12.4.1.9 Read Request

The Read Request is sent by the client to the server to read the Attribute Value of
an attribute.

This request has the following parameter:

	• Attribute Handle: The handle of the attribute that is to be read.

The message sequence chart of the Read Request is shown in Figure 12.9.

12.4.1.10 Read Response

The Read Response is sent by the server to the client in response to the Read Re-
quest. It contains the Attribute Value corresponding to the attribute specified by the
Attribute Handle provided by the client in the Read Request.

Figure 12.8 Read by type Request and Response.

Client Server

Read By Type Request (Starting Handle,
Ending Handle, Attribute Type)

Read By Type Response (List of handle-value pairs)

12.4 Methods 271

The parameters of this response are:

	• Attribute Value: Attribute Value corresponding to the Attribute Handle.

If the Attribute Value is too big to fit in the ATT_MTU -1 size, then only the
ATT_MTU-1 octets are returned and the remaining octets can be read by the Read
Blob request.

The message sequence chart of the Read Response is shown in Figure 12.9.

12.4.1.11 Read Blob Request

The Read Blob Request is sent by the client to the server to read the Attribute Value
of an attribute starting from a particular offset. This request is useful in scenarios
where the Attribute Value is long and cannot fit ATT_MTU–1 octets. In that case
the Read Response reads only the first ATT_MTU-1 octets and the remaining octets
can be read using the Read Blob Request

The parameters of this request are:

	• Attribute Handle: The handle of the attribute that is to be read.

	• Value Offset: The offset from where the part of Attribute Value should be
read. The Value Offset parameter is based from zero. This means that the
first octet has an offset of zero.

The message sequence chart of the Read Blob Request is shown in Figure 12.10.

Figure 12.10 Read blob Request and Response.

Client Server

Read Blob Request (Attribute Handle, Value Offset)

 Read Blob Response (Attribute Value
starting at Value Offset)

Figure 12.9 Read Request and Response.

Client Server

Read Request (Attribute Handle)

Read Response (Attribute Value)

272 Attribute Protocol (ATT)Attribute Protocol (ATT)

12.4.1.12 Read Blob Response

The Read Blob Response is sent by the server to the client in response to the Read
Blob Request. It contains a part of the Attribute Value corresponding to the attri-
bute specified by the Attribute Handle provided by the client in the Read Blob re-
quest. The starting octet of the part of the Attribute Value corresponds to the Value
Offset that was provided in the Read Blob Request.

The parameter of this response is:

	• Part Attribute Value: octets of the Attribute Value starting at Value Offset.

If the part of the Attribute Value that is to be returned is too big to fit in the
ATT_MTU -1 size, then only the ATT_MTU-1 octets are returned and the remain-
ing octets can be read by another Read Blob Request by adjusting the offset.

The message sequence chart of the Read Blob Response is shown in Figure
12.10.

12.4.1.13 Read Multiple Request

The Read Multiple Request is sent by the client to the server to read the Attribute
Values of two or more attributes. This request is useful in scenarios where multiple
attributes are to be read using one single request.

This request has the following parameter:

	• Set of Handles: A set of two or more attribute handles.

The message sequence chart of the Read Multiple Request is shown in Figure
12.11.

12.4.1.14 Read Multiple Response

The Read Multiple Response is sent by the server to the client in response to the
Read Multiple Request. It contains a set of Attribute Values corresponding to the
attributes specified by the Attribute Handles provided by the client in the Read
Multiple Request. The set of values are just concatenated in the same order in which
the Attribute Handles were provided in the Read Multiple Request.

Figure 12.11 Read multiple Request and Response.

Client Server

Read Multiple Response (Set of Values)

 Read Multiple Request (Set of Handles)

12.4 Methods 273

The parameter of this response is:

	• Set of Values: A set of two or more values corresponding to the Set of Handles.

The message sequence chart of the Read Multiple Response is shown in Figure
12.11.

12.4.1.15 Read By Group Type Request

The Read By Group Type Request is sent by the client to the server to read the At-
tribute Values of a particular group of services. This request is similar to the Read
By Type Request. The only difference is that it specifies an Attribute Group Type
instead of an Attribute Type.

The GATT Profile provides support for grouping attributes into various types.
This request is used to read the attributes of the <<Primary Service>> and <<Sec-
ondary Service>> groups. This will be explained in detail in the next chapter.

The parameters of this request are:

	• Starting Handle: Starting handle of the range of handle numbers to search.

	• Ending Handle: Ending handle of the range of handle numbers to search.

	• Attribute Group Type: UUID that specifies the Attribute Group Type to read.

The message sequence chart of the Read By Group Type Request is shown in
Figure 12.12.

A practical example of Read By Group Type Request that is used to retrieve
the Primary Services from a server is shown in Figure 12.20 towards the end of this
chapter.

12.4.1.16 Read By Group Type Response

The Read By Group Type Response is sent by the server to the client in response
to the Read By Group Type Request. It contains the handles and values of the at-
tributes with the specified Attribute Group Type.
The parameters of this response are:

Figure 12.12 Read by group type Request and Response.

Client Server

Read By Group Type Response (Length, Attribute Data List)

Read By Group Type Request (Starting Handle,
Ending Handle, Attribute Group Type)

274 Attribute Protocol (ATT)Attribute Protocol (ATT)

	• Length: Size of each attribute data.

	• Attribute Data List: This contains the Attribute Handle, the End Group Han-
dle and the Attribute Value.

The End Group Handle is the handle of the last attribute within a group.
The message sequence chart of the Read By Group Type Response is shown in

Figure 12.12.
A practical example of Read By Group Type Response that is used to retrieve

the Primary Services from a server is shown in Figure 12.21 towards the end of this
chapter.

12.4.1.17 Write Request

The Write Request is sent by the client to the server to request the server to write the
value of an attribute and acknowledge that it has written it by a Write Response.
If there is any error while writing (For example insufficient permissions), then an
Error response is sent by the server to the client.

The parameters of this request are:

	• Attribute Handle: The handle of the attribute.

	• Attribute Value: The value to be written

The message sequence chart of the Write Request is shown in Figure 12.13.

12.4.1.18 Write Response

The Write Response is sent by the server to the client in response to the Write Re-
quest. It confirms that the Attribute Value has been successfully written.

This response does not have any parameters.
The message sequence chart of the Write Response is shown in Figure 12.13.

12.4.1.19 Prepare Write Request

The Prepare Write Request is sent by the client to the server to prepare to write the
value of an attribute. This is useful in scenarios where the Attribute Value is long

Figure 12.13 Write Request and Response.

Server

Write Response

Write Request (Attribute Handle, Attribute Value)

Client

12.4 Methods 275

and cannot fit one PDU. In this case the client sends multiple Prepare Write Request
PDUs to the server and the server queues those requests. Once all Prepare Write
Request PDUs have been sent, the client sends an Execute Write Request PDU. After
the Execute Write Request PDU is received, the server writes all the queued octets of
the Attribute Value that were received in the Prepare Write Request.

The new Attribute Values take effect only after the Execute Write Request has
been executed on the server.

If a server is serving multiple clients, then it queues the Prepare Write Requests
from each of the clients separately. The execution of queue from one client does not
affect the queue from another client.

The parameters of this request are:

	• Attribute Handle: The handle of the attribute.

	• Value Offset: The offset of the first octet to be written.

	• Part Attribute Value: The octets of the Attribute Value to be written starting
at Value Offset.

The message sequence chart of the Prepare Write Request is shown in Figure
12.14.

12.4.1.20 Prepare Write Response

The Prepare Write Response is sent by the server to the client in response to the
Prepare Write Request. It is used to acknowledge that the value has been received
by the server and placed in the write queue.

The parameters of this request are the same as those of the Prepare Write Re-
quest. These are:

	• Attribute Handle: Same as the one provided in Prepare Write request

	• Value Offset: Same as the one provided in the Prepare Write request.

	• Part Attribute Value: Same as the one provided in the Prepare Write request.

The message sequence chart of the Prepare Write Response is shown in Figure
12.14.

12.4.1.21 Execute Write Request

The Execute Write Request is sent by the client to the server to either execute the
write or cancel the write of all prepared values that were inserted in the write queue
of the server using Prepare Write Requests.

If a server is serving multiple clients, then it queues the Prepare Write Requests
from each of the clients separately. The execution of queue from one client does not
affect the queue from another client.

This request has the following parameter:

	• Flags – 0x00: Cancel all prepared writes. 0x01: Write all pending prepared
values.

276 Attribute Protocol (ATT)Attribute Protocol (ATT)

If the Flags parameter contains 0x01, then all pending writes that were queued
earlier are written in the same order in which they were queued.

The message sequence chart of the Execute Write Request is shown in Figure
12.14.

12.4.1.22 Execute Write Response

The Execute Write Response is sent by the server to the client in response to the
Execute Write Request. It is used to confirm that all the values that were earlier
queued have been successfully written.

This response does not have any parameters.
The message sequence chart of the Execute Write Response is shown in Figure

12.14.

Figure 12.14 Prepare write Request and Response, execute write Request and Response.

Client Server

 .
.
.

Execute Write Response

Add to write
queue

Prepare Write Request (Attribute Handle,
Value Offset1, Part Attribute Value1)

Prepare Write Response (Attribute Handle,
Value Offset1, Part Attribute Value1)

Prepare Write Request (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Response (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Request (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

Prepare Write Response (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

 Execute Write Request (Flags)

Execute all
queued writes

Add to write
queue

Add to write
queue

12.4 Methods 277

12.4.2 Command Type Methods

The different PDUs for Command type are shown in Table 12.2. These PDUs are
sent from the client to the server. There is no response or Error Response from the
server in response to these PDUs.

12.4.2.1 Write Command

The Write Command is sent by the client to the server to request the server to write
the value of an attribute. Generally this command is used for control-point attri-
butes. The server does not acknowledge that it has written the value. Even if there
is an error, the server does not send an Error Response.

The parameters of this command are:

	• Attribute Handle: The handle of the attribute.

	• Attribute Value: The value to be written.

The message sequence chart of the Write Command is shown in Figure 12.15.

12.4.2.2 Signed Write Command

The Signed Write Command is sent by the client to the server to request the server
to write the value of an attribute after including an authentication signature with
the data PDU. Generally this command is used for control-point attributes. The
server does not acknowledge that it has written the value. Even if there is an error
(like authentication signature verification fails), the server does not send an Error
Response.

The parameters of this command are:

	• Attribute Handle: The handle of the attribute.

	• Attribute Value: The value to be written.

	• Authentication Signature: 12-octet authentication signature.

Table 12.2 Methods of Command Type
Write Command

Signed Write Command

Figure 12.15 Write Command.

Client Server

Write Command (Attribute Handle, Attribute Value)

278 Attribute Protocol (ATT)Attribute Protocol (ATT)

The Authentication Signature provides the feature of data signing. The server
verifies the authentication signature to check the authenticity of the client before
actually writing that value.

The message sequence chart of the Signed Write Command is shown in Figure
12.16.

12.4.3 Notification Type Methods

The different PDUs for Notification type are shown in Table 12.3. These PDUs
are sent from the server to the client. There is no response from the client for these
PDUs.

12.4.3.1 Handle Value Notification

The Handle Value Notification is sent by the server to the client to provide informa-
tion about an attribute at any time.

The parameters of this notification are:

	• Attribute Handle: The handle of the attribute.

	• Attribute Value: The current value of the attribute.

The message sequence chart of the Handle Value Notification is shown in Fig-
ure 12.17.

12.4.4 Indication and Confirmation Type Methods

The different PDUs for Indication and Confirmation type are shown in Table 12.4.
The Indication PDUs are sent from the server to the client. The client responds with
a Confirmation PDU.

12.4.4.1 Handle Value Indication

The Handle Value Indication is sent by the server to the client to provide informa-
tion about an attribute at any time.

Figure 12.16 Signed write command.

Client Server

Signed Write Command (Attribute Handle,
Attribute Value, Authentication Signature)

Table 12.3 Methods of Notification Type
Handle Value Notification

12.4 Methods 279

The only difference from Handle Value Notification is that in this case the cli-
ent responds with a Handle Value Confirmation. In case the value of the attribute is
long, the client can use a Read Blob Request to get the entire value of the attribute
after receiving the notification

The parameters of this indication are:

	• Attribute Handle: The handle of the attribute.

	• Attribute Value: The current value of the attribute.

The message sequence chart of the Handle Value Notification is shown in Fig-
ure 12.18.

12.4.4.2 Handle Value Confirmation

The Handle Value Confirmation is sent by the client to the server in response of a
Handle Value Indication to confirm that it has received the Handle Value Indication.

This confirmation does not have any parameters.
The message sequence chart of the Handle Value Confirmation is shown in

Figure 12.18.

Table 12.4 Methods of Indication and Confirmation Type
Indication Confirmation

Handle Value Indication Handle Value Confirmation

Figure 12.18 Handle value indication and confirmation.

Client Server

Handle Value Confirmation

Handle Value Indication (Attribute Handle, Attribute Value)

Figure 12.17 Handle value notification.

Client Server

Handle Value Notification (Attribute Handle, Attribute Value)

280 Attribute Protocol (ATT)Attribute Protocol (ATT)

12.5 Practical Examples

12.5.1 Exchange MTU

The air log captures of Exchange MTU Request and Response are shown in Fig-
ure 12.19. It shows that the client sends an Rx MTU size of 525 octets while the
server responds with the Server Rx MTU of 23 octets. After these two PDUs are ex-
changed, both client and server will set the MTU to the minimum of the two values.
This means that both the client and the server will set the MTU size to 23 octets and
will not be transmitting any packets with data more than 23 octets.

12.5.2 Reading Primary Services of a Device

The list of primary devices supported by a remote device can be read by using the
Read By Group Type Request with the UUID of <<Primary Service>>.

This is done by the client first sending the Read By Group Type Request to the
server with the following parameters.

	• Starting Attribute Handle = 1

	• Ending Attribute Handle = 65535

	• Attribute Group Type = Primary Service

This is shown in Figure 12.20.

Figure 12.19 Example of exchange MTU Request and exchange MTU Response.

12.5 Practical Examples 281

The server responds to this request with a Read By Group Type Response which
contains the Attribute Data List. In this example, the server returns the length as
6 octets for each handle-value pair and three service declarations in the response:

	• Length: The size of each attribute handle-value pair = 6 octets.

	• Attribute Data List: handle-value pairs containing Attribute Handle and At-
tribute Value.

1. Generic Access Profile with Starting Attribute Handle 0x01 and Ending
Attribute Handle 0x07.

2. Generic Attribute Profile with Starting Attribute Handle 0x16 and Ending
Attribute Handle 0x19.

3. Link Loss Alert with Starting Attribute Handle 0x80 and Ending Attribute
Handle 0x82.

This is shown in Figure 12.21. It may be noted that the last handle that is
returned is 0x82. This indicates to the client that if it wants to retrieve further ser-
vices, then it should start with the next higher attribute handle, i.e., 0x83.

The client then continues to read more primary services. This time it sends the
Starting Attribute Handle as 0x83 and all other parameters same as the previous
request. This is shown in Figure 12.22.

The client responds with the set of services contained between the Attribute
Handles 0x83 and 0x65535. This includes:

	• Length: The size of each attribute handle-value pair = 6 octets.

	• Attribute Data List: handle-value pairs containing Attribute Handle and At-
tribute Value.

1. Immediate Alert Service with Starting Attribute Handle 0x83 and
Ending Attribute Handle 0x85.

2. Tx Power Service with Starting Attribute Handle 0x86 and Ending
Attribute Handle 0x88.

This is shown in Figure 12.23.

Figure 12.20 First read by group type Request for getting primary services.

282 Attribute Protocol (ATT)Attribute Protocol (ATT)

This time the client receives the last attribute handle as 0x88. So it sends a
third Read By Attribute Type Request, this time with the Starting Handle 0x89 to
retrieve the next set of primary services.

This time the server does not have any more Primary services to report between
the specified Attribute Handles. So it responds with an Error Response. This is
shown in Figure 12.24.

This indicates to the client that it has received all the attributes that it had
requested.

Figure 12.22 Second read by group type Request.

Figure 12.21 First read by group type Response providing the primary services.

12.5 Practical Examples 283

Figure 12.23 Second read by attribute type Response.

Figure 12.24 Third read by attribute Type Request.

Read By Group Type
Request

UUID = Primary ServiceStarting Attribute Handle = 0x89

Figure 12.25 Error Response from the server indicating no further attributes.

284 Attribute Protocol (ATT)Attribute Protocol (ATT)

12.6 Summary

The Attribute Protocol provides a very simple mechanism to exchange information
between devices in the form of attributes. An attribute could be any data that a de-
vice decides to share with other devices. Besides the data, the attribute also contains
additional information about the data like type of data, access permissions, etc.

ATT follows a client-server model. To keep the protocol simple, only sequential
transactions are supported. This means that the next transaction is not initiated
until a previous transaction is completed. In general the amount of data transferred
in LE is quite small, typically in the range of 10–20 octets so that it can be fit in a
single LE ACL data packet. Still ATT provides features to read and write longer
amount of data by breaking that into smaller prepare transactions followed by an
execute transaction.

The services of ATT are used by the Generic Attribute Profile which defines
a hierarchy of services and characteristics using these attributes. This will be ex-
plained in detail in the next chapter.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Assigned Numbers Specification: https://www.bluetooth.org/Technical/AssignedNumbers/home.
htm.

285

C H A P T E R 13

Generic Attribute Profile (GATT)

13.1 Introduction

In the previous chapter, the ATT protocol described the structure of an attribute
and the mechanisms of accessing those attributes. The Generic Attribute Profile
(GATT) defines a framework of services and characteristics using these attributes
as building blocks. It also defines how a device will discover, read, write, notify,
and indicate the characteristics. GATT also defines the mechanisms for configuring
the broadcast of attributes. The position of GATT in LE protocol stack is shown in
Figure 13.1.

The ATT protocol defines a flat set of attributes and mechanisms to access
those attributes. ATT protocol does not define any hierarchy of the attributes.
GATT allows the server to define a hierarchy so that the attributes are grouped
into primary and secondary services and these services can include characteristics.
Each of these characteristics has its own set of permissions which can be defined
by GATT or a higher layer entity.

The GATT and ATT can be used on both BR/EDR and LE transport. It is man-
datory to implement GATT and ATT for LE since these provide the basic capability
to discover services of a remote device (similar to SDP in the case of BR/EDR). It is
optional to implement GATT and ATT on the BR/EDR transport.

The GATT profile defines the client and server roles similar to the SDP profile.
A device may act as a server, a client, or both. In general the LE-only devices (like
sensors) are quite simple and only implement the server roles with services and
characteristics needed to fulfill the application requirements.

The GATT profile is defined in such a manner that most of the complexity is
encapsulated within this profile. The profiles that are on top of GATT are very
simple.

The symbols << >> are used to indicate a Bluetooth SIG defined UUID. For
example <<Characteristic>> is used to indicate a Bluetooth SIG defined UUID for
Characteristic. It is a 128-bit unique value. In general, a shorter 16-bit equivalent
of this value is used.

286 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.1.1 Profile Dependencies

Similar to BR/EDR profiles, the dependencies of GATT based profiles are shown in
Figure 13.2. A device can support one or more profiles at the same time.

Generic Access Profile (GAP) and Generic Attribute Profile (GATT) are manda-
tory for all devices that support LE. Devices may implement more profiles depend-
ing on the requirements of the application. The dependencies amongst profiles are
depicted in Figure 13.2. One profile is dependent on another profile if it uses parts
of that profile. A dependent profile is shown in an inner box and the outer box
indicates profiles on which it is directly or indirectly dependent. GAP and GATT
are shown in the outermost box since all other profiles are dependent on it.

GATT based profile architecture is much simpler than the architecture of BR/
EDR profiles. It has only two layers. The outermost layer is GAP and GATT. All
other profiles are located inside it at the same level. There is no further layering
between the profiles (this is another step towards simplicity in LE).

Figure 13.1 GATT in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

Figure 13.2 GATT-based profile dependencies.

Generic Access Profile (GAP), Generic Attribute Profile (GATT)

Proximity Profile (PXP)

Find Me Profile (FMP)

Alert Notification Profile (ANP)

Battery Status Profile

Health Thermometer Profile (HTP)

Heart Rate Profile (HRP)

13.1 Introduction 287

13.1.2 GATT-Based Profile Architecture

The Bluetooth Core 4.0 specification introduced a very simple GATT based profile
architecture. It is mandatory for LE devices and optional for BR/EDR devices.

In this architecture, the bulk of the profile complexity is embedded in GATT.
The profiles on top are very simple and only needed to implement the functionality
particular to devices of that particular category. For example, the health thermome-
ter profile only has to implement the functionality specific to thermometer devices,
like characteristics for providing the temperature. The remaining functionality like
discovering the services, reading or writing attributes, or setting an indication are
provided by GATT.

Another simplification introduced by LE is that profiles are defined in such a
manner that the number of mandatory characteristics a device needs to support is
kept to a minimum with the remaining characteristics defined as optional. So, de-
pending on the complexity that the device can handle, it can either implement only
minimum mandatory characteristics or many more optional characteristics.

For example, the device information service defines several characteristics
including:

1. Manufacturer Name String.
2. Model Number String.
3. Serial Number String.
4. Hardware Revision String.
5. Firmware Revision String.
6. Software Revision String.

It is mandatory to implement any one of the characteristics and the remaining
characteristics may be optional.

GATT defines the concept of a service and a characteristic. A profile can pro-
vide one or more services. Each service comprises one or more characteristics. This
is shown in Figure 13.3.

Figure 13.3 Relationship between profiles, services, and characteristcs.

Device

Characteristic 1

Profile 1 Profile 2

Service 1 Service 2

Characteristic 2

Profile 3

Characteristic 3

…

…

…

288 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

The GATT-based profile architecture is illustrated in Figure 13.4 using four
profiles as examples.

The Proximity Profile (PXP) has two roles—Monitor role and Reporter role. In
the reporter role, it provides three services:

1. Link Loss Service—Mandatory.
2. Immediate Alert Service—Optional.
3. Tx Power Service—Optional.

The Link Loss Service contains the Alert Level Characteristic. The Tx Power
Service contains the Tx Power Level Characteristic.

The Find Me Profile (FMP) has two roles—Locator and Target. In the locator
role, it does not provide any services. In the target role, it provides only one service:

1. Immediate Alert Service—Mandatory.

Grouping of attributes—An Analogy.

As an analogy, let’s take the example of an organization which contains, let’s say
500 people. It would be very difficult to manage the organization if all the 500
people are organized in a flat structure. So they would be grouped into various
departments. There could be a marketing department, an admin department, an
engineering department, and so on. The engineering department may further be
organized into subdepartments like software engineering, hardware engineering,
architecture, development, and testing. Organizing the people into various depart-
ments and subdepartments makes the functioning of the organization smoother,
better organized, and effective.

ATT defines a flat structure of attributes and relevant operations for those attri-
butes. This could be considered to be the 500 people in the organization.

GATT organizes those into profiles, services, and characteristics. A profile could
be considered similar to a department like HR or admin. Each department could
be functioning independently. Similarly profiles are independent of each other.
Each profile can provide one or more services. This could be considered to be ser-
vices provided by each department. HR could provide services of payroll, training,
and so on.

Finally, each service could either contain subservices or contain one or more char-
acteristics. In our analogy, subservices could be the subdepartments like software
engineering, or hardware engineering. The characteristics would be the people
who are providing these services of payroll, training, engineering etc.

In summary, GATT groups similar attributes into structures which are easy to
manage instead of one large collection of attributes. So it groups all attributes
related to temperature together in one service, time together in another service,
and heart rate in a third service. A profile may contain one or more such services.

13.1 Introduction 289

While the Immediate Alert Service is optional in PXP, it is mandatory in FMP.
If a device supports both profiles, then this service can be shared with both of the
profiles.

The Heart Rate Monitor profile (HRP) has two roles—Collector and Sensor. In
the sensor role, it provides two services:

Figure 13.4 Example of profiles, services, and characteristics.

Proximity Profile (Reporter Role)

Link Loss Service Immediate Alert
Service

Tx Power Service

Alert Level
Characteristic

Tx Power Level
Characteristic

Alert Level
Characteristic

Find Me Profile (Target Role)

Immediate Alert
Service

Alert Level
Characteristic

Optional or conditional Service or
Characteristic

Heart Rate Profile (Sensor Role)

Heart Rate Service

Heart Rate
Measurement
Characteristic

Device Information
Service

Heart Rate
Measurement
Client
Characteristic
Conf Descriptor

Body Sensor
Location

Heart Rate
Control Point

Manufacturer
Name
Characteristic

Model Number
Characteristic

Serial Number
Characteristic

.

.

.

Find Me Profile (Locator Role)

290 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

1. Heart Rate Service—Mandatory.
2. Device Information Service—Mandatory.

The Heart Rate Service (HRS) provides four characteristics:

1. Heart Rate Measurement— Mandatory.
2. Heart Rate Measurement Client Characteristic Configuration

Descriptor—Mandatory.
3. Body Sensor Location—Conditional.
4. Heart Rate Control Point—Conditional.

13.1.2.1 Profile

A profile is composed of one or more services that are needed to fulfill a function.
Some of the GATT-based profiles will be explained in detail in Chapter 15.

13.1.2.2 Service

A service can be considered to be a data structure used to describe a particular func-
tion or a feature. A service is a collection of characteristics. Besides characteristics,
a service may reference other services using include definitions.

The specification defines the services separately from the profiles. So it is pos-
sible for two or more profiles to use some common services if those are needed to
fulfill the particular use those profiles are supporting.

For example, the Device Information Service (DIS) shown in Figure 13.4 is a
generic service that provides information about the device like the manufacturer
name, serial number, model number, etc. This service can be included in the profiles
which need to provide this information to the remote devices. As another example,
the Immediate Alert Service (IAS) is included in both Find Me Profile and Proxim-
ity Profile. In the Find Me Profile, this service is mandatory while in the Proximity
Profile this service is optional.

Every device must expose at least two services:

1. Generic Access Service.
2. Generic Attribute Service.

A service is defined by its service definition. The service definition may contain:

	• References to other services using include definitions.

	• Mandatory characteristics.

	• Optional characteristics.

The service definition will be explained in detail later.
A service is defined in a specification which is different from the profile speci-

fications. So there are service specifications for Immediate Alert Service, Device
Information Service, Link Loss Service, etc.

There are two types of services:

13.1 Introduction 291

1. Primary Service.
2. Secondary Service.

Primary Service
A primary service exposes the primary usable functionality of the device. The Pri-
mary services of a device are discovered using the Primary Service Discovery pro-
cedure that will be explained later in this chapter. For example, in the practical
example shown in the previous chapter, the primary services discovered from the
remote device included:

	• Link Loss Alert.

	• Immediate Alert Service.

	• Tx Power Service.

Secondary Service
A secondary service is intended to be referenced from a primary service, another
secondary service, or other higher layer specification. It provides auxiliary function-
ality for the device. It is only relevant in the context of the service or higher layer
specification that references it.

Referenced Service
GATT provides a mechanism for a service to reference other services. When a ser-
vice references another service, the entire referenced service becomes a part of that
service. This includes any characteristics or included services as well. GATT permits
the references to be nested without any restrictions on the depth of the references.

The service definition contains an include definition at the beginning of the
service definition to include another service.

13.1.2.3 Characteristic

A characteristic is a value used in a service along with information about that value.
A characteristic is defined by a characteristic definition. A characteristic definition
contains a characteristic declaration, characteristic properties and a characteristic
value. Besides this, it may optionally contain one or more characteristic descriptors
that describe the value or permit configuring that value.

Some examples of characteristics are:

	• Device Name Characteristic to provide the friendly name of the device to
remote devices.

	• Manufacturer Name, Model Number, Serial Number Characteristics to pro-
vide information about the device.

	• Temperature Measurement Characteristic to provide a temperature
measurement.

	• Temperature Type Characteristic to describe the location on the human body
where the temperature is measured.

292 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

Some examples of characteristic descriptors are:

	• Characteristic Descriptor for the Temperature Measurement Characteristic
to configure that characteristic to generate an indication when the tempera-
ture measurement is ready.

	• Characteristic Descriptor for the Blood Pressure Measurement Characteristic
to configure that characteristic to generate an indication whenever the blood
pressure measurement is ready.

Figure 13.5 shows a simplified view of the Heart Rate Profile to illustrate the
relationship between profile, service and characteristic.

13.2 Roles

Similar to ATT, GATT defines the following two roles:

1. Client: The client initiates transactions to the server and can receive re-
sponses from the server. This includes commands and requests sent to the
server and responses, indications and notifications received from the server.

2. Server: The server receives the commands and requests from the client and
sends responses, indications and notifications to the Client.

A device can act in both the roles at the same time. The various transactions
between a client and the server are shown in Figure 13.6.

An example of a GATT client and server is shown in Figure 13.7. The mobile
phone acts as a GATT client and the heart rate monitor acts as a GATT server. The
mobile phone sends requests to the heart rate monitor to get information from it
like the Model Number. The heart rate monitor sends the Model number in the
response. Once the Heart Rate Monitor has collected a measurement, it may send
a notification to the mobile phone of the Heart Rate Measurement Value.

Figure 13.5 Profile, service, and characteristic for heart rate profile.

Heart Rate Profile

Heart Rate Service

Heart Rate Measurement Characteristic

.

.

.

13.3 Attributes 293

13.3 Attributes

The structure of an attribute is defined by the ATT protocol as explained in Chapter
12. It is shown in Figure 13.8.

The Attribute Handle is used to uniquely refer to an attribute. It ranges from
0x0001 to 0xFFFF. The attributes are arranged in increasing order of attribute
handles. It is not mandatory for the attribute handles to be contiguous. There may
be gaps in the numbering of the attribute handles.

The Attribute Type describes the type of an attribute. It is in the form of a 16-
bit UUID or 128-bit UUID.

Figure 13.6 GATT Client and Server transactions.

ResponseClient

Request

Command

Indication

Confirmation

Notification

Server

Client Server

Client

Client

Server

Server

No message is sent from
the Server in response to
a Command

No message is sent from
the Client in response to
a Notification

Transaction 1: Request and Response

Transaction 2: Command

Transaction 3: Notification

Transaction 4: Indication and Confirmation

294 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

The Attribute Permissions are defined by either the GATT profile or a higher
layer profile or application. This defines whether an attribute can be read or writ-
ten or whether it requires authentication or authorization. As shown in Figure
13.10, the attributes containing list of services and characteristics supported by a
device have the following permissions:

	• Read-Only.

	• No Authentication required.

	• No Authorization required.

The permissions of the Characteristic Value Declaration or the Characteristic
Descriptor Declaration are not set by the GATT profile. Rather these are set by the
higher layer profile or the implementation. For example, the Health Thermometer
Service defines the following permissions for the characteristics:

	• Temperature Measurement—No Permissions required.

	• Measurement Interval—No Permissions required for reading, Authentica-
tion required for writing.

This means that any device can read the measurement interval but the device
needs to authenticate itself if it wants to write this characteristic.

Figure 13.7 GATT Client and Server example.

GATT Client
Mobile Phone

GATT Server
Heart Rate Monitor

Notify (Heart Rate Measurement Value)

Request (Read Model Number)

Response (Model Number)

Figure 13.8 Attribute structure.

Length of attribute field
depends on whether
16-bit UUID is used
or 128-bit UUID is used

Attribute Handle (2 octets)

Attribute Type (2 octets or 16 octets)

Attribute Value (Fixed or Variable length)

Attribute Permissions

13.3 Attributes 295

13.3.1 Attribute Caching

In order to save power, GATT allows reducing the number of transactions between
the client and server by supporting caching of attributes. The clients can discover
the set of attributes on the server and store this information. The clients can use
these values during the lifetime of a connection and also across connections. This
means that once a client disconnects, it can again use the information it had dis-
covered about the attributes when it connects again to the server. This saves both a
significant number of packet exchanges and a lot of time that would otherwise have
been spent in discovering the attributes again.

The devices in which the services can change over a period of time define a
Service Changed Characteristic. This characteristic supports indication. If any of
the services on the device changes (added, modified, or removed), the server sends
an indication. Three scenarios are possible:

1. One or more clients are connected to the server: The indication is sent by
the server to all the connected client(s).

2. One or more clients are bonded but not connected: The indication is sent
by the server whenever the client(s) connect next time.

3. The clients are not bonded or connected: The attribute cache is consid-
ered to be valid only during the connection. So the clients should do an
attribute discovery on connection if the server supports Service Changed
Characteristic.

This is shown in Figure 13.9.
The Service Changed Indication contains the range of Attribute Handles that

may have changed and for which the attribute cache is no longer valid. The Service
Changed Characteristic is explained later in this chapter.

Figure 13.9 Attribute caching.

Confirmation

Indication sent immediately

ServerClient-1
(Connected)

Client-2
(Bonded but not Connected)

Indication sent on
next connection

Client-3
(Neither Bonded nor Connected)

Service
Changed
Characteristic

Service Discovery done
again on connection

296 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.3.2 Attribute Grouping

ATT protocol provides support for attributes and procedures for accessing those
services. GATT defines a structure using the attributes and groups the attributes
into three types:

	• <<Primary Service>>

	• <<Secondary Service>>

	• <<Characteristic>>

Depending on the implementation, a device may implement the groups that are
required for that particular implementation. GATT provides procedures for access-
ing the services and characteristics.

13.3.3 Notification and Indication

Notifications and Indications are another power saving mechanism introduced by
the LE specification. The power consumption of devices which use Notification and
Indication procedures is generally much lower than the scenario where the same
functionality is implemented using Read procedures.

As an analogy, consider the interrupt and polling mechanisms in the micropro-
cessor world. If a peripheral like keyboard is connected to a microprocessor, the
microprocessor can get the keystrokes from the keyboard using two mechanisms:

	• Polling: The microprocessor reads the keyboard registers periodically to see
if a key has been pressed.

	• Interrupt: The keyboard sends an interrupt whenever the user presses a key.

If the microprocessor uses polling mechanism, it may need to read the key-
board registers as frequently as once in 10 milliseconds in order to ensure that
keystrokes are not lost. If the user is away for several hours, this would mean that
microprocessor will continue generating read transactions without fetching any
meaningful data leading to unnecessary power consumption.

If the microprocessor uses the interrupt mechanism, it will be informed by the
keyboard whenever a key is pressed and the microprocessor can do the appropri-
ate processing only when the key is pressed. This would lead to significant power
savings.

The Notification and Indication mechanisms are comparable to interrupts.
Whenever the LE server has to inform the LE client(s) that it has some data to
send, it can send a notification or indication and the client can do the appropriate
processing only when the key is pressed.

Some examples are:

	• The Health Thermometer Profile uses Indication for the Temperature Mea-
surement characteristic. Whenever it has a temperature measurement to send
to the clients, it sends an Indication.

13.4 Service Definition 297

	• The Heart Rate Monitor Profile uses Notification for Heart Rate Measure-
ment characteristic. Whenever it has a heart rate measurement to send to the
clients, it sends a Notification.

The main difference between Notification and Indication is that with Notifica-
tion there is no acknowledgement sent by the client to the server while in the case
of Indication the client sends a Confirmation to the server so that the server is in-
formed that the client has received the Indication.

13.4 Service Definition

As explained earlier, a service is defined by its service definition. A service definition
contains three parts in the following order:

1. Service Declaration (Mandatory).
2. Include Definitions (Optional: Zero or More).
3. Characteristic Definitions (Optional: Zero or More).

The structure of the service definition is shown in Figure 13.10 and explained
in the following sections.

13.4.1 Service Declaration

The definition of a service starts with a service declaration. The service declaration
is the mandatory part of a service definition. This is an attribute with:

	• Attribute Type = UUID of <<Primary Service>> or <<Secondary Service>>

	• Attribute Value = UUID of service. This is called Service UUID.

	• Attribute Permissions = Read Only, No Authentication, No Authorization.

13.4.2 Include Definition

An include definition is used to reference other services. A service definition may
contain zero or more include definitions. Each include definition contains only one
include declaration. The include declaration is an attribute with:

	• Attribute Type = UUID of <<Include>>

	• Attribute Value = Attribute handle of included service, end group handle,
and service UUID.

	• Attribute Permissions = Read Only, No Authentication, No Authorization.

13.4.3 Characteristic Definition

A characteristic definition is used to define a characteristic within a service. It con-
tains a value as well as information about the value. A service definition may contain

298 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

Figure 13.10 Service definition.

Characteristic Value Declaration

Characteristic Definition

Service Definition

Include Definition

Service Declaration

Characteristic Declaration

Characteristic Descriptor Declaration

Attribute Handle

Attribute Type = 0x2800 for <<Primary Service>>
 = 0x2801 for <<Secondary Service>>

Attribute Value = Service UUID (16-Bit or 128-Bit)

Attribute Permissions = Read Only, No Authentication/Authorization

Attribute Handle

Attribute Type = 0x2802 for <<Include>>

Attribute Value = Attribute handle of included service,
 End Group Handle, Service UUID

Attribute Permissions = Read Only, No Authentication/Authorization

Attribute Handle

Attribute Type = 0x2803 for <<Characteristic>>

Attribute Value = Characteristic Properties, Characteristic Value
Attribute Handle, Characteristic UUID

Attribute Permissions = Read Only, No Authentication/Authorization

Attribute Handle

Attribute Type = Characteristic UUID (16-Bit or 128-Bit)

Attribute Value = Characteristic Value

Attribute Permissions = Profile or Application Specific

Attribute Handle

Attribute Type = 0x2900 for <<Characteristic Extended Properties>>
 = 0x2901 for <<Characteristic User Description>>

Attribute Value = As Per Attribute Type

Attribute Permissions = Profile or Application Specific

Zero
or
More

13.4 Service Definition 299

zero or more characteristic definition depending on the number of characteristics it
supports. Each characteristic definition includes three parts in the following order:

1. Characteristic Declaration (Mandatory): Information about the
characteristic.

2. Characteristic Value Declaration (Mandatory): Value of the characteristic.
3. Characteristic Descriptor Declaration (Optional: Zero or More): Addition-

al information.

A service may contain both mandatory and optional characteristic definitions.
The mandatory definitions are located before the optional ones.

13.4.3.1 Characteristic Declaration

A characteristic declaration is used to declare the information about a characteristic
like the characteristic’s UUID, properties, etc. It is mandatory to include it within a
characteristic definition. It is an attribute with:

	• Attribute Type = UUID for <<Characteristic>>

	• Attribute Value = The Attribute Value containing:

a. Characteristic Properties: This is a bit field that determines how the
Characteristic Value can be used. For example, whether the value can
be broadcast, read, written, notified or indicated. For example, a Read
Only characteristic has this value set to 0x02 and a broadcast charac-
teristic has this value set to 0x01.

b. Characteristic Value Attribute Handle: This is the Attribute Handle
of the Attribute that contains the Characteristic Value. Characteristic
Value is explained in the next section.

c. Characteristic UUID: This is a 16-bit or 128-bit to describe the type of
Characteristic Value.

	• Attribute Permissions = Read Only, No Authentication, No Authorization.

The significance of various bits in the Characteristic Properties bit field is
shown in Table 13.1. For example if the value of properties is 0x08, then it would
mean that the Characteristic Value can be read and written.

13.4.3.2 Characteristic Value Declaration

A Characteristic Value Declaration contains the value of the characteristic. It is
mandatory to include it within a characteristic definition. This is an attribute with:

	• Attribute Type = Same as the UUID provided in Characteristic Declaration.

	• Attribute Value = Characteristic Value.

	• Attribute Permissions = Higher layer profile or implementation specific.

It may be noted that for the previous attributes, the permissions were defined
by GATT to be Read Only, No Authentication and No Authorization while for

300 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

the Characteristic Value the permissions are defined by the higher layer profile or
implementation. This is because GATT defines that any client can read the list of
services and characteristics supported by a device, but, whether a client can read or
write the value of a characteristic is left to the discretion of the higher layer profile
or implementation.

13.4.3.3 Characteristic Descriptor Declaration

The Characteristic Descriptors are used to provide additional information about
the Characteristic Value. These are optional and a Characteristic Definition may
contain more than one of these. A characteristic descriptor is an attribute with:

	• Attribute Type = UUID for the additional information provided by this Char-
acteristic Descriptor.

	• Attribute Value = Value of the additional information provided by this Char-
acteristic Descriptor.

	• Attribute Permissions = Either defined by GATT or Higher layer profile or
implementation specific.

For example a Characteristic Descriptor Declaration may be used to provide a
user friendly string about the description of a Characteristic Value. If a Character-
istic Value provides the temperature then this descriptor could provide a string say-
ing “Room Temperature” or “Celcius”. These strings could be used for preparing
user interfaces on the client side.

This descriptor is also used to specify if the value can be indicated, notified,
or broadcast. For example, the Temperature Measurement Characteristic in the
Health Thermometer Service has the properties of “Indicate”. This characteristic
also has an associated Client Characteristic Configuration Descriptor which can
be configured for indication. So once a temperature measurement is available and
this descriptor is configured for indication, an indication is sent to the peer device.

The Characteristic Descriptor could also be used to specify the format of the
Characteristic Value. For example, whether the value is 1-bit, 8-bit, 16-bit, signed
or unsigned, a UTF-8 string or UTF-16 string, or whether it is a floating point
value.

Table 13.1 Bit-Fields for Characteristic Properties
Properties Value Description

Broadcast 0x01 Broadcast of Characteristic value permitted.

Read 0x02 Read permitted

Write Without Response 0x04 Write Without Response permitted

Write 0x08 Write permitted

Notify 0x10 Notifications permitted

Indicate 0x20 Indications permitted.

Authenticated Signed
Writes

0x40 Signed write permitted

Extended Properties 0x80 Additional properties are defined in the
Characteristics Extended Properties Descriptor.

13.5 Configured Broadcast 301

13.5 Configured Broadcast

A client can configure the server to broadcast certain characteristic values in adver-
tising data. This is done by the client setting the broadcast configuration bit in the
client characteristic configuration.

13.6 GATT Features

The GATT profile defines eleven features. Each feature is mapped into procedures
and subprocedures which use the procedures defined by the ATT protocol.

A summary of the features and the corresponding procedures and sub-proce-
dures is shown in Table 13.2. These are described in detail in the following sections.

13.6.1 Server Configuration

The server configuration feature is used to configure the parameters of the ATT
protocol. It has only one subprocedure related to configuring the ATT_MTU size.

13.6.1.1 Exchange MTU

The exchange MTU subprocedure is initiated only once during a connection by the
client to set the ATT_MTU to be used for the connection.

Table 13.2 GATT Features and Procedures
S. No Feature Subprocedures

1 Server Configuration Exchange MTU

2 Primary Service Discovery Discover All Primary Services

Discover Primary Services By Service UUID

3 Relationship Discovery Find Included Services

4 Characteristic Discovery Discover All Characteristics of a Service

Discover Characteristic by UUID

5 Characteristic Descriptor Discovery Discover All Characteristic Descriptors

6 Characteristic Value Read Read Characteristic Value

Read Using Characteristic UUID

Read Long Characteristic Values

Read Multiple Characteristic Values

7 Characteristic Value Write Write Without Response

Signed Write Without Response

Write Characteristic Value

Write Long Characteristic Values

Characteristic Values Reliable Writes

8 Characteristic Value Notification Notifications

9 Characteristic Value Indication Indications

10 Characteristic Descriptor Value Read Read Characteristic Descriptors

Read Long Characteristic Descriptors

11 Characteristic Descriptor Value Write Write Characteristic Descriptors

Write Long Characteristic Descriptors

302 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

The default value of ATT_MTU is 23 octets for LE. The exchange MTU re-
quest is used by the client if it wants to use an ATT_MTU bigger than this value.
A bigger value will finally be used after the request and response messages are
exchanged and if both the client and the server support that bigger value. This is
shown in Figure 13.11.

This is especially useful where a client may have bigger receive buffers com-
pared to the server. For example, if the client is a mobile phone and the server
is a thermometer. The mobile phone may send an MTU size of 300 octets in the
Exchange MTU Request. If the thermometer can support an Rx MTU of only 40
bytes, it will send an Exchange MTU Response with 40 bytes. After these messages
are exchanged, both the thermometer and mobile phone will use an MTU of 40
bytes. If the thermometer sent an Error Response, then both will use the default
MTU of 23 bytes.

13.6.2 Primary Service Discovery

The Primary Service Discovery procedure is used by the client to discover the pri-
mary services on the server. It can either use the Discover All Primary Services sub-
procedure or Discover Primary Services by Service UUID sub-procedure.

13.6.2.1 Discover All Primary Services

This subprocedure is used by the client to discover all the primary services on the
server. It uses the ATT Read By Group Type Request with the following parameters:

	• Attribute Type: UUID for <<Primary Service>>.

	• Starting Handle: 0x0001.

	• Ending Handle: 0xFFFF.

The server either sends the ATT Read By Group Type Response or an Error
Response. If the server sends the Read By Group Type Response, then it contains
the following parameters:

	• Length: Size of each attribute data.

Figure 13.11 Exchange MTU.

Exchange MTU Request (Client Rx MTU)

Client Server

Exchange MTU Response (Server Rx MTU)

ATT_MTU = Min(Client RxMTU, Server Rx MTU)

13.6 GATT Features 303

	• Attribute Data List: This contains the following:

•	 Attribute Handle: Handle of the service declaration.

•	 End Group Handle: Handle of last attribute within the service definition.

•	 Attribute Value: Service UUID of a service supported by the server.

It is possible that not all attributes are returned in one response. In that case,
the End Group Handle in the response would be less than the Ending Handle given
in the request. The client can then send another Read By Group Type Request by
modifying the Starting Handle to the received End Group Handle + 1. This subpro-
cedure is completed when the server returns an Error Response with the error code
set to Attribute Not Found.

This is shown in Figure 13.12. The client sends the Read By Group Type Re-
quest message to the server by setting the Starting Handle to 0x0001 and Ending
Handle to 0xFFFF to get the attribute handles within the entire possible range

Read By Group Type Request (Starting
Handle=0x0001, Ending Handle=0xFFFF,

Attribute Group Type = <<Primary Service>>)

Client Server

Read By Group Type Request (Starting
Handle=1+Last Handle in Previous Response,

Ending Handle=0xFFFF, Attribute Group Type =
<<Primary Service>>)

Read By Group Type Response (Length, Attribute
Data List = Next set of Handle-Value pairs)

.

.
.

Error Response (Error Code = Attribute Not Found)

Read By Group Type Response
(Length, Attribute Data List =
First set of Handle-Value pairs)

Read By Group Type Request (Starting
Handle=1+Last Handle in Previous Response,

Ending Handle=0xFFFF, Attribute Group Type =
<<Primary Service>>)

Figure 13.12 Discover all primary services.

304 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

of attribute handles. The server responds with the first set of Handle-Value pairs
depending on the number of pairs that can be accommodated within one Read By
Group Type Response.

The client then sends the next Read By Group Type Request by adjusting the
Starting Handle to retrieve the next set of Handle-Value Pairs. The server responds
with the next set of Handle Value pairs till no more remain as per the Starting
Handle specified by the client. At that time the server returns an Error Response.
This indicates to the client that all the handles have been retrieved.

Figure 13.13 shows a message sequence chart of the air logs captured when
doing a Discover All Primary Services procedure with an LE server. A few things
may be noted:

	• In the first Read By Group Type Request, the client tries to read all handles
from 1 to 65535.

	• The server responds with three handle value pairs:

•	 Handles 1 to 7 (Service 1).

•	 Handles 16 to 19 (Service 2).

•	 Handles 80 to 82 (Service 3) (This got truncated in the screen shot).

	• The client increments the Last Handle received in previous response by 1
and does a second Read By Group Type Request, this time reading from 83
to 65535

	• The server responds with two handle value pairs:

Figure 13.13 MSC generated from air capture of discover all primary services.

13.6 GATT Features 305

•	 Handles 83 to 85 (Service 4).

•	 Handles 86 to 88. (Service 5).

	• The client increments the Last Handle received in previous response by 1
and does a third Read By Group Type Request, this time reading from 89 to
65535.

	• The server responds with an Error Response with the Error Code = Attribute
Not Found.

This indicates to the client that it has received all handle value pairs. The Dis-
cover All Primary Services procedure is considered completed by the client. It was
able to retrieve a total of five services from the server.

13.6.2.2 Discover Primary Service By Service UUID

This subprocedure is used by the client to discover a primary service on the server
if the Service UUID is known. As shown in Figure 13.10, the Service UUID is a part
of the service declaration.

It uses the ATT Find By Type Value Request with the following parameters:

	• Attribute Type: UUID for <<Primary Service>>.

	• Attribute Value: Service UUID of the Primary service to search (16-bit or
128-bit).

	• Starting Handle: 0x0001.

	• Ending Handle: 0xFFFF.

The server either sends the ATT Find By Type Value Response or an Error
Response.

If the server sends the Find By Type Value Response, then it contains the fol-
lowing parameters:

	• List of Attribute Handle Ranges.

•	 Starting Handle of service definition.

•	 Ending Handle of the service definition.

It is possible that not all attributes are returned in one response. In that case,
the End Group Handle in the response would be less than the Ending Handle given
in the request. The client can then send another Find By Type Value Request by
modifying the Starting Handle to the received Ending Handle + 1. This subproce-
dure is completed when the server returns an Error Response with the error code
set to Attribute Not Found.

This is shown in Figure 13.14. The client sends the Find By Type Value Request
message to the server by setting the Starting Handle to 0x0001, Ending Handle to
0xFFFF, and Attribute Value to the Service UUID to be searched. The server re-
sponds with the first set of Handle Information List containing the Starting Handle
and Ending Handle of a particular service definition.

306 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

The client then sends the next Find By Type Value Request by adjusting the
Starting Handle to retrieve the next set of Handle Information List. The server
responds with the next set of Handle Information List until none remain per the
Starting Handle specified by the client. At that time the server returns an Error Re-
sponse. This indicates to the client that all the handles have been retrieved.

13.6.3 Relationship Discovery

The Relationship Discovery procedure is used by the client to discover service rela-
tionships of the services. This category contains one subprocedure: Find Included
Services.

13.6.3.1 Find Included Services

This subprocedure is used by the client to discover the include service declarations
within a service definition on the server. As shown in Figure 13.10, a service defini-
tion may contain zero or more include service declarations to specify which other
services are included by the service.

It uses the ATT Read By Type Request with the following parameters:

	• Attribute Type: UUID for <<Include>>.

	• Starting Handle: Starting Handle of the specified service.

Figure 13.14 Discover primary service by service UUID.

Find By Type Value Request (Starting Handle=0x0001,
Ending Handle=0xFFFF, Attribute Type = <<Primary Service>>,

Attribute Value = <UUID>>)

Client Server

Find By Type Value Response (Handle
Information List containing Starting and Ending Handle)

Find By Type Value Request (Starting
Handle=1+Last Handle in Previous Response,

Ending Handle=0xFFFF, Attribute Type =
<<Primary Service>>, Attribute Value = <UUID>>))

Error Response (Error Code = Attribute Not Found)

.

.

.

13.6 GATT Features 307

	• Ending Handle: Ending Handle of the specified service.

The Starting Handle and the Ending Handle specify the values returned in the
Primary Service Discovery Procedure. The server either sends the ATT Read By
Type Response or an Error Response.

If the server sends the Read By Type Response, then it contains the following
parameters:

	• Length: Size of the handle-value pairs.

	• Attribute Data List: Handle-value pairs containing Attribute Handle and At-
tribute Value. The Attribute Value contains:

•	 Attribute Handle: Handle of the included service declaration.

•	 End Group Handle: Handle of last attribute within the included service
declaration.

•	 UUID: Service UUID.

•	 If the Service UUID is 16-bit UUID, then it is also returned in the response.

•	 If the UUID is 128-bit, then the ATT Read Request is used later on with
the Attribute Handle parameter to retrieve the 128-bit UUID.

Not all handle-value pairs are necessarily returned in one response. In that
case, the Attribute Handle in the response would be less than the Ending Handle
given in the request. The client can then send another Read By Type Request by
modifying the Starting Handle to the last received Attribute Handle + 1. This sub-
procedure is completed when the server returns an Error Response with the error
code set to Attribute Not Found.

This is shown in Figure 13.15. The client sends the Read By Type Request mes-
sage to the server by setting the Starting Handle and Ending Handle to the attribute
handles that were received in the primary service discovery procedure and the Type
set to <<Include>>. The server responds with the first set of Handle-Value pairs of
the included services.

The client then sends the next Read By Type Request by adjusting the Starting
Handle to retrieve the next set of Handle-Value Pairs. The server responds with the
next set of Handle Value pairs until none remain per the Starting Handle specified
by the client. At that time the server returns an Error Response. This indicates to
the client that all handles for the included services have been retrieved.

Figure 13.16 extends the sample air logs that were shown in Figure 13.13. Dur-
ing Discover All Primary Services, the client found five services on the server. This
example shows that the client tries to do a Find Included Services for each of these
five services using the Read By Type Request. Each of the requests returns an Error
Response. This means that there are no included services on the server.

13.6.4 Characteristic Discovery

The Characteristic Discovery procedure is used by the client to discover the charac-
teristic definitions included in a service on the server. As shown in Figure 13.10, a
service may contain zero or more characteristic definitions. This category contains

308 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

Figure 13.15 Find included services.

Read By Type Request (Starting Handle,
Ending Handle, Attribute Type = <<Include>>)

Client Server

Read By Type Request (Starting Handle=1+
Attribute Handle in Previous Response,

Ending Handle, Attribute Type = <<Include>>)

Read By Type Request (Starting Handle=1+
Attribute Handle in Previous Response,

Ending Handle, Attribute Type= <<Include>>)

Error Response (Error Code = Attribute Not Found)

Read Response (Attribute Value)

Read Request (Attribute Handle) –
Used if Service UUID is 128-bit

.

.

.

Read By Type Response (Length,Attribute
Data List = Next set of Handle-Value pairs)

Read By Type Response (Length, Attribute
Data List = Handle-Value pairs of Included Services)

Figure 13.16 Example air log of find included services.

13.6 GATT Features 309

two subprocedures: Discover All Characteristics of a Service and Discover Charac-
teristics by UUID.

13.6.4.1 Discover All Characteristics of a Service

This subprocedure is used by the client to discover all characteristic declarations
within a service definition. This is quite similar to the Find Included Services sub-
procedure. The main difference is that in this case the Attribute Type parameter is
set to <<Characteristic>> while in the Find Included Services subprocedure it was
set to <<Include>>.

This subprocedure uses the ATT Read By Type Request with the following
parameters:

	• Attribute Type: UUID for <<Characteristic>>.

	• Starting Handle: Starting Handle of the specified service.

	• Ending Handle: Ending Handle of the specified service.

The Starting Handle and the Ending Handle specify the values returned in the
Primary Service Discovery Procedure. The server either sends the ATT Read By
Type Response or an Error Response.

If the server sends the Read By Type Response, then it contains the following
parameters:

	• Length: Size of the handle-value pairs.

	• Attribute Data List: handle-value pairs containing Attribute Handle and
Attribute Value.

•	 Attribute Handle: Handle of the characteristic declaration.

•	 Attribute Value: The Attribute Value contains Characteristic Properties,
Characteristic Value Handle, Characteristic UUID.

It is possible that not all handle-value pairs are returned in one response. In
that case, the Attribute Handle in the response would be less than the Ending
Handle given in the request. The client can then send another Read By Type Re-
quest by modifying the Starting Handle to the last received Attribute Handle + 1.
This subprocedure is completed when the server returns an Error Response with
the error code set to Attribute Not Found.

This is shown in Figure 13.17. The client sends the Read By Type Request mes-
sage to the server by setting the Starting Handle and Ending Handle to the attribute
handles received in the primary service discovery procedure and the Type set to
<<Characteristic>>. The server responds with the first set of Handle-Value pairs of
the characteristic declarations in the service definition.

The client then sends the next Read By Type Request by adjusting the Starting
Handle to retrieve the next set of Handle-Value Pairs. The server responds with
the next set of Handle Value pairs until no more remain as per the Starting Handle
specified by the client. At that time the server returns an Error Response. This in-

310 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

dicates to the client that all handles for the characteristic declarations have been
retrieved.

Figure 13.18 extends the sample air logs that were shown in Figure 13.13 and
Figure 13.16. During Discover All Primary Services, the client found five services
on the server. The first service had the starting handle as 1 and the ending handle as
7. This example shows that the client tries to do a Discover All Characteristics of a
Service procedure for the first service.

The right side of the figure shows the following:

	• Frame #875: First Read By Type Request by the client with UUID = Charac-
teristic, Handle = 1 to 7.

	• Frame #878: Response by the server with the first set of characteristics (Han-
dles 2 and 4).

	• Frame #879: Second Read By Type Request by the client with UUID = Char-
acteristic, Handle = 5 to 7.

	• Frame #882: Read By Type Response with the second set of characteristics
(Handle 6).

	• Frame #883: Third Read By Type Request by the client with UUID = Char-
acteristic, Handle = 7.

Figure 13.17 Discover all characteristics of a service.

Client Server

.

.

.

Error Response (Error Code = Attribute Not Found)

Read By Type Request (Starting Handle=1+
Last Handle in Previous Response,

Ending Handle, Attribute Type = <<Characteristic>>)

Read By Type Response (Length, Attribute
Data List = Next set of Handle-Value pairs)

Read By Type Request (Starting Handle=1+
Last Handle in Previous Response, Ending Handle,

Attribute Type = <<Characteristic>>)

Read By Type Response (Length, Attribute Data List =
Handle-Value pairs of Characteristic Declarations)

Read By Type Request (Starting Handle,
Ending Handle, Attribute Type = <<Characteristic>>)

13.6 GATT Features 311

	• Frame #886: Error Response by the server to indicate that there are no more
characteristics in this service.

The left side of the figure shows the characteristics received in the first response
from the server. The following may be observed:

	• The first characteristic is Device Name with Attribute Handle 2.

	• The Attribute value is stored at Attribute Handle 3 (Indicated by Value
Handle).

	• Read operation is permitted on the characteristic. All other operations are
not permitted.

13.6.4.2 Discover Characteristics by UUID

This subprocedure is used by the client to discover the characteristic declarations
within a service definition when the characteristic UUID is known. This subproce-
dure is quite similar to the Discover All Characteristics of a Service subprocedure.
In this case, once the characteristics are received from the server, they are checked to
see if the UUID matches the UUID that was requested. If it matches, then the char-
acteristic is considered to be found. In both the cases, whether the characteristic is
found or not, the procedure continues to search the remaining characteristics until
all characteristics have been searched.

It uses the ATT Read By Type Request with the following parameters:

	• Attribute Type: UUID for <<Characteristic>>.

Figure 13.18 Example air log of discover all characteristics of a service.

312 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

	• Starting Handle: Starting Handle of the specified service.

	• Ending Handle: Ending Handle of the specified service.

The Starting Handle and the Ending Handle specify the values that were re-
turned in the Primary Service Discovery Procedure. The server either sends the ATT
Read By Type Response or an Error Response.

If the server sends the Read By Type Response, then it contains the following
parameters:

	• Length: Size of the handle-value pairs.

	• Attribute Data List: handle-value pairs containing Attribute Handle and
Attribute Value.

•	 Attribute Handle: Handle of the characteristic declaration.

•	 Attribute Value: The Attribute Value contains Characteristic Properties,
Characteristic Value Handle, Characteristic UUID.

The Attribute Value in each of the handle-value pairs is checked to see if it
matches the Characteristic UUID that was requested. If it matches, then the char-
acteristic is considered to be found.

It is possible that not all handle-value pairs are returned in one response. In
that case, the Attribute Handle in the response would be less than the Ending Han-
dle given in the request. The client can then send another Read By Type Request
by modifying the Starting Handle to the last received Attribute Handle + 1. This
subprocedure is completed when the server returns an Error Response with the er-
ror code set to Attribute Not Found.

This is shown in Figure 13.19. The client sends the Read By Type Request
message to the server by setting the Starting Handle and Ending Handle to the at-
tribute handles received in the primary service discovery procedure and the Type
set to <<Characteristic>>. The server responds with the first set of Handle-Value
pairs of the characteristic declarations in the service definition. The client checks
those handle-value pairs to see if Characteristic UUID matches the one that was
provided. If it matches then the characteristic is considered to be found.

The client then sends the next Read By Type Request by adjusting the Starting
Handle to retrieve the next set of Handle-Value Pairs. The server responds with the
next set of Handle Value pairs till no more remain per the Starting Handle speci-
fied by the client. At that time the server returns an Error Response. This indicates
to the client that all handles for the characteristic declarations have been retrieved.

13.6.5 Characteristic Descriptor Discovery

The Characteristic Discovery procedure is used by the client to discover the charac-
teristic descriptors of a characteristic. As shown in Figure 13.10, the characteristic
descriptor is an optional component of the characteristic definition. This category
contains one subprocedure: Discover All Characteristic Descriptors.

13.6 GATT Features 313

13.6.5.1 Discover All Characteristic Descriptors

This subprocedure is used by the client to discover all the characteristic descriptors
within a characteristic definition.

It uses the ATT Find Information Request with the following parameters:

	• Starting Handle: Starting Handle of the specified characteristic value + 1.

	• Ending Handle: Ending Handle of the specified characteristic.

The server either sends the ATT Find Information Response or an Error Re-
sponse. If the server sends the Find Information Response, then it contains the fol-
lowing parameters:

	• Format: Specifies whether the handles are 16-bit or 128-bit.

	• Attribute Data List: handle-value pairs containing Attribute Handle and
Attribute Value.

•	 Attribute Handle: Handle of the characteristic descriptor declaration.

•	 Attribute Value: Characteristic Descriptor UUID.

It is possible that not all handle-value pairs are returned in one response. In
that case, the Attribute Handle in the response would be less than the Ending

Figure 13.19 Discover characteristics by UUID.

Client Server

.

.

.

Read By Type Request (Starting Handle=1+
Last Handle in Previous Response, Ending Handle,

Attribute Type = <<Characteristic>>)

Error Response (Error Code = Attribute Not Found)

Read By Type Response (Length, Attribute Data List =
Next set of Handle-Value pairs)

Read By Type Request (Starting Handle=1+
Last Handle in Previous Response, Ending Handle,

Attribute Type = <<Characteristic>>)

Read By Type Response (Length, Attribute Data List =
Handle-Value pairs of Characteristic Declarations)

Read By Type Request (Starting Handle,
Ending Handle, Attribute Type = <<Characteristic>>)

Check for a
matching
Characteristic
UUID in the
handle-value
pairs.

314 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

Handle given in the request. The client can then send another Find Information
Request by modifying the Starting Handle to the last received Attribute Handle +
1. This subprocedure is completed when the server returns an Error Response with
the error code set to Attribute Not Found.

This is shown in Figure 13.20. The client sends the Find Information Request
message to the server by setting the Starting Handle and Ending Handle. The server
responds with the first set of Handle-Value pairs of the characteristic descriptors in
the characteristic definition.

The client then sends the next Find Information Request by adjusting the Start-
ing Handle to retrieve the next set of Handle-Value Pairs. The server responds with
the next set of Handle Value pairs until none remain per the Starting Handle speci-
fied by the client. At that time the server returns an Error Response. This indicates
to the client that all handles for the characteristic descriptors have been retrieved.

13.6.6 Characteristic Value Read

The Characteristic Value Read procedure is used by the client to read a Character-
istic Value from the server. This category contains four sub-procedures:

	• Read Characteristic Value.

	• Read Long Characteristic Values.

	• Read Using Characteristic UUID.

	• Read Multiple Characteristic Values.

Figure 13.20 Discover all characteristic descriptors.

Client Server

Find Information Request (Starting Handle=1+
Last Handle in Previous Response, Ending Handle)

.

.

.

Find Information Request (Starting Handle=1+
Last Handle in Previous Response, Ending Handle)

Error Response (Error Code = Attribute Not Found)

 Find Information Response (Format, Attribute
Data List = Next set of Handle-Value pairs)

Find Information Response (Format, Attribute Data
List = Handle-Value pairs of Characteristic Descriptors)

Find Information Request
(Starting Handle, Ending Handle)

13.6 GATT Features 315

13.6.6.1 Read Characteristic Value

This subprocedure is used by the client to read a Characteristic Value from the
server. It requires a Characteristic Value Handle as an input. It uses the ATT Read
Request with the following parameter:

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

The server either sends the ATT Read Response or an Error Response. The
server can send an Error Response if the read operation is not permitted on the
Characteristic Value or if the authentication, authorization, or encryption size is
insufficient. Note from Figure 13.10 that the permissions for the Characteristic
Value are set by the profile.

If the server sends the Read Response, then it contains the following parameter:

	• Attribute Value: Characteristic Value.

If the length of the characteristic value is more than ATT_MTU-1, then only
ATT_MTU-1 bytes are returned and the remaining bytes may be read using the
Read Long Characteristic Value procedure. This is shown in Figure 13.21.

13.6.6.2 Read Long Characteristic Value

This subprocedure is very similar to the Read Characteristic Value Procedure ex-
plained in previous section. It is used when the length of the Characteristic Value is
longer than that can be sent in a single Read Response message.

It uses the ATT Read Blob Request with the following parameters:

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

	• Value Offset: Offset from where the Attribute Value is to be read.

The server either sends the ATT Read Blob Response or an Error Response.
The server can send an Error Response if the read operation is not permitted on

the Characteristic Value or if the authentication, authorization, or encryption size
is insufficient. Note from Figure 13.10 that the permissions for the Characteristic

Figure 13.21 Read characteristic value.

Client Server

Read Request (Attribute Handle)

Read Response (Attribute Value)

316 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

Value are set by the profile. An error is also returned if the Characteristic Value is
shorter than ATT_MTU-1 bytes.

If the server sends the Read Blob Response, then it contains the following
parameter:

	• Part Attribute Value: Characteristic Value bytes starting at the specified
Value Offset.

It is possible to read the first part of the Attribute Value using Read Request
and the remaining parts using Read Blob Request. This subprocedure is shown in
Figure 13.22.

13.6.6.3 Read Using Characteristic UUID

This subprocedure is used by the client to read a Characteristic Value from the
server when it knows the Characteristic UUID but does not know the Characteristic
Value Handle.

It uses the ATT Read By Type Request with the following parameters:

	• Starting Handle: Starting Handle.

	• Ending Handle: Ending Handle.

	• Attribute Type: Characteristic UUID.

The Starting Handle and Ending Handle are typically the handle range of the
service in which the characteristic is located. The server either sends the ATT Read
By Type Response or an Error Response.

If the server sends the Read By Type Response, then it contains the following
parameters:

	• Attribute Handle: Characteristic Value Handle.

	• Attribute Value: Characteristic Value.

Figure 13.22 Read long characteristic value.

Read Blob Request (Attribute Handle, Value Offset=0)

Client Server

Read Blob Response (Attribute Value
starting at Value Offset)

Read Blob Response (Attribute Value
starting at Value Offset)

Read Blob Request (Attribute Handle, Value Offset)

13.6 GATT Features 317

This is shown in Figure 13.23.

13.6.6.4 Read Multiple Characteristic Values

This subprocedure is used by the client to read multiple Characteristic Values from
the server when it knows the Characteristic Value Handles. This is very similar to
the Read Characteristic Value subprocedure.

It uses the ATT Read Multiple Request with the following parameters:

	• Set Of Handles: List of Characteristic Value Handles for which the Values
are to be retrieved.

The server either sends the ATT Read Multiple Response or an Error Response.
The server can send an Error Response if the read operation is not permitted on any
of the Characteristic Value or if the authentication, authorization or encryption size
is insufficient. Note from Figure 13.10 that the permissions for the Characteristic
Value are set by the higher layer profile or application.

If the server sends the Read Multiple Response, then it contains the following
parameters:

	• Set Of Value: List of Characteristic Values.

This is shown in Figure 13.24.

Figure 13.23 Read using characteristic UUID.

Client Server

Read By Type Request (Starting Handle=0x0000,
Ending Handle=0xFFFF, Attribute Type=

Characteristic UUID)

Read By Type Response (Length,
Attribute Handle, Attribute Value)

Figure 13.24 Read multiple characteristic values.

Client Server

Read Multiple Request (Set Of Handles)

Read Multiple Response (Set Of Values)

318 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.6.7 Characteristic Value Write

The Characteristic Value Write procedure is used by the client to write a Character-
istic Value to the server.This category contains five sub-procedures:

	• Write Without Response.

	• Signed Write Without Response.

	• Write Characteristic Value.

	• Write Long Characteristic Value.

	• Reliable Writes.

13.6.7.1 Write Without Response

This subprocedure is used by the client to write a Characteristic Value to the server
when it does not need an acknowledgment that the write has been successful. This
is the simplest procedure that a client can use to write a Characteristic Value to the
server.

It uses the ATT Write Command with the following parameters:

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

	• Attribute Value: Characteristic Value to be written.

Since this is an ATT command, there is no response from the server. (Note that
the server responds to ATT requests but not ATT commands). This is shown in
Figure 13.25.

13.6.7.2 Signed Write Without Response

This subprocedure is used by the client to write a Characteristic Value to the server
when it does not need an acknowledgment that the write has been successful. It is
similar to the Write Without Response procedure. The main enhancement is that
the Attribute Value is signed by the client with an authentication signature. This
authentication signature is verified by the server before writing the value. It uses the
ATT Write Command with the following parameters:

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

Figure 13.25 Write without response.

Client Server

Write Command (Attribute Handle, Attribute Value)

13.6 GATT Features 319

	• Attribute Value: Characteristic Value that is authenticated by signing the
value.

Since this is an ATT command, there is no response from the server. (Note that
the server responds to ATT requests but not ATT commands).

This subprocedure requires the client and server to share a bond (defined in
GAP profile). The server verifies the authentication signature to check the authen-
ticity of the client before writing the value. This is shown in Figure 13.26.

13.6.7.3 Write Characteristic Value

This subprocedure is used by the client to write a Characteristic Value to the server.
In this subprocedure the client receives an acknowledgment from the server once
the value is written. It uses the ATT Write Request with the following parameters:

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

	• Attribute Value: Characteristic Value to be written.

The server either sends the ATT Write Response or an Error Response.
The server can send an Error Response if the write operation is not permitted

on the Characteristic Value or if the authentication, authorization, or encryption
size is insufficient. Note from Figure 13.10 that the permissions for the Character-
istic Value are set by the higher layer profile or application. If the server sends the
Write Response, then it indicates that the value has been successfully written. This
is shown in Figure 13.27.

13.6.7.4 Write Long Characteristic Value

This subprocedure is used by the client to write a Characteristic Value to the server
when the length of the Characteristic Value is longer than that can be written in a
single Write Request. It splits the Characteristic Value into parts and uses multiple
ATT Prepare Write Requests to queue the Characteristic Value parts on the server.
Then it uses the Execute Write Request to request the server to write all the queued
parts.

It uses the ATT Prepare Write Request with the following parameters to queue
the Characteristic Value to write after splitting the Characteristic Value into several
parts.

Figure 13.26 Signed write without response.

Client Server

Write Command (Attribute Handle,
Signed Attribute Value)

320 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

	• Value Offset: The offset of the first octet to be written.

	• Part Attribute Value: The octets of the Characteristic Value starting at Value
Offset.

Once all the parts are queued, the subprocedure uses the ATT Execute Write
Request with the following parameters to write all the queued parts.

	• Flags = 0x01 to write all the queued parts.

The server can send an Error Response if the write operation is not permitted
on the Characteristic Value or if the authentication, authorization, or encryption
size is insufficient.

This is shown in Figure 13.28. The client splits the Characteristic Value into
several parts as per the ATT_MTU and then sends the subsequent parts in the Pre-
pare Write Request after adjusting the Value Offset. The server queues the various
parts that it receives. After sending all the parts, the client finally sends the Execute
Write Request to write all the queued parts.

One point to note is that, even though the Prepare Write Response from the
server contains the same parameters sent in the Prepare Write Request, it is not
mandatory for the client to verify that the server has sent back the same values.
There is a possibility that some values may have been corrupted during sending
from the client to the server (the client does not cross check the received values to
see if those were corrupted). The next section describes the Reliable Writes subpro-
cedure where it is mandatory for the client to check if the server returned the same
values in response that it had sent in request.

13.6.7.5 Reliable Writes

This subprocedure is used by the client to write a Characteristic Value to the server
when it requires assurance that the correct Characteristic Value is going to be writ-
ten by the server. It is also used when multiple values are to be written together in
one single operation. For example, this procedure is used to ensure that a set of
values is written by a client together in a particular order without any other values
being written by another client in between.

Figure 13.27 Write characteristic value.

Client Server

Write Response ()

Write Request (Attribute Handle, Attribute Value)

13.6 GATT Features 321

This procedure requires the server to send back the same Characteristic Value
which the client had sent to it so that the client can verify that the server had re-
ceived the value correctly. It uses the ATT Prepare Write Request with the following
parameters to queue the Characteristic Value to write after splitting the Character-
istic Value into several parts.

	• Attribute Handle: Characteristic Value Handle (This handle was retrieved in
the Characteristic Discovery Procedure).

	• Value Offset: The offset of the first octet to be written.

	• Part Attribute Value: The octets of the Characteristic Value starting at Value
Offset.

The subsequent ATT Prepare Write Request messages may also send different
Attribute Handles if several Characteristic Values are to be written together. It then

Figure 13.28 Write long characteristic value.

Client Server

 .
.
.

Execute Write Response ()

Add to write
queue

Execute all
queued writes

Add to write
queue

Add to write
queue

 Execute Write Request (Flags=0x01)

Prepare Write Response (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

Prepare Write Request (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

Prepare Write Response (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Request (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Response (Attribute Handle,
Value Offset1, Part Attribute Value1)

Prepare Write Request (Attribute Handle,
Value Offset1, Part Attribute Value1)

322 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

uses the ATT Execute Write Request with the following parameters to write all the
queued parts.

	• Flags = 0x01 to write all the queued parts.

The server can send an Error Response if the write operation is not permit-
ted on any of the Characteristic Values or if the authentication, authorization,
or encryption size is insufficient. The server can also send an Error Response if
the queue is full. This procedure is shown in Figure 13.29. The client sends the
first Characteristic Value to be written in the Prepare Write Request. The server
queues the value and also returns the same value in Prepare Write Response. The
client verifies the received value with the value it sent to check if the server indeed
received the value correctly. After that the client may either send other parts of
the same Characteristic Value or another Characteristic Value in the subsequent
Prepare Write Requests. Once it has sent all the Characteristic Values, it finally
sends the Execute Write Request. On receipt of the Execute Write Request, the

Figure 13.29 Reliable writes.

Client Server

 .
.
.

Execute Write Response ()

Add to write
queue

Verify
the values
received

Add to write
queue

Add to write
queue

Execute all
queued writes

Verify
the values
received

Verify
the values
received

 Execute Write Request (Flags=0x01)

Prepare Write Response (Attribute Handle-n,
Value Offset-n, Part Attribute Value-n)

Prepare Write Request (Attribute Handle-n,
Value Offset-n, Part Attribute Value-n)

Prepare Write Response (Attribute Handle2,
Value Offset2, Part Attribute Value2)

 Prepare Write Request (Attribute Handle2,
Value Offset2, Part Attribute Value2)

Prepare Write Response (Attribute Handle1,
Value Offset1, Part Attribute Value1)

Prepare Write Request (Attribute Handle1,
Value Offset1, Part Attribute Value1)

13.6 GATT Features 323

server writes all the values that it had queued up in the same order in which it had
received the requests.

13.6.8 Characteristic Value Notification

The Characteristic Value Notification procedure is used by the server to notify a
Characteristic Value to the client. Whether a Characteristic Value can be notified
is defined by the profile. This category contains one subprocedure: Notifications.

13.6.8.1 Notifications

This subprocedure is used by the server to notify a Characteristic Value to the client
without expecting any acknowledgment from the client. It uses the ATT Handle
Value Notification with the following parameters:

	• Attribute Handle: Characteristic Value Handle that is to be notified.

	• Attribute Value: Characteristic Value.

Since this is an ATT notification, there is no response from the client. (Note
that the client responds to ATT indications but not ATT notifications). This is
shown in Figure 13.30.

13.6.9 Characteristic Value Indication

The Characteristic Value Indication procedure is used by the server to indicate a
Characteristic Value to the client. Whether a Characteristic Value can be indicated
is defined by the profile. This category contains one sub-procedure: Indications.

13.6.9.1 Indications

This subprocedure is used by the server to indicate a Characteristic Value to the cli-
ent. The client responds with a confirmation. It uses the ATT Handle Value Indica-
tion with the following parameters:

	• Attribute Handle: Characteristic Value Handle that is to be indicated.

	• Attribute Value: Characteristic Value.

The client responds with a Handle Value Confirmation to confirm that it has
received the indication. This is shown in Figure 13.31.

Figure 13.30 Notifications.

Client Server

Handle Value Notification
(Attribute Handle, Attribute Value)

324 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.6.10 Characteristic Descriptors

The Characteristic Descriptors procedure is used by the client to read and write the
Characteristic Descriptors on the server. All these subprocedures require the handle
of the Characteristic Descriptor Declaration. This handle may be retrieved using the
Characteristic Descriptor Discovery Procedure which was described earlier.

This category contains four subprocedures:

	• Read Characteristic Descriptors.

	• Read Long Characteristic Descriptors.

	• Write Characteristic Descriptors.

	• Write Long Characteristic Descriptors.

13.6.10.1 Read Characteristic Descriptors

This subprocedure is used by the client to read a Characteristic Descriptor from the
server. The client needs to have the Attribute Handle of the Characteristic Descrip-
tor Declaration to use this subprocedure. It uses the ATT Read Request with the
following parameters:

	• Attribute Handle: Characteristic Descriptor Handle. (This handle was re-
trieved in the Characteristic Descriptor Discovery Procedure.)

The server either sends the ATT Read Response or an Error Response. The
server can send an Error Response if the read operation is not permitted on the
Attribute Value or if the authentication, authorization, or encryption size is insuf-
ficient. Note from Figure 13.10 that the permissions for the Attribute Value are set
by the higher layer profile or application.

If the server sends the Read Response, then it contains the following parameter:

	• Attribute Value: Profile specific value that is stored in the Characteristic De-
scriptor Declaration.

If the length of the characteristic value is more than ATT_MTU-1, then only
ATT_MTU-1 bytes are returned and the remaining bytes may be read using the
Read Long Characteristic Descriptor procedure. This is shown in Figure 13.32.

Figure 13.31 Indications.

Client Server

Handle Value Confirmation ()

Handle Value Indication
(Attribute Handle, Attribute Value)

13.6 GATT Features 325

13.6.10.2 Read Long Characteristic Descriptor

This subprocedure is very similar to the Read Characteristic Descriptor Procedure
explained in previous section. It is used when the length of the Attribute Value is
longer than that can be sent in a single Read Response message. It uses the ATT
Read Blob Request with the following parameters:

	• Attribute Handle: Characteristic Descriptor Handle (This handle was re-
trieved in the Characteristic Descriptor Discovery Procedure.)

	• Value Offset: Offset from where the Attribute Value is to be read.

The server either sends the ATT Read Blob Response or an Error Response.
The server can send an Error Response if the read operation is not permitted on the
Attribute Value or if the authentication, authorization, or encryption size is insuf-
ficient. Note from Figure 13.10 that the permissions for the Attribute Value are set
by the higher layer profile or application. An error is also returned if the Attribute
Value is shorter than ATT_MTU-1 bytes.

If the server sends the Read Blob Response, then it contains the following
parameter:

	• Part Attribute Value: Attribute Value byte starting at the specified Value
Offset.

It is possible to read the first part of the Attribute Value using Read Request
and the remaining parts using Read Blob Request. This is shown in Figure 13.33.

13.6.10.3 Write Characteristic Descriptors

This subprocedure is used by the client to write an Attribute Value into a Charac-
teristic Descriptor on the server. In this subprocedure the client receives an acknowl-
edgment from the server once the value is written.

It uses the ATT Write Request with the following parameters:

	• Attribute Handle: Characteristic Descriptor Handle (this handle was re-
trieved in the Characteristic Descriptor Discovery Procedure).

	• Attribute Value: Attribute Value to be written into the Characteristic
Descriptor.

Figure 13.32 Read characteristic descriptor.

Client Server

Read Response (Attribute Value)

Read Request (Attribute Handle)

326 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

The server either sends the ATT Write Response or an Error Response. The
server can send an Error Response if the write operation is not permitted on the
Attribute Value or if the authentication, authorization, or encryption size is insuf-
ficient. Note from Figure 13.10 that the permissions for the Attribute Value are set
by the profile. An Error Response may also be returned if the value being written
is invalid or of the incorrect size.

If the server sends the Write Response, then it indicates that the value has been
successfully written.

This is shown in Figure 13.34.

13.6.10.4 Write Long Characteristic Descriptors

This subprocedure is used by the client to write an Attribute Value into a Charac-
teristic Descriptor on the server when the length of the Attribute Value is longer
than that can be written in a single Write Request. It splits the Attribute Value into
parts and uses multiple ATT Prepare Write Requests to queue the Attribute Value
parts on the server. Then it uses the Execute Write Request to request the server to
write all the queued parts. It uses the ATT Prepare Write Request with the following
parameters to queue the Attribute Value to write after splitting the Attribute Value
into several parts:

Figure 13.33 Read long characteristic descriptor.

Client Server

Read Blob Request (Attribute Handle, Value Offset=0)

Read Blob Response (Attribute Value starting at Value Offset)

 Read Blob Request (Attribute Handle, Value Offset)

Read Blob Response
(Attribute Value starting at Value Offset)

Figure 13.34 Write characteristic descriptor.

Client Server

Write Request (Attribute Handle, Attribute Value)

Write Response ()

13.7 Timeouts 327

	• Attribute Handle: Characteristic Descriptor Handle (this handle was re-
trieved in the Characteristic Descriptor Discovery Procedure).

	• Value Offset: The offset of the first octet to be written.

	• Part Attribute Value: The octets of the Attribute Value starting at Value
Offset.

It then uses the ATT Execute Write Request with the following parameters to
write all the queued parts.

	• Flags = 0x01 to write all the queued parts.

The server can send an Error Response if the write operation is not permitted
on the Attribute Value or if the authentication, authorization, or encryption size is
insufficient. Note from Figure 13.10 that the permissions for the Attribute Value
are set by the higher layer profile or application. An Error Response may also be
returned if the value being written is invalid or of the incorrect size.

This is shown in Figure 13.35. The client splits the Attribute Value into several
parts as per the ATT_MTU and then sends the subsequent parts in the Prepare
Write Request after adjusting the Value Offset. The server queues the various parts
that it receives. After sending all the parts, the client finally sends the Execute Write
Request to write all the queued parts.

One point to note is that, even though the Prepare Write Response from the
server contains the same parameters that were sent in the Prepare Write Request, it
is not mandatory for the client to verify if the server has sent back the same values.

13.7 Timeouts

All GATT procedures use a timeout mechanism to ensure that the procedure does
not wait infinitely for a response from the remote side. If a timeout happens, it is
assumed that the link has gone down and no further GATT procedures are per-
formed. Further GATT procedures are performed only after a new ATT bearer has
been established.

13.8 GATT Service

A server may expose a GATT service in addition to the profile specific services. If
the GATT service is exposed by the server then it is exposed as a primary service
with service UUID set to <<Generic Attribute Profile>>. GATT specification defines
only one characteristic that can be contained in this service:

	• Service Changed Characteristic.

328 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.8.1 Service Changed Characteristic

The service changed characteristic is used by the server to indicate to the clients that
the services on the server have changed. This can happen when new services are
added, services are removed, or modified on the server. This characteristic is imple-
mented by the server only if the list of services supported by the device can change
over the lifetime of a device. Otherwise this characteristic is not implemented. The
list of services supported by a device can change, for example, after a firmware
upgrade.

The clients that are bonded to the server are informed about the changed ser-
vices when they reconnect to the server. This was shown in Figure 13.9. The defini-
tion of the service changed characteristic is shown in Figure 13.36.

The Characteristic Value Declaration contains two handles 0xAAAA and
0xBBBB. These indicate the starting and ending handle of the attribute handles
that have changed.

Figure 13.35 Write long characteristic descriptor.

Client Server

.

.

.

Execute Write Response ()

Add to write
queue

Execute all
queued writes

Add to write
queue

Add to write
queue

 Execute Write Request (Flags=0x01)

Prepare Write Response (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

Prepare Write Request (Attribute Handle,
Value Offset-n, Part Attribute Value-n)

Prepare Write Response (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Request (Attribute Handle,
Value Offset2, Part Attribute Value2)

Prepare Write Response (Attribute Handle,
Value Offset1, Part Attribute Value1)

Prepare Write Request (Attribute Handle,
Value Offset1, Part Attribute Value1)

13.8 GATT Service 329

The <<Service Changed>> characteristic is implemented as a control-point at-
tribute. It is configured to be indicated. The Characteristic Properties field within
the Characteristic Declaration is set to 0x26. This is a bit mask which has the fol-
lowing bits set:

	• 0x20 – Indicate: This characteristic value can be indicated.

	• 0x02 – Read: This value can be read.

	• 0x04 – Write Without Response: This value can be written using the Write
Without Response procedure.

Figure 13.36 Service changed service.

Service Definition

Service Declaration

Attribute Handle

Attribute Type = 0x2800 for <<Primary Service>>

Attribute Value = Service UUID (16-Bit or 128-Bit)

Attribute Permissions = Read Only, No Authentication/Authorization

Characteristic Definition

Characteristic Declaration

Attribute Handle

Attribute Type = 0x2803 (UUID for <<Characteristic>>)

Attribute Value
Characteristic Properties = 0x26
Characteristic Value Attribute Handle,
Characteristic UUID = 0x2A05 <<Service Changed>>

Attribute Permissions = No Authentication/Authorization

Characteristic Value Declaration

Attribute Handle

Attribute Type = 0x2A05 (UUID for <<Service Changed>>)

Attribute Value
 0xAAAA – Start of Affected Attribute Handle Range
 0xBBBB – End of Affected Attribute Handle Range

Attribute Permissions = No Authentication, No Authorization,
Not Readable, Not Writable.

330 Generic Attribute Profi le (GATT)Generic Attribute Profile (GATT)

13.9 Security Considerations

13.9.1 Authentication and Authorization Requirements

As shown in Figure 13.10, each attribute or characteristic defined by GATT profile
has its own associated set of authentication and authorization requirements. These
are defined independently for each of the attribute or characteristic and could be
one of the following:

	• Specified by the GATT profile.

	• Specified by a higher layer profile.

	• Specified by the application.

The authentication and authorization procedures will be explained in Chapter
14. As a thumb rule, the list of services and characteristics supported by a device is
considered to have the following permissions:

	• Read-Only.

	• No Authentication required.

	• No Authorization required.

This means that the service declaration, include definition and characteristic
declaration are considered read-only and other devices can at least retrieve these
without getting an error. The characteristics could be either read-only or write-only
or read-write. If a client, for example, tries to access a write-only attribute using
one of the read procedures, it gets an Error Response.

13.10 Summary

The GATT profile uses the attributes defined by the ATT protocol as building blocks
and defines a hierarchy using those services. This hierarchy organizes the attributes
into profiles which may contain services which may in turn contain characteristics.
Based on the functionality, similar attributes are grouped together. This provides a
very effective and powerful mechanism for devices to exchange information.

GATT provides the facility to discover the services of the remote devices (similar
to the services provided by SDP in the BR/EDR world). It then provides facilities to
discover the characteristics and included services that are contained in the service.
Finally it provides mechanisms to read, write, notify and indicate characteristics.

The GATT based profile architecture abstracts all complexity related to the
hierarchy and access of attributes so that the profiles on top are very simple.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.

331

C H A P T E R 1 4

Generic Access Profile

14.1 Introduction

The Generic Access Profile (GAP) defines the base functionality common to all
Bluetooth devices. This includes modes of device and generic procedures related
to discovery of the devices in vicinity, connecting to devices, and security. GAP is
mandatory to be implemented for all devices that support Bluetooth. The position
of GAP in the LE Protocol Stack is shown in Figure 14.1.

In general the profiles help to ensure interoperability between devices from dif-
ferent vendors. This is one of the strong points of Bluetooth technology compared
to many other wireless technologies. Bluetooth devices from one vendor can seam-
lessly work with devices from other vendors provided they have some profiles in
common.

The profiles also recommend the terminology to be used at the user interface
level so that the end user gets a similar look and feel when using devices from dif-
ferent vendors. For example, GAP recommends the terminology to be used for rep-
resenting various Bluetooth parameters (Bluetooth Device Address, Device Name,
Passkey, etc.) at the user interface level. So, when asking for a user to enter the PIN
key, GAP recommends the user interface to refer to it as “Bluetooth Passkey”.

Before going further, it is highly recommended to read the sections related to
GAP in Chapter 4 to get a good background. This chapter describes the LE specific
parts of GAP.

GAP defines the basic requirements of an LE device to include at least the
following:

	• Physical Layer;

	• Link Layer;

	• L2CAP;

	• Security Manager;

	• ATT;

	• GATT.

332 Generic Access Profi leGeneric Access Profile

14.2 Roles

GAP defines the following four roles for LE devices.

1. Broadcaster;
2. Observer;
3. Peripheral;
4. Central.

A device may operate in multiple GAP roles at the same time provided the link
layer supports this.

14.2.1 Broadcaster Role

A device that is operating in the broadcaster role transmits advertising events pe-
riodically. This role is optimized for transmitter only applications. The device may
not contain a receiver to optimize the memory footprint and cost. Devices support-
ing this role use the link layer advertising events to broadcast data. This is shown
in Figure 14.2.

14.2.2 Observer Role

A device that is operating in the observer role receives the advertising events. The
observer role is optimized for receiver only applications. The device may not con-
tain a transmitter to optimize the memory footprint and cost. The devices support-
ing these roles receive the data that is sent in the link layer advertisement events.
This is shown in Figure 14.2.

14.2.3 Peripheral Role

The device in the Peripheral role is the one that accepts a connection request from
another device. This role is optimized for devices that support a single connection

Figure 14.1 GAP in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Security Manager (SM)

GATT Based Profiles

14.3 Representation of Bluetooth Parameters 333

and act as a Slave in a piconet. A device needs to have both a transmitter and a
receiver to support this role. This is shown in Figure 14.3.

14.2.4 Central Role

The device in the Central role is the one that initiates establishment of a physical
connection. The Central role supports multiple connections and is the initiator of
connections. This device acts as a Master in a piconet and may connect to more
than one Slave. This is shown in Figure 14.3.

14.3 Representation of Bluetooth Parameters

GAP states requirements about the generic terms that should be used on the user
interface level. These are useful not only when designing user interfaces but also in
user manuals, documentation, advertising, etc. This helps to ensure a uniform user
experience irrespective of the vendor who builds the device or the application.

14.3.1 Bluetooth Device Address

A Bluetooth Device Address is used to identify a Bluetooth device. An LE-only
device can either use a public address or a random address. Public Addresses and
Random Addresses were explained in Chapter 8. The term to be used on the user
interface level is defined by GAP as “Bluetooth Device Address”. It is represented
as 12 hexadecimal characters which may or may not be separated into subparts by

Figure 14.2 Broadcaster and Observer roles.

Advertising Event

Observer Broadcaster

Advertising Event

Figure 14.3 Peripheral and Central roles.

Connect Request

Central Peripheral

SlaveMaster

334 Generic Access Profi leGeneric Access Profile

the colon symbol. So the Bluetooth Device Address could be represented as 00AAB-
BCCDDEE or 00:AA:BB:CC:DD:EE. If a device supports dual mode (Both BR/
EDR and LE), then it uses the same Bluetooth Device Address (also referred to as
BD_ADDR) on both the BR/EDR physical channel and LE physical channel.

14.3.2 Bluetooth Device Name

Since it is difficult to refer to devices using a 48-bit address at a user level, the Blue-
tooth devices expose a user friendly name. This is a character string which is easier
to remember, refer to, and distinguish one device from another. For Example ‘BT
Thermometer’, ‘SmartPhone’, ‘Deskjet Printer’.

For a BR/EDR device, the name of the remote device can be fetched using
HCI_Remote_Name_Request command. It may also be returned in the Extended
Inquiry Result Event if an HCI_Inquiry was done after setting the Inquiry_Mode
to Extended Inquiry Result Format.

For an LE only device the name is stored in the Device Name Characteristic.
This Characteristic can be read using the GATT procedures. (Note that in the case
of BR/EDR, the procedures to fetch the name of the remote device were defined at
the link manager level. In the case of LE, they are placed much higher, at the GATT
level. This is another step towards making the link layer much simpler in case of
LE). The name is up to 248 octets in length and is UTF-8 encoded. It is Null ter-
minated if the length is less than 248 octects. The term to be used on the UI level is
“Bluetooth Device Name.”

14.3.3 Bluetooth Passkey

The Bluetooth Passkey is used to authenticate two Bluetooth devices during the
pairing process. For LE devices, the Bluetooth Passkey is a 6-digit numerical value
and is represented in the integer range 000000 to 999999. The term to be used on
the UI level is “Bluetooth Passkey”. Similar to BR/EDR, a device could either have a
fixed passkey or it may be entered by the user. The devices that have no mechanism
to enter the passkey (no keypad) would use a fixed passkey.

14.3.4 Bluetooth Class of Device

The Class of Device is valid for only BR/EDR devices and not used for LE-only
devices.

14.3.5 Pairing—Authentication and Bonding

Pairing is performed by the Security Manager as explained in Chapter 11. If the user
initiates the pairing procedure to create a bond (trusted relationship) between the
two devices, then the procedure is referred to as Bonding. If the user is requested
to enter the Passkey as a part of the connection establishment procedure, then the
procedure is referred to as Authentication.

14.4 Advertising and Scan Response Data Format 335

14.4 Advertising and Scan Response Data Format

The Advertiser can send data to the devices that are scanning using the various
types of advertising events. In addition if the Scanner requests for additional in-
formation then the Advertiser can provide additional data using the SCAN_RSP
advertising packets. This is shown in Figure 14.4.

The Advertising Data is sent in the AdvData field of the following packets:

	• Connectable Undirected (ADV_IND).

	• Non-Connectable Directed (ADV_NONCONN_IND).

	• Scannable Undirected (ADV_SCAN_IND).

The Scan Response Data is sent in the ScanRspData field of the SCAN_RSP
packets. These packets were explained in Chapter 8. Note from Chapter 8 that the
Connectable Directed (ADV_DIRECT_IND) packets do not contain any host data.
Both the AdvData and ScanRspData are 0 to 31 octets in length. These contain a
sequence of Advertising Data (AD) structures. The AD structure is shown in Figure
14.5.

The AD Structure contains three fields:

Figure 14.4 Advertising events containing advertising and scan response data.

Advertising Event

Request additional information from Advertiser

SCAN_REQ

Respond to additional information request

SCAN_RSP

Scanner Advertiser

Advertising
Data

ADV_IND or ADV_NONCONN_IND or ADV_SCAN_IND

Scan
Response
Data

Figure 14.5 Format of advertising data and scan response data.

31 Octets

AD Structure 1 AD Structure 2 AD Structure 3 0s padding

AD Data
(Length – 1 octets)

AD Type
(1 octet)

Length
(1 octet)

336 Generic Access Profi leGeneric Access Profile

1. Length.
2. AD Type.
3. AD Data.

The AD Type field is used to specify the type of data contained in AD Data.
The different values of AD Type field are listed in the Bluetooth Assigned Numbers
Document. Some of the commonly used AD Type fields are explained below.

14.4.1 Local Name (AD Type = 0x08 or 0x09)

This is used to specify the device name. If the device name is too long, then a
shortened version can be provided in this AD Type and the full name can be read
from the device name characteristic. The AD Type field indicates the local name as
follows:

	• 0x08: Shortened local name.

	• 0x09: Complete local name (If it can fit the AdvData).

14.4.2 Flags (AD Type = 0x01)

The Flag AD Type is a bit map used to provide information about the device. The
various values are shown in Table 14.1. The value can be a combination of these
values. For example a value of 0x06 would indicate:

	• LE General Discoverable Mode.

	• BR/EDR not supported.

14.4.3 Manufacturer Specific Data (AD Type = 0xFF)

This is used to specify the company identifier and any manufacturer specific
information.

Figure 14.6 shows an example of ADV_IND packets that contain AdvData. In
this example, the ADV_IND packet contains a payload of 23 bytes, out of which
Advertiser Address is 6 bytes and AdvData is 17 bytes.

The AdvData contains two AD structures:

Table 14.1 Flags Contained in AdvData.
Value Information

0x01 LE Limited Discoverable Mode

0x02 LE General Discoverable Mode

0x04 BR/EDR Not Supported

0x08 Simultaneous LE and BR/EDR to the same
device capable (controller)

0x10 Simultaneous LE and BR/EDR to the same
device capable (host)

14.5 GAP Characteristics 337

	• AD Structure 1: 3 octets: It contains [02 01 06]. This is decoded as follows:

•	 Length = 02.

•	 AD Type = 01 (Flags).

	• AD Data = 06. This means:

•	 The device is currently in LE Generate Discoverable Mode.

•	 The devices does not support BR/EDR.

	• AD Structure 2: 14 octets. It contains [0d 09 42 61 74 74 65 72 79 20 56 31
2e 30]. This is decoded as follows:

•	 Length = 0d.

•	 AD Type = 09 (complete local name).

•	 AD Data = 42 61 74 74 65 72 79 20 56 31 2e 30.

	• When converted to ascii characters, this means “Battery V1.0.”

14.5 GAP Characteristics

GAP defines certain characteristics to provide further information about the device
using the GAP service. There can be only one instance of the GAP service on a de-
vice. The Service UUID of the GAP service is <<Generic Access Profile>>. Some of
the commonly used GAP characteristics are explained below.

14.5.1 Device Name Characteristic

The Device Name Characteristic contains the name of the device as a UTF-8 en-
coded string. It can be 0 to 248 octets long. It has the following fields:

Figure 14.6 Example of AdvData contained in ADV_IND packets.

338 Generic Access Profi leGeneric Access Profile

	• Attribute Type: 0x2A00 – UUID for <<Device Name>>.

	• Attribute Value: Device Name: 0 to 248 octets in length.

The air log for ATT Read Response for reading the Device Name Characteristic
is shown in Figure 14.7. As shown in the figure, the Master executes the following
steps to read the device name:

1. Frame #283: The Master sends a Read Request to read the Characteristic
for Attribute Handle 2. (UUID = Characteristic).

2. Frame #286: The Slave sends a Read Response indicating that the Charac-
teristic contains Device Name and the Attribute Handle is 3.

3. Frame #289: The Master sends a Read Request to read the Device Name
(UUID = Device Name).

4. Frame #292: The Slave sends a Read Response which contains the Device
Name.

14.5.2 Appearance Characteristic

The appearance characteristic is used by the discovering devices to associate an
icon (or string) to this device. The various values of the appearance characteristic
are defined in the Bluetooth Assigned Numbers document. This can be compared to
the Class of Device (CoD) in the case of BR/EDR. The remote devices use the CoD
parameter to display an icon for the device (for example, icon of a headset, mobile
phone or printer). In the case of LE, the remote devices could fetch the appearance
characteristic to find the type of the device and then display an icon or any other
user interface that is appropriate for that device. It has the following fields:

	• Attribute Type: 0x2A01 – UUID for <<Appearance>>

	• Attribute Value: Appearance (as per values defined in Bluetooth Assigned
Numbers): 2 octets in length.

The air log for ATT Read Response for reading the Appearance Characteristic
is shown in Figure 14.8. As shown in the figure, the Master executes the following
steps to read the Appearance:

Figure 14.7 Device name characteristic.

14.5 GAP Characteristics 339

1. Frame #299: The Master sends a Read Request to read the Characteristic
for Attribute Handle 4. (UUID = Characteristic).

2. Frame #302: The Slave sends a Read Response indicating that the Charac-
teristic contains Appearance and the Attribute Handle is 5.

3. Frame #305: The Master sends a Read Request to read the Appearance
(UUID = Appearance).

4. Frame #308: The Slave responds with the Appearance characteristic. It
contains the value “Unknown Appearance”.

14.5.3 Peripheral Privacy Flag Characteristic

The Peripheral Privacy Flag Characteristic defines whether privacy is currently in
use within this device or not.

Setting this flag to 1 indicates that privacy is enabled in this device. It has the
following fields:

	• Attribute Type: 0x2A02 – UUID for <<Peripheral Privacy Flag>>

	• Attribute Value: Peripheral Privacy Flag: 1 octet in length

•	 0x00: Indicates that privacy is disabled in this device.

•	 0x01: Indicates that privacy is enabled in this device.

•	 Remaining values are reserved.

The Peripheral may implement this characteristic as only readable or readable/
writable. If this characteristic is writable, then the central device can remotely en-
able or disable privacy on this device.

14.5.4 Reconnection Address Characteristic

The Reconnection Address is used to store the address to connect to next time.
It may be exchanged between the two devices at each connection. If the device
changes its address, then it can provide the new reconnection address to the peer

Figure 14.8 Appearance characteristic.

340 Generic Access Profi leGeneric Access Profile

device so that the peer device knows which address to connect to the next time. It
has the following fields:

	• Attribute Type: 0x2A03 – UUID for <<Reconnection Address>>

	• Attribute Value: Reconnection Address.

14.5.5 Peripheral Preferred Connection Parameters Characteristic

The peripheral preferred connection parameters (PPCP) characteristic contains the
various preferred connection parameters of a peripheral. This includes parameters
like minimum and maximum connection interval, Slave latency, and connection
supervision timeout multiplier. It has the following fields:

	• Attribute Type: 0x2A04 – UUID for <<Peripheral Preferred Connection
Parameters>>

	• Attribute Value: Peripheral Preferred Connection Parameter: 8 octets in
length.

The air log for ATT Read Response for reading the PPCP Characteristic is
shown in Figure 14.9. As shown in the figure, the Master executes the following
steps to read the PPCP:

1. Frame #321: The Master sends a Read Request to read the Characteristic
for Attribute Handle 6. (UUID = Characteristic).

2. Frame #324: The Slave sends a Read Response indicating that the Charac-
teristic contains PPCP and the Attribute Handle is 7.

3. Frame #325: The Master sends a Read Request to read the Appearance
(UUID = PPCP).

4. Frame #328: The Slave responds with the PPCP characteristic. It contains
the 8-octets:“ff ff ff ff 00 00 ff ff”. The meaning of these octets is shown in
Table 14.2.

Figure 14.9 Peripheral preferred connection parameters characteristic.

14.6 Operational Modes and Procedures 341

14.6 Operational Modes and Procedures

GAP defines the various modes in which an LE device can be in as well as the pro-
cedures that can be carried out. It broadly defines the following four modes and
procedures:

1. Broadcast mode and observation procedure.
2. Discovery modes and procedures.
3. Connection modes and procedures.
4. Bonding modes and procedures.

14.6.1 Broadcast Mode and Observation Procedure

The broadcast mode is the simplest mode which allows an LE device to send data to
other LE devices using advertising events. The device that sends the data is termed
as broadcaster and the device that receives the data is termed as observer.

14.6.1.1 Broadcast Mode

The broadcaster sends data in either nonconnectable undirected (ADV_NON-
CONN_IND) or scannable undirected advertising events (ADV_SCAN_IND).
These events were explained in Chapter 8. Both these events permit sending data
from the Advertiser to the Scanner but do not permit the Scanner to connect to the
Advertiser. Since there is no acknowledgement from any device, the data sent in
broadcast mode is considered unreliable.

14.6.1.2 Observation Procedure

The observation procedure is used by the observer to receive data from the broad-
caster. The device can use either passive scanning or active scanning to receive
the advertising events. As explained in Chapter 8, in the passive scanning mode
the device just receives the advertising data while in the active scanning mode the
device may also request some additional information from the Advertiser using
SCAN_REQ.

Table 14.2 Peripheral Preferred Connection Parameters Data
Name Size Value Meaning

Minimum Connection Interval 2 ff ff No specific minimum

Maximum Connection Interval 2 ff ff No specific maximum

Slave Latency 2 00 00 Slave latency of the connection
in terms of number of
connection events

Connection Supervision Timeout
Multiplier

2 ff ff No specific value requested

342 Generic Access Profi leGeneric Access Profile

14.6.2 Discovery Modes and Procedures

The discovery modes and procedures are used to discover other devices in the vicin-
ity. There are three discovery modes and three discovery procedures in this category.
The discovery modes are implemented by the device acting in the Peripheral role.
(These are excluded for device acting in the Central role since the Central device
does the discovery and is not the one that is to be discovered) The three discovery
modes are shown in Table 14.3.

The discovery procedures are implemented by the device to discover the devices
in the vicinity. Out of these the first two are implemented by the device acting in the
Central role while the third can be implemented by both the Central and Peripheral
device. The three discovery procedures are shown in Table 14.4.

14.6.2.1 Nondiscoverable Mode

A device in nondiscoverable mode cannot be discovered by other devices. In this
mode either the device does not send any advertising packets or if it sends advertis-
ing packets then it does not set the LE General Discoverable Mode and LE Limited
Discoverable Mode flags in the AD type.

14.6.2.2 Limited Discoverable Mode

A device configured in limited discoverable mode can be discovered by other de-
vices for only a limited period of time. An example of this could be a device which
sends advertisements for a limited period of time when the user presses a button on
it. A device in limited discoverable mode can send three types of events:

	• Nonconnectable advertising events (ADV_NONCONN_IND).

	• Scannable undirected advertising events (ADV_SCAN_IND).

	• Connectable undirected advertising events (ADV_IND).

Table 14.3 Discovery Modes
S. No. Mode Mandatory/Optional

1 Nondiscoverable Mode Mandatory for Peripheral. Excluded for Central.

2 Limited Discoverable Mode Optional for Peripheral. Excluded for Central.

3 General Discoverable Mode Mandatory if Limited Discoverable mode is not
implemented, else optional. Excluded for Central.

Table 14.4 Discovery Procedures
S. No. Procedure Mandatory/Optional

1 Limited Discovery Procedure Optional for Central. Excluded for Peripheral

2 General Discovery Procedure Mandatory for Central. Excluded for Peripheral

3 Name Discovery Procedure Optional for both Peripheral and Central. Can
be invoked by either of these.

14.6 Operational Modes and Procedures 343

A device in limited discoverable mode sets the LE Limited Discoverable Mode
flag to one and LE General Discoverable Mode flag to zero in the AD Type. The
Limited Discoverable Mode is shown in Figure 14.10.

14.6.2.3 Limited Discovery Procedure

A device that is performing limited discovery procedure receives the data from the
devices in limited discoverable mode. The host receives the advertising packets from
all the devices and checks the AD Type field in the advertisement packets. If the
AD Type field is present and has the LE Limited Discoverable flag set to one then it
adds that device to the list of devices found during the limited discovery procedure.

Besides the flag, the advertising data may contain other AD Types like local
name, service UUIDs, etc. This data may also be used by the host for other proce-
dures. The Limited Discovery Procedure is shown in Figure 14.10.

14.6.2.4 General Discoverable Mode

A device configured in general discoverable mode can be discovered by other de-
vices that are performing the general discovery procedure. This is typically used
when the device wishes to remain in the discoverable mode for a long period of
time. A device in general discoverable mode can send three types of events:

	• Nonconnectable advertising events (ADV_NONCONN_IND).

	• Scannable undirected advertising events (ADV_SCAN_IND).

	• Connectable undirected advertising events (ADV_IND).

A device in general discoverable mode sets the LE Limited Discoverable Mode
flag to zero and LE General Discoverable Mode flag to one in the AD Type. The
General Discoverable Mode is shown in Figure 14.11.

Advertising Event (“limited”)

Peripheral Central

Stop
Scanning

Peripheral in Limited Discoverable Mode

Central executing Limited Discovery Procedure

Set the AD
Type to LE
Limited
Discoverable

If AD Type is
LE Limited
Discoverable
then add
to list

Start
Scanning

Figure 14.10 Limited discoverable mode and limited discovery procedure.

344 Generic Access Profi leGeneric Access Profile

14.6.2.5 General Discovery Procedure

A device that is performing general discovery procedure receives the data from
the devices in general discoverable mode or limited discoverable mode. The host
receives the advertising packets from all the devices and checks the AD Type field
in the advertisement packets. If the AD Type field is present and has either the LE
Limited Discoverable flag or LE General Discoverable flag set to one then it adds
that device to the list of devices found during the general discovery procedure.

Besides the flag, the advertising data may contain other AD Types like local
name, service UUIDs etc. This data may also be used by the host for other proce-
dures. The General Discovery Procedure is shown in Figure 14.11.

14.6.2.6 Name Discovery Procedure

The name discovery procedure is used to obtain the Bluetooth Device Name of a
remote device. It can be invoked by either the device in Central role or the device
in Peripheral role. The Bluetooth name of the LE device is present at two places:

1. In the Advertising Event if the AD Type in the AD structure is set to Local
Name.
•	 This name is acquired during the general discovery procedure or limited

discovery procedure.
•	 It is possible that the full name may not be provided in the advertising

events since the advertising events are limited to 31 octets. In such cases a
shortened name may be provided in the advertising event.

2. Device Name Characteristic.

If the complete device name is not acquired using step (1) above, then the name
discovery procedure may be performed.

Figure 14.11 General discoverable mode and general discovery procedure.

Peripheral Central

Stop
Scanning

Central executing General Discovery Procedure

If AD Type is
LE General
Discoverable
or LE Limited
Discoverable
then add
to list

Start
Scanning

Advertising Event (“general”)

Peripheral in General Discoverable Mode

Set the AD
Type to LE
General
Discoverable

14.6 Operational Modes and Procedures 345

The name discovery procedure uses the following steps:

1. Establish a connection using the connection establishment procedures.
2. Read the Device Name Characteristic using the GATT procedure Read Us-

ing Characteristic UUID.
3. Terminate the connection if it’s not needed any longer.

The Name Discovery Procedure is shown in Figure 14.12

14.6.3 Connection Modes and Procedures

The connection modes and procedures are used to establish a connection. There
are three connection modes and six connection procedures in this category. The
connection modes are entered by the device in the Peripheral role and the discovery
procedures are initiated by the device in Central role. The terminate connection

Figure 14.12 Name discovery procedure.

Advertising Event

Peripheral Central

Start
Scanning

Stop
Scanning

Central Perihperal

Name Discovery from Advertising Events

Peripheral in General or
Limited Discoverable Mode

Central doing General or
Limited Discovery Procedure

Set the AD
Type to Local
Name and
include the
shortened
version of
local name

Read
the name
from the
advertising
event

Read By Type Request (Starting Handle=0x0000,
Ending Handle=0xFFFF, Attribute Type=<<Device Name>>)

Read By Type Response (Length,
Attribute Handle, Attribute Value)

Name Discovery using GATT Read Using Characteristic UUID

346 Generic Access Profi leGeneric Access Profile

procedure and update connection parameter procedure can be initiated by both the
Peripheral and Central. The three connection modes are shown in Table 14.5.

The six discovery procedures are shown in Table 14.6.

14.6.3.1 Nonconnectable Mode

In the Nonconnectable Mode, the device does not allow connection establishment.
This mode is entered by the Peripheral device when it does not intend to allow the
other devices to connect to it.

The Peripheral can send following two types of events in this mode:

1. Nonconnectable undirected advertising events.
2. Scannable undirected advertising events.

As explained in Chapter 8, both these events don’t allow the remote device
to establish a connection. The Scannable undirected advertising event allows the
remote device to get additional information from the Peripheral.

14.6.3.2 Directed Connectable Mode

In the Directed Connectable Mode, the device allows connections from only a speci-
fied peer device. In this mode the Peripheral devices uses the directed connectable
advertising events (ADV_DIRECT_IND). It specifies the address of the peer device
that is allowed to connect to it in the directed connectable advertising event.

The peer device which is acting as a Central can establish a connection with it.
After a connection is established, the Central device becomes the Master and the
Peripheral device becomes the Slave. Once the connection is established, the device
exits the Directed Connectable Mode and enters the Nonconnectable Mode. This
mode is shown in Figure 14.13.

Table 14.6 Discovery Procedures (All Procedures Excluded for Broadcaster and Observer)
S. No. Procedure Mandatory/Optional

1 Auto Connection Establishment Procedure Optional for Central. Excluded for Peripheral

2 Direct Connection Establishment Procedure Mandatory for Central. Excluded for Peripheral

3 General Connection Establishment Procedure Mandatory for Central if Privacy feature is
supported, else optional. Excluded for Peripheral

4 Selective Connection Establishment Procedure Optional for Central. Excluded for Peripheral

5 Connection Parameter Update Procedure Mandatory for Central. Optional for Peripheral

6 Terminate Connection Procedure Mandatory for Central and Peripheral

Table 14.5 Connection Modes (All Modes Excluded for Broadcaster and Observer except
Nonconnectable Mode)
S. No. Mode Mandatory/Optional

1 Nonconnectable Mode Mandatory for Peripheral, Broadcaster and Observer.
Excluded for Central.

2 Directed Connectable Mode Optional for Peripheral. Excluded for all other roles.

3 Undirected Connectable Mode Mandatory for Peripheral. Excluded for all other roles.

14.6 Operational Modes and Procedures 347

14.6.3.3 Undirected Connectable Mode

In the Undirected Connectable Mode, the device allows connections from any peer
device. In this mode the Peripheral devices uses the undirected connectable advertis-
ing events (ADV_IND).

The peer device which is acting as a Central can establish a connection with it.
After a connection is established, the Central device becomes the Master and the
Peripheral device becomes the Slave. Once the connection is established, the de-
vice exits the Undirected Connectable Mode and enters the Nonconnectable Mode.
This mode is shown in Figure 14.13.

14.6.3.4 Auto Connection Establishment Procedure

In Auto Connection Establishment Procedure the host of the Central configures
the controller to autonomously establish a connection with a device in the directed
connectable mode or undirected connectable mode.

The list of devices to which the controller can establish a connection autono-
mously is specified using a White List. The initiator White List is used for this pur-
pose. If the peer device address matches one of the addresses stored in the White
List, then the controller establishes a connection autonomously. (White List was
explained in Chapter 8). This is shown in Figure 14.13.

14.6.3.5 Direct Connection Establishment Procedure

In Direct Connection Establishment Procedure the host of the Central establishes a
connection to a particular peer device. White Lists are not used in this procedure.

Figure 14.13 Directed connectable mode, undirected connectable mode, and auto connection establish-
ment procedure.

Setup White List

Host Controller Controller

Host

Central Peripheral

Set Filter Policy

List of devices

CONNECT_REQ

Connection Complete

Slave Master

ADV_IND or
ADV_DIRECT_IND

Set in Directed
Connectable Mode or

Undirected
Connectable Mode

Set Advertising Parameters
Set Advertising Data
Enable Advertising

 Connection Complete

Initiator filter policy =
Process connectable
advertising packets

from all devices

348 Generic Access Profi leGeneric Access Profile

The host simply specifies the address of the peer device to connect to when initiating
the connection establishment. This is shown in Figure 14.14.

14.6.3.6 General Connection Establishment Procedure

In General Connection Establishment Procedure the host of the Central configures
the controller to connect to a particular device that may be in either directed con-
nectable mode or undirected connectable mode.

In this procedure, the host of the Central broadly performs the following steps:

1. The host first scans for advertising packets to find out the list of devices
that are present in the vicinity and can be connected to.

2. After getting the list of devices that are present, the host selects one of the
devices to which the connection is to be made (for example, by displaying
a UI to the user to select the device to connect to).

3. The host then uses the direct connection establishment procedure to estab-
lish a connection to the selected device. (The direct connection establish-
ment procedure was explained earlier).

White Lists are not used in this procedure since the host selects the device to
connect to instead of giving a list of device to connect to autonomously. This is
shown in Figure 14.15.

14.6.3.7 Selective Connection Establishment Procedure

In Selective Connection Establishment Procedure the host of the Central configures
the controller to connect to one of the devices in a set of devices specified in a White
List.

Figure 14.14 Direct connection establishment procedure.

Host Controller

Controller Host

Central Peripheral

Set Filter Policy

CONNECT_REQ

Connection Complete Connection Complete

Set in Directed
Connectable Mode

or Undirected
Connectable Mode

Set Advertising Parameters
Set Advertising Data
Enable Advertising

ADV_IND or
ADV_DIRECT_IND

Initiator filter policy =
Ignore white list and
process advertising

packets from
specified device

HCI_LE_Create_Connection

14.6 Operational Modes and Procedures 349

In this procedure, the host of the Central broadly performs the following steps:

1. The host writes the list of devices that it may connect to into the White List.
2. The host sets the scanner filter policy so that it gets the advertising packets

from only the devices in the white list.
3. The host starts scanning.
4. When one of the devices in the white list is discovered, the host stops scan-

ning and initiates a connection to the discovered device using direct con-
nection establishment procedure. (The direct connection establishment
procedure was explained earlier).

This is shown in Figure 14.16.

14.6.3.8 Connection Parameter Update Procedure

The Connection Parameter Update Procedure is used by either the Peripheral or
Central to update the link layer parameters of the current connection.

There are two possible scenarios:

1. Connection Parameter Update initiated by the Central. In this scenario the
link layer connection update procedure is used.

2. Connection Parameter Update initiated by the Peripheral. In this scenario
the L2CAP connection parameter update procedure is used.

Both the scenarios are shown in Figure 14.17.

Figure 14.15 General connection establishment procedure.

Host Controller

Controller

Host

Central Peripheral

LE Advertising Report

Prepare list of
devices

Direct connection Establishment Procedure

ADV_IND or
ADV_DIRECT_IND

Select the device
to connect to

Set Advertising Parameters
Set Advertising Data
Enable Advertising

Set in Directed Connectable
Mode or Undirected
Connectable Mode

350 Generic Access Profi leGeneric Access Profile

14.6.3.9 Terminate Connection Procedure

The Terminate Connection Procedure is used by either the Peripheral or Central to
terminate the current connection. This procedure is shown in Figure 14.18.

14.6.4 Bonding Modes and Procedures

The bonding procedure allows two devices to create a trusted relationship between
them. There are two bondable modes and one bonding procedure in this category.
The bondable modes are implemented by both the device acting in Central role and
Peripheral role. The two bondable modes are shown in Table 14.7.

The bonding procedure is implemented by both the device acting in Central
role and Peripheral role. The one bonding procedure is shown in Table 14.8.

14.6.4.1 Nonbondable Mode

In this mode, a device does not allow a bond to be created with a peer device.

Figure 14.16 Selective connection establishment procedure.

ADV_IND or
ADV_DIRECT_IND

Host Controller Controller

Host

Central Peripheral

LE Advertising Report

Direct connection Establishment Procedure

 Set Filter Policy

Setup White List

List of devices

HCI_LE_Set_Scan_Enable

 Stop Scanning

Device from
White List found?

Scanner filter policy =
Process advertising
packets only from

devices in White List
Set Advertising Parameters

Set Advertising Data
Enable Advertising

Set in Directed
Connectable

Mode or Undirected
Connectable Mode

14.6 Operational Modes and Procedures 351

14.6.4.2 Bondable Mode

In this mode, a device allows a bond to be created with a peer device. This is shown
in Figure 14.19.

Figure 14.17 Connection parameter update procedure.

LE_Connection_
Update_complete

LE_Connection_
Update_complete

Command_Status
 LL_CONNECTION_UPDATE_REQ

Link Layer

Old Connection Parameters

New Connection Parameters

L2CAP Link Layer L2CAP

Central Peripheral

HCI_LE_
Connection_Update

LL_CONNECTION_UPDATE_REQ

Link Layer Link Layer

Old Connection Parameters

New Connection Parameters

Central Peripheral

Scenario 1: Connection Parameter Update Procedure Initiated by Central

Scenario 2: Connection Parameter Update Procedure Initiated by Peripheral

Connection Parameter Update Request

Connection Parameter Update Response

352 Generic Access Profi leGeneric Access Profile

14.6.4.3 Bonding Procedure

The Bonding Procedure is performed, for example, when a device needs to ac-
cess a service on a peer device that requires bonding. It is initiated by the Security
Manager of the Central. If the peer device is in Bondable Mode, the two devices
exchange and store the bonding information in the security database. This is shown
in Figure 14.19.

14.7 Security

Implementation of security is optional for LE devices. It is implemented if the access
to any of the services is to be protected.

Figure 14.18 Terminate connection procedure.

LL_TERMINATE_IND

Link Layer
(Slave)

LL ack

LL_TERMINATE_IND

LL ack

OR

Central Peripheral

Link Layer
(Master)

Termination
initiated by
Master

Termination
initiated by
Slave

Table 14.7 Bonding Modes
S. No. Mode Mandatory/Optional

1 Non-Bondable Mode Mandatory for Peripheral and Central

2 Bondable Mode Optional for Peripheral and Central

Table 14.8 Bonding Procedure
S. No. Procedure Mandatory/Optional

1 Bonding Procedure Optional for Peripheral and Central

14.7 Security 353

Once the LE connection is done, the Security Manager of each device will
specify the security mode to be used for further transactions. A device may impose
security requirements either at a device level or at a service level. In general, if an
application requires security, it will specify the requirements to the Security Man-
ager so that the Security Manager can enforce the correct level of security.

The LE specification defines two modes and four procedures with respect to
security.

The two security modes are shown in Table 14.9.
The four security procedures are shown in Table 14.10.

14.7.1 LE Security Mode 1

LE Security Mode 1 has three security levels with increasing security levels:

1. Level 1: No security (No authentication and no encryption).
2. Level 2: Unauthenticated pairing with encryption.
3. Level 3: Authenticated pairing with encryption
4. Level 4: Authenticated LE Secure Connections pairing with encryption.

A connection with higher level of security also satisfies the security require-
ments for lower levels. So a connection in Level 2 satisfies the requirements for
Level 1 and a connection in Level 3 satisfies the requirements for Level 2 and Level
1. Similarly, a connection in Level 4 satisfies the requirements of Level 1, Level 2,

Figure 14.19 Bonding procedure.

Host
(SM)

 Controller

Controller

Host
(SM)

Central Peripheral

Link Establishment

Security Manager Pairing Procedure (initiated by Central)

Enable
Bondable Mode

Enable
Bondable Mode

Access to a service requires bonding?

Store Bonding
information in
security database

Store Bonding
information in
security database

354 Generic Access Profi leGeneric Access Profile

and Level 3. Besides, this connection in Level 3 or Level 4 also satisfies the require-
ments of LE security mode 2 (as explained in the next section).

14.7.2 LE Security Mode 2

LE Security Mode 2 is used for connection based data signing. It has two security
levels:

1. Level 1: Unauthenticated pairing with data signing.
2. Level 2: Authenticated pairing with data signing.

Data signing is not used when a connection is operating in Level 2, Level 3, or
Level 4 of security mode 1. Data signing is explained later in this chapter.

14.7.3 Secure Connections-Only Mode

A device can configure itself to be in secure connections-only mode. In this mode, it
permits only LE security mode Level 4 (authenticated LE secure connections pair-
ing with encryption) or services that require security mode 1 Level 1 (no security).

14.7.4 Authentication Procedure

The authentication procedure is initiated after a connection has been established. It
covers LE security mode 1.

Authentication is achieved by enabling encryption and the security of that en-
cryption depends on the type of pairing performed. There are two types of pairing:

1. Authenticated pairing: This requires pairing performed with authentica-
tion set to “MITM protection”.

2. Unauthenticated pairing: This requires pairing performed with authentica-
tion set to “No MITM protection”.

These were explained in Chapter 11.

Table 14.9 Security Modes (All Modes are Excluded for Broadcaster and Observer)
S. No. Mode Mandatory/Optional

1 LE Security Mode 1 Optional for Peripheral and Central

2 LE Security Mode 2 Optional for Peripheral and Central

Table 14.10 Security Procedures (All Procedures are Excluded for Broadcaster and
Observer)
S. No. Mode Mandatory/Optional

1 Authentication Procedure Optional for Peripheral and Central

2 Authorization Procedure Optional for Peripheral and Central

3 Connection Data Signing Optional for Peripheral and Central

4 Authenticate Signed Data Procedure Optional for Peripheral and Central

14.7 Security 355

The authentication procedure describes the step to be performed in two
scenarios:

1. Receiving a service request: Each service on the server side has security
settings associated with it. Before replying to a service request, the server
checks to see if the current level of security is sufficient to allow access to
that particular service. If it is not, the server replies with the appropriate
error code.

2. Initiating a service request: While initiating a service request, the client
compares the level of security required to access a service and the current
level of security. If the current level of security is insufficient, it initiates the
appropriate procedures like pairing or encryption.

14.7.5 Authorization Procedure

Authorization procedure involves getting a confirmation from the user to continue
with a security procedure. This may be done after a successful authentication.

14.7.6 Encryption Procedure

A connection may be encrypted by either the Central (Master) or the Peripheral
(Slave). This involves invoking the appropriate Security Manager procedures from
the Master or Slave side:

1. Initiation from the Slave side: The Slave device may initiate security by
sending a Security Request command to the Master. This was explained in
Chapter 11.

2. Initiation from the Master side: The Master device may initiate the setup of
encrypted session. This was explained in Chapter 11.

In order to enhance the security, specifications 4.2 require that if encryption
fails and any of the devices is using a resolvable private address, then the device
should immediately discard that address and generate a new address.

14.7.7 Data Signing

Data signing is used in LE Security Mode 2 when there is a requirement to send
authenticated data between two devices on an unencrypted connection. The data in
the data PDU is signed and the signature is appended to the data PDU itself using
the Connection Data Signing Procedure. On the peer device, the signature is veri-
fied using the Authenticate Signed Data procedure. This is shown in Figure 14.20.

The data signing method is useful when there is a requirement for fast connec-
tion setup and data transfers. This is because the whole data does not need to be
encrypted, a process which would otherwise take considerable time and battery
power.

356 Generic Access Profi leGeneric Access Profile

14.7.8 Privacy Feature

Since many of the LE devices are supposed to be carried by people (for example,
shoes, watch, heart rate sensor), tracking those devices would allow tracking a per-
son by tracking the transmissions from these devices. This could compromise the
privacy of a person.

The privacy feature is used to prevent tracking of devices over a period of time.
This is done by changing the Bluetooth device address frequently. It is optional to
implement this feature in LE devices.

If a Peripheral device supports the privacy feature, then it exposes two
characteristics:

1. Peripheral Privacy Flag (Mandatory to support privacy): Privacy is enabled
when this flag is set to 1.

2. Reconnection Address Characteristic (Optional): If this characteristic is
present, then it can be used in the directed connectable mode to include
the address of the Central device in the directed connectable advertising
packets (ADV_DIRECT_IND). It may also allow only packets from the de-
vice whose address matches the reconnection address. This address can be

Figure 14.20 Data signing.

Host
(SM)

 Controller Controller
Host
(SM)

Central Peripheral

Link Establishment

Sign Data using
CSRK. Append
12-octet signature

Connection Data
Signing Procedure

PDU containing Data
and 12-octet Signature

Authenticate Signed
Data Procedure

Verify Signature
using CSRK.

14.7 Security 357

stored in the White List to reduce power consumption by filtering packets
from other devices.

When a Central device connects to a Peripheral which supports privacy and ex-
poses the Reconnection Address Characteristic, then it writes a new reconnection
address in this characteristic every time it makes a connection to it. It may write the
same reconnection address to its own White List to allow packets from only this
device the next time.

As explained in Chapter 8, specifications 4.2 added the support for resolving
lists. The Host may provide a resolving list to the Controller. The Controller may
do the address resolution on its own before informing the Host.

14.7.9 Random Device Address

The Random Address was explained in Chapter 8. It is a privacy feature of LE
where the device can hide its real address and use a random address which can
change over time. So the real address is not revealed at any time. This helps to en-
sure that a device cannot be tracked.

The Generic Access Profile defines the random address to be of two types:

1. Static Address: A device may choose to initialize its static address to a new
value after each power cycle but cannot change it while it is still powered.
If the device changes its static address, the peer device will not be able to
connect to it with the old address that they may have stored.

2. Private Address: The private address may further be of following two types:
a. Non-resolvable private address: The peer device can never discover the

real address.

b. Resolvable private address: The peer device can derive the real address
using the random address and the link key of the connection.

Figure 14.21 Types of Bluetooth device addresses for LE devices.

Device Address

Random Device

Address

Static Address Private Address

Public Device
Address

Non-Resolvable
Private Address

Resolvable
Private Address

358 Generic Access Profi leGeneric Access Profile

The different types of device addresses for LE devices are shown in Figure
14.21.

14.8 Summary

The Generic Access Profile defines the modes that a device can be in as well as the
generic procedures related to discovering devices, discovering the names of devices,
connecting to devices, and security.

GAP tries to maintain cohesiveness in terms of naming conventions and modes
as far as possible between BR/EDR and LE. This helps to ensure a uniform user
experience when the user is connecting to either an LE device or a BR/EDR device.
Of course the internal procedures behind the scenes are different between BR/EDR
and LE. So even though the procedure to fetch the name from the remote device
is different for BR/EDR and LE, GAP defines the same term “Bluetooth Device
Name” to be used at the UI level.

This chapter completed the explanation of the LE protocol stack and manda-
tory profiles. The next chapter will focus on GATT-based profiles which use the
services provided by GAP and GATT to support the use cases that were discussed
in Chapter 1.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth Assigned Numbers, https://www.bluetooth.org/assigned-numbers.

359

C H A P T E R 15

GATT-Based Profiles

15.1 Introduction

The LE Architecture was introduced in Chapter 6. Though it looks similar to the
BR/EDR architecture, the LE profiles are much simpler. A major reason for this is
that LE introduced the concept of GATT-based profiles. Most of the common func-
tionality needed by all the LE profiles is moved into the ATT protocol and GATT
profile. The profiles on top of GATT use the services provided by GATT and only
need to implement the minimum items needed to support that specific function. The
simplicity of the GATT-based profiles and services can also be seen in the brevity
of some of the specification documents (Some are only ten pages and several of the
documents are around twenty pages.)

As an example, the battery profile just defines the characteristics that are ex-
posed by a device to provide information about the battery. The generic procedures
to access those characteristics are defined by the ATT protocol and GATT profile.
This makes the battery profile very simple.

This chapter introduces some of the commonly used GATT-based services and
profiles. The location of GATT-based profiles in the LE Protocol Stack is shown in
Figure 15.1.

The Bluetooth SIG has defined a versatile list of GATT-based services and pro-
files to address different scenarios where LE devices can be used. There are cur-
rently more than 20 profiles already defined.

One of the major enhancements done after introduction of specifications 4.0
was towards IoT space by enabling the support of IPv6 for Bluetooth. This was
done by the IPSP, which will be covered later in this chapter.

15.2 Profile, Services, and Characteristics

The GATT-based profile architecture was explained in detail in Chapter 13. LE in-
troduces the concept of services and profiles that are defined independently of each
other in separate specifications.

A service can be considered to be a data structure used to describe a particular
function or feature. It is a collection of characteristics and describes what a device

360 GATT-Based Profi lesGATT-Based Profiles

does. All services are implemented by a server and accessed by one or more remote
devices (acting as clients).

A profile can include one or more services. It is possible for several profiles to
use the same service. For example the Device Information Service may be used by
several profiles to provide useful information about the device (like manufacturer
name, model number, etc.). Figure 15.2 shows the relationship between Profiles,
Services and Characteristics.

	• A Device may support one or more profiles.

•	 A Profile may support zero or more services. (It may not contain any ser-
vices as well for some of the profile roles.)

•	 Each service may contain one or more characteristics.

	• The characteristics are the data values that can be read, written, indicated
or notified.

The most important thing to note here is that this framework allows a remote
device to read or write data or register notifications or indications for that data.
This data is contained in the characteristics. The LE profiles are broadly focused
on providing access to some particular data. Each profile finally exposes certain
data in the form of characteristics which can be accessed by remote devices. This
data could be:

	• The temperature that the LE temperature sensor wants to report.

	• The alert level that has been set so that the device can be alerted on some
specific condition.

Figure 15.1 GATT-based profiles in LE protocol stack.

Host Controller Interface
(HCI)

Link Layer

Bluetooth Radio (also called Physical Layer)

L2CAP

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

F
I
N
D

M
E

P
R
O
X
I
M
I
T
Y

B
A
T
T
E
R
Y

H
E
A
R
T

R
A
T
E

…

Generic Access Profile (GAP)

Security Manager (SM)

GATT based profiles

15.3 Immediate Alert Service (IAS) 361

	• The heartbeat data.

	• The status of a battery.

Note that this is in contrast to BR/EDR profiles. For example the Handsfree or
A2DP profiles cannot really be considered to be data centric. They enable voice and
audio to be transferred on top of a Bluetooth connection.

15.3 Immediate Alert Service (IAS)

The Immediate Alert Service is a very simple service which allows a remote device to
write an alert into it. When the remote device writes an alert into it, the device may
take some specific action like flashing an LED, sounding a buzzer, etc.

One example might be finding a misplaced key fob. The user may press a but-
ton on the mobile phone which would lead to an alert being generated by the key
fob. The key fob could, for example, start buzzing. This could be used to locate
the key fob.

15.3.1 Service Declaration

The Link Loss Service is instantiated as a <<Primary Service>>. The Service UUID
is set to <<Immediate Alert>>.

15.3.2 Service Characteristics

The Immediate Alert Service exposes only one characteristic which is mandatory.

1. Alert Level (Write Without Response): The remote devices can write the
alert level using the GATT Write Without Response procedure.

Figure 15.2 Profiles, services, and characteristics.

Device

Characteristic 1

Profile 1 Profile 2

Service 1 Service 2

Characteristic 2

Profile 3

Characteristic 3

…

…

…

362 GATT-Based Profi lesGATT-Based Profiles

The Alert Level is a control point characteristic. (Note from Chapter 12 that
control point characteristics are the ones which cannot be read. These attributes
can only be written, notified, or indicated).

The remote device can set the Alert Level to one of the following:

1. No Alert: The device does not alert.
2. Mild Alert: The device alerts.
3. High Alert: The device alerts in the strongest possible way.

On writing a Mild Alert or High Alert, the device continues to alert until one
of the following conditions occur:

1. An implementation specific timeout occurs
2. User takes some action on the device like pressing a button to acknowledge

and stop the alert.
3. A new alert level is written.
4. The physical link is disconnected.

The Immediate Alert Service is shown in Figure 15.3.
In summary, from a use case scenario perspective, this service can be used to set

an alert in the remote LE device so that the LE device can take appropriate action.

15.4 Find Me Profile (FMP)

The Find Me Profile supports the function to allow users to find misplaced devices.
A button is pressed on a device which causes an alert to be raised on a peer device.

15.4.1 Roles

Find Me Profile defines the following two roles:

Figure 15.3 Immediate alert service and find me profile roles.

Find Me Locator
(Mobile Phone)

Find Me Target
(Keyfob)

Find Me TargetFind Me Locator Alert Level

(Write Without Response)

Immediate Alert Service

Target starts buzzing
when Alert Level is
written to Mild or High

15.5 Link Loss Service (LLS) 363

1. Find Me Locator (GATT Client): This is the device on which the button is
pressed. When a button is pressed, it writes the specific Alert Level into the
Alert Level characteristic of the Find Me Target.

2. Find Me Target (GATT Server): This is the device on which an alert is
raised.

The Find Me Locator uses the GATT service discovery procedures to discover
the Immediate Alert Service on the Target.

The profile does not impose any restrictions on which of the two devices should
act as GAP Central or Peripheral. Either of the devices can act in the GAP Central
role and the peer device acts in the GAP Peripheral role. The Central device does
the discovery and connection establishment with the Peripheral device. The Find
Me Profile roles are shown in Figure 15.3.

15.5 Link Loss Service (LLS)

The Link Loss Service is a very simple service which allows an alert to be raised
when the connection to a remote device is lost. When the link is lost, the device
may take some specific action like flashing an LED, sounding a buzzer, locking the
device, etc. This is useful when an alert is needed if a device moves out of range or
comes into range.

One example of this service is when a user may use it between a watch and a
mobile phone. If the user forgets a mobile phone and walks away (or if the mobile
phone is stolen), the watch would raise an alert.

Another example could be a playground or a shopping mall where a child and
parent may wear a watch (or any other device) supporting this service. If the child
moves out of the range, then the connection would be lost and the parent would
get an alert on their watch.

15.5.1 Service Declaration

The Link Loss Service is instantiated as a <<Primary Service>>. The Service UUID
is set to <<Link Loss>>.

15.5.2 Service Characteristics

The Link Loss Service exposes only one characteristic which is mandatory:

1. Alert Level (Read, Write): The remote devices can read or write the alert
level using the GATT Read Characteristic Value and Write Characteristic
Value procedures.

The Alert Level can be set to one of the following:

1. No Alert: The device does not alert.
2. Mild Alert: The device alerts on loss of a link.
3. High Alert: The device alerts in the strongest possible way on loss of a link.

364 GATT-Based Profi lesGATT-Based Profiles

When the service is implemented in a device and the connection is lost, the
device starts alerting at the specified alert level. The alert continues till one of the
following occurs:

1. An implementation specific timeout occurs.
2. The user takes some action on the device like pressing a button to acknowl-

edge and stop the alert.
3. The physical link is reconnected.

The Link Loss Service is shown in Figure 15.4.

15.6 Transmit Power Service (TPS)

The Transmit Power Service is a very simple service which exposes the device’s
transmit power level when the device is in connected mode.

One example of this service is when the user wishes to know the distance be-
tween two devices. The greater the distance, the greater would be the transmit
power level. So depending on the transmit power level, the user can correlate the
distance between the two devices.

Another example of this service could be a connection between the user’s watch
and a computer. As soon as the user comes near the computer, the computer au-
tomatically unlocks itself and when the user moves away from the computer, the
computer locks itself. This can be done based on the transmit power level between
the watch and the computer to calculate the distance between the two.

Figure 15.4 Immediate alert service, link loss service, Tx power service, and proximity profile roles.

Proximity ReporterProximity Monitor Set Alert Level

(Write Characteristic Value)

Link Loss Service

Immediate Alert Service

Tx Power Service

Read Tx Power

(Read Characteristic Value)

Both devices start
buzzing when
Link is Lost.
Mobile phone
may get locked

Find Me Locator
(Mobile Phone) Find Me Target

(Watch)

15.7 Proximity Profile (PXP) 365

15.6.1 Service Declaration

The Transmit Power Service is instantiated as a <<Primary Service>>. The Service
UUID is set to <<Tx Power>>.

15.6.2 Service Characteristics

The Transmit Power Service exposes only one characteristic which is mandatory:

1. Tx Power Level (Read): The remote devices can read the Tx Power Level
using the GATT Read Characteristic Value procedure.

The Tx Power Service is shown in Figure 15.4.

15.7 Proximity Profile (PXP)

The Proximity Profile supports the use of monitoring the proximity (distance) be-
tween two devices. It supports the following scenarios:

1. If a device moves far away and the connection drops, then an alert is
generated.

2. If a device moves far away and the path loss increases above a certain
value, then an alert is generated.

15.7.1 Roles

Proximity Profile defines the following two roles:

1. Proximity Monitor (GATT Client): The Monitor can read the Tx Power of
the remote device and set the alert levels for immediate alert and link loss
using GATT procedures.

2. Proximity Reporter (GATT Server): The Reporter exposes the characteris-
tics of Immediate Alert Service, Link Loss Service and Tx Power Service.

Generally the Proximity Reporter is an LE-only device which acts as a GAP
Peripheral. The Proximity Monitor could be a dual-mode or LE-only device which
acts as GAP Central. The Proximity Profile roles are shown in Figure 15.4. The ser-
vices shown in dashed boxes are optional while the services shown in solid boxes
are mandatory.

15.8 Battery Service (BAS)

The Battery Service is a very simple service to provide information about the bat-
tery to remote devices. The remote devices may either read the battery level or be
notified when the battery level has changed. One example of this service would be
to get a notification on the mobile phone if the battery of a thermometer is about
to run down.

366 GATT-Based Profi lesGATT-Based Profiles

15.8.1 Service Declaration

The Service UUID is set to <<Battery Service>>.

15.8.2 Service Characteristics

The Battery Service exposes only one characteristic which is mandatory:

1. Battery Level (Read, Notify): The remote devices can read the level using
the GATT Read Characteristic Value or be notified when the battery level
changes. The notification property is optional.

The Battery Level is denoted as a percentage from 0% to 100%. 0% represents
a battery that is fully discharged and 100% denotes a battery that is fully charged.
In order to save battery power, instead of polling the battery level periodically, the
client can also configure the server to send a notification when the battery level
changes.

15.9 Device Information Service (DIS)

The Device Information Service is used to provide manufacturer information about
a device. For example, this service can be used to provide the manufacturer name,
model number, serial number, etc.

15.9.1 Service Declaration

The Device Information Service is instantiated as a <<Primary Service>>. The Ser-
vice UUID is set to <<Device Information >>.

15.9.2 Service Characteristics

The Device Information Service exposes the following characteristics. It is manda-
tory to support any one of these characteristics.

1. Manufacturer Name String: The name of the manufacturer of the device.
2. Model Number String: Model Number.
3. Serial Number String: Serial Number of the particular device.
4. Hardware Revision String: Revision of hardware in the device.
5. Firmware Revision String: Revision of firmware in the device.
6. Software Revision String: Revision of software in the device.
7. System ID: This represents a structure that contains an Organizationally

Unique Identifier (OUI) followed by a manufacturer-defined identifier.
8. IEEE 11073-20601 Regulatory Certification Data List: Regulatory and

Certification information about the product. The IEEE 11073-20601 spec-
ification defines a common framework for making an abstract model of
personal health data so that this data can be exchanged and interpreted
between health devices and computer systems.

15.10 Current Time Service (CTS) 367

All these characteristics are read only and can be read using the GATT Charac-
teristic Value Read procedure.

15.10 Current Time Service (CTS)

The Current Time Service is used to provide the current time to remote devices. One
example of this service would be to update the time in a watch automatically when
a user travels to a new time zone or when daylight savings time changes. The watch
could be connected to a mobile phone and be notified whenever the user travels to
a new time zone.

15.10.1 Service Declaration

The Current Time Service is instantiated as a <<Primary Service>>. The Service
UUID is set to <<Current Time Service>>.

15.10.2 Service Characteristics

The Current Time Service exposes the following three characteristics. Out of these,
the first characteristic is mandatory and the remaining two are optional.

1. Current Time (Read, Notify): This characteristic provides the current data
and time of the server device. This characteristic can be read or can be con-
figured to be notified.

2. Local Time Information (Read): This characteristic provides the informa-
tion like time zone and day light saving offset.

3. Reference Time Information (Read): This characteristic provides informa-
tion about the reference time source from which the time was obtained. For
example, this provides information on how accurate the time source is.

15.11 Health Thermometer Service (HTS)

The Health Thermometer Service is used to provide information from the thermom-
eter like temperature, temperature type, etc. This service can be used in healthcare
and fitness applications.

15.11.1 Service Declaration

The Device Information Service is instantiated as a <<Primary Service>>. The Ser-
vice UUID is set to <<Health Thermometer Service >>.

15.11.2 Service Characteristics

The Health Thermometer Service exposes the following characteristics. Some of
the characteristics also expose a corresponding Client Characteristic Configuration

368 GATT-Based Profi lesGATT-Based Profiles

Descriptor or a Valid Range Descriptor. Out of these the first service (Temperature
Measurement) along with the corresponding Client Characteristic Configuration
Descriptor are mandatory.

1. Temperature Measurement (Indicate): Used to indicate a temperature
measurement to the peer device. The least significant bit is used to indicate
whether the temperature is in Celsius or Fahrenheit.
a. Client Characteristic Configuration Descriptor: Used to configure the

Temperature Measurement Characteristic (for example, to enable
indication).

2. Temperature Type (Read): This is used to specify the location of the human
body where the temperature is measured.

3. Intermediate Temperature (Notify): This is used to send intermediate val-
ues to a device while the temperature measurement is still in progress. The
interval at which this is sent could typically vary from 0.25 seconds to 2
seconds.
a. Client Characteristic Configuration Descriptor: Used to configure the

Intermediate Temperature Characteristic.

4. Measurement Interval (Read): This is used to set the interval between two
successive measurements.
a. Client Characteristic Configuration Descriptor: Used to configure the

Measurement Interval Characteristic.

b. Valid Range Descriptor: This provides the supported range of mea-
surement interval values.

This service is shown in Figure 15.5.

Figure 15.5 Health thermometer service and health thermometer profile.

Thermometer

Blood Pressure SensorCollector Temperature Measurement

(Indicate)

Health Thermometer
Service

Device Information
Service

Intermediate Temperature

(Notify)

Collector
(Mobile Phone)

15.12 Health Thermometer Profile (HTP) 369

15.12 Health Thermometer Profile (HTP)

The Health Thermometer Profile allows a device to interact with a thermometer
sensor that exposes the Health Thermometer Service.

15.12.1 Roles

The Health Thermometer Profile defines the following two roles:

1. Thermometer (GATT Server): The thermometer is the device that performs
the temperature measurement and informs the collector.

2. Collector (GATT Client): The collector is the device that receives the data
from the thermometer.

The Thermometer implements the GAP Peripheral role. The collector imple-
ments the GAP Central role. The Thermometer Profile roles are shown in Figure
15.5. The Thermometer role includes two services—Health Thermometer Service
and Device Information Service. Both the services are mandatory.

15.13 Blood Pressure Service (BPS)

The Blood Pressure Service is used to provide information about the blood pressure
and other related information. This service can be used in healthcare applications.

15.13.1 Service Declaration

The Service UUID is set to <<Blood Pressure Service >>.

15.13.2 Service Characteristics

The Blood Pressure Service exposes the following characteristics. Some of the char-
acteristics also expose a corresponding Client Characteristic Configuration De-
scriptor. Out of these the first service (Blood Pressure Measurement) along with
the corresponding Client Characteristic Configuration Descriptor and the Blood
Pressure Feature are mandatory.

1. Blood Pressure Measurement (Indicate): Used to indicate a blood pressure
measurement to the peer device. It may have additional fields like the pulse
rate, Systolic and Diastolic pressure, etc.
a. Client Characteristic Configuration Descriptor: Used to configure the

Blood Pressure Measurement Characteristic.

2. Intermediate Cuff Pressure (Notify): This is used to send the intermediate
values while the measurement is still in progress.
a. Client Characteristic Configuration Descriptor: Used to configure the

Intermediate Cuff Pressure Characteristic.

3. Blood Pressure Feature (Read): This is used to describe the supported fea-
tures of the Blood Pressure Sensor.

370 GATT-Based Profi lesGATT-Based Profiles

The Blood Pressure Service is shown in Figure 15.6.

15.14 Blood Pressure Profile (BLP)

The Blood Pressure Profile allows a device to interact with a blood pressure sensor
that exposes the Blood Pressure Service.

15.14.1 Roles

The Blood Pressure Profile defines the following two roles:

1. Blood Pressure Sensor (GATT Server): The blood pressure sensor is the
device that performs the blood pressure measurement and informs the
collector.

2. Collector (GATT Client): The collector is the device that receives the data
from the blood pressure sensor.

The Blood Pressure Sensor implements the GAP Peripheral role. The collector
implements the GAP Central role. The Blood Pressure Profile roles are shown in
Figure 15.6. The Blood Pressure Sensor role includes two services—Blood Pressure
Service and Device Information Service. Both the services are mandatory.

15.15 Health, Sports and Fitness Profiles

Similar to the services and profiles described above, LE includes several other pro-
files for health, sports and fitness applications. These include the following:

1. Glucose Service (GLS): Exposes the glucose and other data from a glucose
sensor.

Figure 15.6 Blood pressure service and blood pressure profile.

Blood Pressure
Sensor

Blood Pressure SensorCollector Blood Pressure Measurement

(Indicate)

Blood Pressure Service

Device Information
Service

Intermediate Cuff Pressure

(Notify)

Blood Pressure Feature

(Read)

Collector
(Mobile Phone)

15.16 Internet Protocol Support Profile (IPSP) 371

2. Glucose Profile (GLP): Allows a device to interact with a glucose sensor
device.

3. Heart Rate Service (HRS): Exposes the heart rate and other data from a
heart rate sensor.

4. Heart Rate Profile (HRP): Allows a collector to interact with a heart rate
sensor device.

5. Cycling Speed and Cadence Service (Service): Exposes the cycling speed
and other information to be used in sports and fitness applications.

6. Cycling Speed and Cadence Profile (CSCP): Allows a collector to interact
with a cycling speed and cadence sensor.

15.16 Internet Protocol Support Profile (IPSP)

One of the major enhancements brought in by specifications 4.1 is the enhanced
support for the Internet of Things. This was done by introducing IPSP while speci-
fications 4.2 were being ratified. IPSP requires compliance to specifications 4.1 or
higher.

IPSP provides the support for exchanging IPv6 packets between two devices
over BLE transport. This means that a BLE sensor can exchange packets with the
Internet through a router-like home gateway or mobile phone. The router does not
need to do too much packet processing or conversion since the packets are already
IPv6 and can be routed to or from the internet easily.

The complete details of how IPv6 communication happens over BLE transport
are specified by RFC 7668 (IPv6 over Bluetooth(R) low energy). This profile also
uses RFC4861 (neighbor discovery for IP version 6 (IPv6)) and RFC6775 (neigh-
bor discovery optimizations for 6LoWPAN).

What is IPv6?

Each device on the Internet is assigned a unique address called the IP address. This
address is used to identify the device and to send packets to that device. Histori-
cally, the IP addresses have been 4 bytes (i.e., 32-bits) long. An example of an IP
address is 192.168.3.55.

The digits denote the four bytes of the IP address in decimal form (instead of
hexadecimal form for ease of use). This is called IPv4 or Internet protocol version
4 address format.

Theoretically this can address 232 or approximately 4.3 billion devices. The real
number is much smaller because some of these addresses have specific meanings
and are not assigned to devices, while some other addresses may have been al-
located to certain organizations but not really assigned to devices. With the rapid
growth of Internet and the connected devices, these addresses started getting ex-
hausted rapidly.

372 GATT-Based Profi lesGATT-Based Profiles

IPSP defines two roles: the Node (this role is used for devices that can produce
or consume IPv6 packets) and the Router (this role is used for devices that can
route IPv6 packets).

A typical IPSP configuration is depicted in Figure 15.7, which shows a blood
pressure sensor acting as a Node and sending the data to the Internet via a Smart-
phone that is acting as a router. The blood pressure sensor sends IPv6 packets to
the Smartphone. The Smartphone routes these packets to the internet. Since the
packets are already IP packets, the Smartphone has to perform minimum process-
ing while routing the packets.

6LoWPAN defines two terms:

	• 6LN: This refers to a 6LoWPAN node entity. This is also referred to as node
by IPSP.

	• 6LBR: This refers to a 6LoWPAN border router. This is also referred to as
router by IPSP.

Both peripheral and central devices can act as either 6LN or 6LBR, though it’s
more likely that a peripheral would acts as a 6LN and a central would acts as a
6LBR.

The complete protocol stack architecture for 6LoWPAN and BLE to support
IPSP is shown in Figure 15.8. The main points to note are:

IPv6 addresses are 128 bits. This can theoretically address 2128 devices or approxi-
mately 3.4 × 1038 devices (or three hundred and forty trillion-trillion) unique IP
addresses. A typical IPv6 address looks like 2001:0DB8:D3F0:0123:4567:89AB.

This is very useful in the exponentially growing Internet of Things space where
each and every device or sensor may need a way to uniquely identify itself, which
could be an IPv6 address.

Besides adding the support for more addresses, IPv6 introduced several other net-
working advantages and is widely used in IoT space, amongst other things.

What is 6LoWPAN?

6LoWPAN is an acronym for IPv6 over low-power wireless personal area net-
works (WPANs). As the name suggests, this finds applications in scenarios where
internet connectivity is required by low-power radio communication devices.

6LoWPAN uses mechanisms like header compression and fragmentation in order
to support the WPAN devices. It was originally defined for IEEE 802.15.4-based
networks, though it can be used for other networks, such as BLE.

15.16 Internet Protocol Support Profile (IPSP) 373

1. The node runs an instance of Internet protocol support service (IPSS) that
allows the router device to discover it using GATT procedures.

2. The application can be any application that is capable of generating or
consuming data that is transported over IPv6 packets.

3. The initial connection establishment happens over the link layer and then
L2CAP layer.

 Figure 15.7 IPSP typical configuration.

Figure 15.8 6LoWPAN and BLE protocol stack.

374 GATT-Based Profi lesGATT-Based Profiles

4. Application, UDP/TCP, IPv6, and 6LoWPAN represent the various lay-
ers of the protocol stack that generate the IPv6 packet and provide it to
L2CAP for transmission to the remote entity.

15.16.1 Service Declaration

The IPSS runs on the device acting in the node role.
The service UUID is set to <<Internet Protocol Support Service>>.
This service does not define any characteristics.

15.16.2 Configuration

This profile uses the LE connection-oriented channels feature with LE credit-based
flow control.

An MTU size of 1,280 or higher is required at L2CAP level. This is in line with
IPv6 requirements, which require the host to to be capable of processing datagrams
of at least 1,280 bytes.

The 128-bit IPv6 address is formed based on the 48-bit BD_ADDR, using the
private address of the device. The remaining bits are stuffed with predefined values.

One of the typical configurations of a BLE network connected to the internet
is shown in Figure 15.9. The blood pressure sensor, thermometer, and watch act as
nodes (6LN) and the Smartphone acts as a router (6LBR). The 6LNs cannot talk
to each other directly, rather, each of the 6LNs are connected to the 6LBR in star

Figure 15.9 Typical configuration of a BLE network connected to the Internet.

15.16 Internet Protocol Support Profile (IPSP) 375

topology. The 6LBR is, in turn, connected to the Internet and provides Internet
connectivity to the 6LNs.

It’s not mandatory that the 6LBR be connected to the Internet. The 6LN and
6LBR may form a subnet and communicate with each other as well. This forms
an isolated BLE network. For example, the set of wearable devices that the person
is carrying may not require Internet connectivity at all times, but the smart shoes
that the person is wearing may need to be connected to the smart watch. This can
be done by creating a subnet comprising the smart shoes, smart watch, and the
Smartphone.

15.16.3 Profile Stack Requirements

Devices implementing IPSS need the following components: IPSS (Internet profile
support service); IPSS, GATT, ATT (for the service discovery); and GAP (for device
discovery, connection setup, and security).

15.16.4 Typical IPv6 operations

An IPv6 Host or router can use the IPv6 discovery process to obtain information
about its local environment. IPv6 messages comprise the following:

	• Router Solicitation: This message is used to request the local routers to trans-
mit information. The information gets transmitted in router advertisement
messages. The router advertisement messages contain various link and Inter-
net parameters.

	• Router Advertisement: This message is used by the routers to transmit in-
formation to the local hosts. Generally, the routers transmit the information
periodically.

	• Neighbor Solicitation: This message is used to request the local hosts to
send information. The hosts send information in the neighbor advertisement
message.

	• Neighbor Advertisement: This message is used to transmit host information.

	• Redirect: This message is used by the routers to notify a host of a better route
or destination.

The ICMPv6 information messages echo request (Ping) and echo response can
be used to test connectivity with a router or another host. Figures 15.10, 15.11 and
15.12 show a typical sequence of IPv6 messages.

Figure 15.10 shows a neighbor advertisement message that is sent by the host
to inform the other devices about its presence.

Figure 15.11 shows a router solicitation message that is sent by the host to
request the router to send information about the router.

Figure 15.12 show an echo request (also known as Ping). The response to this
message is an echo response.

376 GATT-Based Profi lesGATT-Based Profiles

Figure 15.11 Caption IPv6 router solicitation message.

Figure 15.12 Caption IPv6 echo request and echo response messages.

Figure 15.10 IPv6 neighbor advertisement message.

15.17 Other Services and Profiles 377

15.17 Other Services and Profiles

There are several other profiles and services that LE specifies for use in different
applications. These include the following:

1. Alert Notification Service (ANS): This service exposes information such
as count of new alerts, count of unread alerts, different types of alerts etc.
This information can be passed, for example, from a mobile phone to a
watch so that the user can see this information on the watch itself instead
of pulling out the mobile phone from the pocket or briefcase.

2. Alert Notification Profile (ANP): This profile enables a client to receive dif-
ferent types of alerts from a server device.

3. Phone Alert Status Service (PASS): This service exposes the phone alert sta-
tus and ringer settings. It could be used, for example, to display an alert on
a watch when there is an incoming call on the mobile. Besides this, it could
also be used to set the phone to silent mode or some other mode from the
watch itself.

4. Phone Alert Status Profile (PASP): This profile enables a client to receive
the phone alert from a server.

5. HID Service: The HID service exposes data like HID reports which can
be used between HID hosts and HID devices. For example, an LE-based
keyboard or mouse could use this service to send reports to a computer
whenever a user presses a key on the keyboard or moves the mouse.

6. HID over GATT (HOGP): This profile enables HID devices to interact with
HID hosts using the GATT profile over an LE transport. (Note that BR/
EDR specification also defines an HID profile which defines HID over a
BR/EDR transport).

15.18 Practical Examples

This section explains a practical use of the Proximity profile with the help of air
logs. It shows the communication between a dual mode device and an LE sensor
supporting proximity profile.

Step 1: Discover All Services of the LE sensor
As a first step, the dual mode device discovers the services of the LE sensor using
GATT procedure “Discover All Services”. This procedure was explained in Chapter
13. The resulting list of services is shown in Figure 15.13. It shows that the LE sen-
sor contains the five services shown in Table 15.1.

Step 2: Discover All Characteristics of the Alert Level Service
Once all the services are discovered, the dual mode device goes on to discover all
characteristics of each of those services using the GATT “Discover All Character-
istics of a Service” procedure. Figure 15.14 shows the characteristics of the Alert
Level Service. It contains one characteristic as follows:

378 GATT-Based Profi lesGATT-Based Profiles

	• Alert Level Characteristic: Value Handle 85.

Step 3: Read or Write the Characteristics
The final step executed by the profile is to write the alert level characteristic. Figure
15.15 shows two operations:

1. The top part (a) shows writing Alert Level to high. Once this is written, the
device starts buzzing.

2. The bottom part (b) shows writing Alert Level to None. Once this is writ-
ten, the device stops buzzing.

Figure 15.13 Discover all services.

Table 15.1 Services Supported by LE Sensor

S. No. Service Name

Starting
Attribute
Handle

Ending
Attribute
Handle

1 Generic Access Profile 1 7

2 Generic Attribute Profile 16 19

3 Link Loss Alert 80 82

4 Immediate Alert 83 85

5 Tx Power 86 88

15.18 Practical Examples 379

Figure 15.15 Read or write alert level characteristic.

Figure 15.14 Discover all characteristics of the alert level service.

380 GATT-Based Profi lesGATT-Based Profiles

15.19 Summary

The GATT-based LE profiles are much simpler than most of the BR/EDR profiles.
As of writing of this book, already 20 profiles have been defined by the Bluetooth
SIG. Each profile is expected to cater to some specific use case scenario. The use
cases of LE were explained in Chapter 1. This chapter provided details on how
those use cases get implemented using the GATT-based LE profiles.

Bibliography

Bluetooth Core Specification 4.0 http://www.bluetooth.org.
Bluetooth Profiles Specifications http://www.bluetooth.org.
Bluetooth Assigned Numbers, https://www.bluetooth.org/assigned-numbers.
IEEE Std 11073-20601™- 2008 Health Informatics, Personal Health Device Communication,
Application Profile, Optimized Exchange Protocol, version 1.0 or later.
RFC 7668 IPv6 over Bluetooth Low Energy https://tools.ietf.org/html/rfc7668
RFC 4861 Neighbor Discovery for IP versoin 6 (IPv6) https://tools.ietf.org/html/rfc4861
RFC 6775 Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs) https://tools.ietf.org/html/rfc6775

381

C H A P T E R 1 6

Developing LE Applications

16.1 Introduction

In Chapter 5, we looked at some practical exercises that can be done on an Ubuntu
system using the BlueZ stack to understand the various Bluetooth operations.

In this chapter, we will look at how to build an LE application based on the
BlueZ stack. We will start with basic operations like setting up the development
environment, enabling the Bluetooth adapter, advertising, and scanning. After that
various GATT operations like discovering services, characteristics and reading and
writing characteristics will be explained. Finally this chapter will explain the steps
needed to make a real world application—an application to find lost keys.

Broadly this chapter will show examples of the various concepts that were ex-
plained in previous chapters and how various components come together to make
a complete real world application. Besides the various procedures, this chapter will
also explain what happens inside the protocol stack when those procedures are
executed. In particular, this chapter will go into the transactions happening at the
ATT level as well as the HCI level.

The BlueZ stack running in an Ubuntu environment has been selected for the
examples due to several reasons:

1. This environment is easy to setup. The Ubuntu operating system can be
downloaded and is pretty straightforward to install.

2. This environment is quite inexpensive. Only a couple of PCs are needed
along with Bluetooth dongles and application development can be started.

3. The latest versions of BlueZ provide in-built support for LE. This means
that the developer can directly focus on writing the application instead of
first looking at how to bring up the various protocol stack layers.

4. BlueZ is open source. This means that the source code is available for ref-
erence at any time to see how exactly the different components are imple-
mented. It can, for example, be used to see how the gatttool interfaces with
the BlueZ stack to carry out various GATT operations.

5. Once the developer has made some enhancements to the BlueZ stack it can
also be contributed back to the community so that others can also benefit
from those.

382 Developing LE ApplicationsDeveloping LE Applications

6. BlueZ provides a powerful hcidump tool which can be used for analysis
of the various procedures and what happens internally when those pro-
cedures are invoked. BlueZ also provides several utilities and sample ex-
amples which can be used for reference.

7. Even though the end environment may not be Linux- or BlueZ-based, these
examples and sample source code will be very useful in understanding how
a typical LE implementation works. This can help in quick ramp-up and
result in speedier application development in the target environment.

8. BlueZ is a powerful environment to use as a peer device for testing since
it supports both the LE only and dual mode roles. For example, if the
developer is developing an LE device (Bluetooth Smart), then the BlueZ
environment can be used as a Bluetooth Smart Ready device for testing that
LE device. On the other hand if the developer is developing a Bluetooth
Smart Ready device or application, the BlueZ environment can be used as
a Bluetooth Smart device.

This chapter will also explain some of the tips and tricks that can be useful
while developing and debugging an LE application. Some of the tools that can be
used for assistance are also explained.

16.2 Ingredients

You will need the following:

1. Two PCs running any flavor of Linux (Preferably a current one to ensure
it includes support for LE). For the purpose of examples, Ubuntu 12.10 is
used here though any other Linux system will serve the purpose provided
it’s not too old. These two PCs will be referred to by the following names:
a. lepc: This is the PC that will run the LE side of the sample applications.

b. dualpc: This is the PC that will run the Dual mode side of the sample
applications.

2. A couple of LE devices. If you search the internet you may find develop-
ment kits from some vendors which can be used for developing LE applica-
tions. Some LE devices have also started appearing in the market and these
are expected to grow rapidly. For the purpose of examples in this chapter,
we will use a couple of PTS dongles and attach them via the USB interface
to each of the Ubuntu PCs. The PTS dongle is available for purchase from
the Bluetooth SIG website.

16.2.1 Installing hcidump

BlueZ comes with a very useful tool called hcidump which can be used to find
out the packets being exchanged on the HCI interface. By default this tool is not
installed on the Ubuntu system. The message shown in Figure 16.1 is received on
invoking hcidump if this tool is not installed.

There are two methods for installing hcidump:

16.2 Ingredients 383

 Method 1: The following command may be given to download and install
it.

 apt-get install bluez-hcidump

 This should install hcidump on the system.

 Method 2: The source code of the hcidump command may be downloaded
from the bluez website (Reference [3]) and built. This method is explained
in detail here.

The commands needed to build hcidump are shown in Figure 16.2. Some of the
output of the commands is removed for ease of understanding.

Figure 16.1 Invoking hcidump.

dualpc# hcidump
The program ‘hcidump’ is currently not installed. You can install it by
typing:
apt-get install bluez-hcidump

Figure 16.2 Building hcidump.

dualpc# gunzip bluez-hcidump-2.3.tar.gz
dualpc#

dualpc# tar xvf bluez-hcidump-2.3.tar
bluez-hcidump-2.3/
.
.
.
bluez-hcidump-2.3/README
dualpc#

dualpc# cd bluez-hcidump-2.3
dualpc#
dualpc# ./configure
checking for ...
.
.
.
dualpc#

dualpc# make
make –no-print-directory all-am
 CC src/bpasniff.o
.
.
.
dualpc#

dualpc# make install
test –z ...
.
.
.
dualpc#

384 Developing LE ApplicationsDeveloping LE Applications

The following are the steps needed to build hcidump.

1. Unpack the source code and prepare to build.

 gunzip bluez-hcidump-2.3.tar.gz
 tar xvf bluez-hcidump-2.3.tar
 cd bluez-hcidump-2.3.tar

2. Configure the source code:

 ./configure

3. Build and Install

 ./make
 ./make install

Note that before doing a make install, root privileges may be required. This can
be done by executing the command:

 sudo su

16.2.2 Basic Bluetooth operations

Before trying the examples provided in this chapter, the two LE dongles will need
to be connected to each of the two PCs: lepc and dualpc. Note that some of the
hciconfig commands are supported only if the user has root privileges. So it’s bet-
ter to do the following before trying out the commands mentioned in this chapter:

 sudo su

16.2.2.1 Invoking hcidump

It will be useful to start hcidump before giving any of the commands mentioned in
the following section. This tool will show the various commands given on the HCI
interface and the events received. Apart from the commands and events this tool
also decodes the parameters of the commands and events. It also shows the higher
layer transactions for ACL data packets. For example, for ACL data packets, this
tool shows the transactions that happen at the ATT protocol layer. Figure 16.3
shows how to invoke hcidump. (The –i option is used to specify the HCI interface
for which the tool should display the various commands and events. This will be
explained shortly).

Figure 16.3 Invoking hcidump.

dualpc# hcidump –i hci1 –X
HCI sniffer – Bluetooth packet analyzer ver 2.3
device: hci1 snap_len: 1028 filter: 0xffffffff

16.2 Ingredients 385

The best way to use this tool is to execute it in a separate terminal window so
that all commands and events can be seen in that separate window and these don’t
garble the display of commands and events on the main window.

16.2.2.2 Accessing the LE device

Once a dongle (also known as Bluetooth adapter) is connected to a PC, it should
be accessible through an hci interface. The hci interfaces are referred to by BlueZ
as hci0, hci1 and so on, depending on the number of Bluetooth adapters connected
to the PC.

The hciconfig command can be used to configure the HCI adapter(s). The fol-
lowing command is used to find information about all HCI adapter(s) attached to
the lepc PC:

 hciconfig –a

The output of this command is shown in Figure 16.4. The following things may
be observed:

Figure 16.4 Get information about all Bluetooth devices connected to the PC.

lepc# hciconfig -a
hci0: Type: BR/EDR Bus: USB

BD Address: 08:ED:B9:DE:52:FB ACL MTU: 8192:128 SCO MTU: 64:128
UP RUNNING PSCAN
RX bytes:1314 acl:0 sco:0 events:30 errors:0
TX bytes:606 acl:0 sco:0 commands:30 errors:0
Features: 0xff 0xff 0x8f 0xfe 0x83 0xe1 0x08 0x80
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF PARK
Link mode: SLAVE ACCEPT
Name: 'ubuntu-0'
Class: 0x6e0100
Service Classes: Networking, Rendering, Capturing, Audio, Telephony
Device Class: Computer, Uncategorized
HCI Version: 2.1 (0x4) Revision: 0x100
LMP Version: 2.1 (0x4) Subversion: 0x100
Manufacturer: not assigned (6502)

hci1: Type: BR/EDR Bus: USB
BD Address: 00:1B:DC:05:C8:D6 ACL MTU: 310:10 SCO MTU: 64:8
UP RUNNING PSCAN
RX bytes:1063 acl:0 sco:0 events:31 errors:0
TX bytes:849 acl:0 sco:0 commands:30 errors:0
Features: 0xff 0xff 0x8f 0x7e 0xd8 0x1f 0x5b 0x87
Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF PARK
Link mode: SLAVE ACCEPT
Name: 'ubuntu-1'
Class: 0x6e0100
Service Classes: Networking, Rendering, Capturing, Audio, Telephony
Device Class: Computer, Uncategorized
HCI Version: 4.0 (0x6) Revision: 0x1d86
LMP Version: 4.0 (0x6) Subversion: 0x1d86
Manufacturer: Cambridge Silicon Radio (10)

386 Developing LE ApplicationsDeveloping LE Applications

1. The PC has two Bluetooth adapters attached to it on hci0 and hci1.
2. The information about hci0 is as follows:

a. BD_ADDR is 08:ED:B9:DE:52:FB.

b. The ACL MTU size is 8192 bytes and the device has 128 buffers.

c. The SCO MTU size is 64 bytes and the device has 128 buffers.

d. The bitmap indicating features supported by the device is: ff ff 8f fe 83
e1 08 80. (This indicates the set of features that the link layer supports
out of the feature mask definition.)

e. The name of the device is ‘ubuntu-0.’

f. The Class of Device (CoD) is 0x6e0100. This means that it supports
the following: Device Class: Computer, Uncategorized; Service Class:
Networking, Rendering, Capturing, Audio, Telephony.

g. The LMP version is 2.1. This means that this device support Bluetooth
2.1 specification.

3. The information about hci1 is as follows:
a. BD_ADDR is 00:1B:DC:05:B5:B3.

b. The ACL MTU size is 310 bytes and the device has 10 buffers.

c. The SCO MTU size is 64 bytes and the device has 8 buffers.

d. The bitmap indicating features supported by the device is: ff ff 8f 7e d8
1f 5b 87 (This indicates the set of features that the link layer supports
out of the feature mask definition.)

e. The name of the device is ‘ubuntu-1.’

f. The Class of Device (CoD) is 0x6e0100. This means that it supports
the following: Device Class: Computer, Uncategorized; Service Class:
Networking, Rendering, Capturing, Audio, Telephony.

g. The LMP version is 4.0. This means that this device support Bluetooth
4.0 specification.

This indicates that hci0 is a BR/EDR device and hci1 is a dual mode device.

16.2.2.3 Opening and Closing HCI interface

The HCI interface may be opened and closed by the hciconfig command. By default
the HCI interface is open when Ubuntu boots up. The command to open the HCI
interface is:

 hciconfig hci1 up

The command to close the HCI interface is:

 hciconfig hci1 down

These are shown in Figure 16.5.

16.2 Ingredients 387

The hcidump of the previous command that was used to bring up the HCI
interface (hciconfig hci1 up) throws up several interesting bits of information.
This is shown in Figure 16.6. Some of the lines of output are removed for easier
understanding.

Some of the key points to note are:

1. The HCI Reset command is given at the beginning to reset the controller
and bring it to a known state.

2. The Read Local Version Information command is used to find out the ver-
sion of Bluetooth specification supported by the controller.

3. The LE Read Buffer Size command is used to read the number of LE buf-
fers. This command returns 0 as the length of the LE packets. This means
that the controller is using shared ACL buffers for LE and BR/EDR. The
number of shared buffers in the controller is read by the HCI Read Buffer
Size command. This was explained in Chapter 9.

4. The Write LE Host Supported command is used to inform the controller
that the host supports LE.

16.2.2.4 Link Layer Supported States

The various states of the link layer were explained in Chapter 8. BlueZ supports the
following command to get the list of states supported by the link layer:

 hciconfig hci1 lestates

Note that this command takes the HCI adapter as an argument. In this case,
the LE dongle is attached on hci1 interface. So the command is used with the first
argument as hci1.

The output of this command is shown in Figure 16.7. The device in this case
supports the following LM states:

	• Non-connectable Advertising State.

	• Scannable Advertising State.

	• Connectable Advertising State.

There are many more possible states that the device supports. The complete list
is shown in Figure 16.7.

The commands and events exchanged on the HCI interface as shown in Figure
16.8. It shows that the HCI command LE_Read_Supported_States is used to get
the list of supported states. This command was explained in Chapter 9.

Figure 16.5 Opening and Closing HCI interface.

dualpc# hciconfig hci1 down

dualpc# hciconfig hci1 up
dualpc#

388 Developing LE ApplicationsDeveloping LE Applications

16.3 Advertising and Scanning

The advertising and scanning procedures were explained in Chapter 8.

< HCI Command: Reset (0x03|0x0003) plen 0
> HCI Event: Command Complete (0x0e) plen 4
 Reset (0x03|0x0003) ncmd 1
 status 0x00
< HCI Command: Read Local Supported Features (0x04|0x0003) plen 0
> HCI Event: Command Complete (0x0e) plen 12
 Read Local Supported Features (0x04|0x0003) ncmd 1
 status 0x00
 Features: 0xff 0xff 0x8f 0x7e 0xd8 0x1f 0x5b 0x87
< HCI Command: Read Local Version Information (0x04|0x0001) plen 0
> HCI Event: Command Complete (0x0e) plen 12
 Read Local Version Information (0x04|0x0001) ncmd 1
 status 0x00
 HCI Version: 4.0 (0x6) HCI Revision: 0x1d86
 LMP Version: 4.0 (0x6) LMP Subversion: 0x1d86
 Manufacturer: Cambridge Silicon Radio (10)
< HCI Command: Read Buffer Size (0x04|0x0005) plen 0
> HCI Event: Command Complete (0x0e) plen 11
 Read Buffer Size (0x04|0x0005) ncmd 1
 status 0x00
 ACL MTU 310:10 SCO MTU 64:8
< HCI Command: Read BD ADDR (0x04|0x0009) plen 0
> HCI Event: Command Complete (0x0e) plen 10
 Read BD ADDR (0x04|0x0009) ncmd 1
 status 0x00 bdaddr 00:1B:DC:05:B5:B3
< HCI Command: Set Event Mask (0x03|0x0001) plen 8
 Mask: 0xfffffbff07f8bf3d
> HCI Event: Command Complete (0x0e) plen 4
 Set Event Mask (0x03|0x0001) ncmd 1
 status 0x00
< HCI Command: Read Local Supported Commands (0x04|0x0002) plen 0
> HCI Event: Command Complete (0x0e) plen 68
 Read Local Supported Commands (0x04|0x0002) ncmd 1
 status 0x00
 Commands: ffffff03fefffffffffffffff30fe8fe3ff783ff1c00000061f7ffff7f
< HCI Command: Write LE Host Supported (0x03|0x006d) plen 2
 0000: 01 01 ..
> HCI Event: Command Complete (0x0e) plen 4
 Write LE Host Supported (0x03|0x006d) ncmd 1
 0000: 00 .
< HCI Command: LE Read Buffer Size (0x08|0x0002) plen 0
> HCI Event: Command Complete (0x0e) plen 7
 LE Read Buffer Size (0x08|0x0002) ncmd 1
 status 0x00 pktlen 0x0000 maxpkt 0x00
< HCI Command: Write Simple Pairing Mode (0x03|0x0056) plen 1
 mode 0x01
> HCI Event: Command Complete (0x0e) plen 4
 Write Simple Pairing Mode (0x03|0x0056) ncmd 1
 status 0x00
< HCI Command: Write LE Host Supported (0x03|0x006d) plen 2
 0000: 01 01 ..
> HCI Event: Command Complete (0x0e) plen 4
 Write LE Host Supported (0x03|0x006d) ncmd 1
 0000: 00 .

Figure 16.6 HCI transactions during hciconfig hci1 up.

16.3 Advertising and Scanning 389

The following command is used to enable advertising on the PC lepc.

 hciconfig hci1 leadv

The following command is used for scanning on PC dualpc.

 hcitool –i hci1 lescan

Figure 16.7 Retrieving the list of LM states supported.

lepc# hciconfig hci1 lestates
Supported link layer states:

YES Non-connectable Advertising State
YES Scannable Advertising State
YES Connectable Advertising State
YES Directed Advertising State
YES Passive Scanning State
YES Active Scanning State
YES Initiating State/Connection State in Master Role
YES Connection State in the Slave Role
YES Non-connectable Advertising State and Passive Scanning State

combination
YES Scannable Advertising State and Passive Scanning State combination
YES Connectable Advertising State and Passive Scanning State

combination
YES Directed Advertising State and Passive Scanning State combination
YES Non-connectable Advertising State and Active Scanning State

combination
YES Scannable Advertising State and Active Scanning State combination
YES Connectable Advertising State and Active Scanning State

combination
YES Directed Advertising State and Active Scanning State combination
YES Non-connectable Advertising State and Initiating State combination
YES Scannable Advertising State and Initiating State combination
YES Non-connectable Advertising State and Master Role combination
YES Scannable Advertising State and Master Role combination
YES Non-connectable Advertising State and Slave Role combination
YES Scannable Advertising State and Slave Role combination
NO Passive Scanning State and Initiating State combination
NO Active Scanning State and Initiating State combination
YES Passive Scanning State and Master Role combination
YES Active Scanning State and Master Role combination
YES Passive Scanning State and Slave Role combination
YES Active Scanning State and Slave Role combination
YES Initiating State and Master Role combination/Master Role and

Master Role combination

Figure 16.8 HCI transactions for getting LE states.

dualpc# hcidump -i hci1 -X
HCI sniffer - Bluetooth packet analyzer ver 2.3
device: hci1 snap_len: 1028 filter: 0xffffffff
< HCI Command: LE Read Supported States (0x08|0x001c) plen 0
> HCI Event: Command Complete (0x0e) plen 12
 LE Read Supported States (0x08|0x001c) ncmd 1
 0000: 00 ff ff 3f 1f 00 00 00 00 ...?.....

390 Developing LE ApplicationsDeveloping LE Applications

The advertising command is shown in Figure 16.9. The corresponding output
of hcidump command is also shown in Figure 16.9. As may be noted, the HCI com-
mand LE_Set_Advertise_Enable is used to enable advertising.

The command for scanning is shown in Figure 16.10. The BD_ADDR for lepc
is 00:1B:DC:05:C8:D6. When dualpc does a scanning procedure, this device is
shown amongst the list of devices found.

The corresponding output of hcidump command is also shown in Figure 16.10.
As may be noted, the HCI commands LE_Set_Scan_Parameters and LE_Set_Scan_
Enable are used to enable scanning. The remote devices are informed by the con-
troller by sending LE_Advertising_Report events.

16.4 Creating a Connection

Creating an LE connection is quite simple. Once the lepc is in advertising mode (as
shown in previous section) the following command can be given to create an LE
connection by dualpc:

 hcitool –i hci1 lecc BD_ADDR_OF_lepc

This is shown in Figure 16.11. It may be noted that on successful connection
this command returns the connection handle. For example, in this case, the connec-
tion handle assigned to the LE connection is 39.

16.5 GATT Operations

16.5.1 Enable GATT Functionality on Server

BlueZ on ubuntu includes a GATT server which provides support for FindMe and
Proximity profiles. It includes the following services:

1. Generic Access Service.
2. Generic Attribute Service.

Figure 16.9 Advertising.

Advertising on lepc

HCI commands and events for advertising

lepc# hcidump -i hci1 -X
HCI sniffer - Bluetooth packet analyzer ver 2.3
device: hci1 snap_len: 1028 filter: 0xffffffff
< HCI Command: LE Set Advertise Enable (0x08|0x000a) plen 1
 0000: 01 .
> HCI Event: Command Complete (0x0e) plen 4
 LE Set Advertise Enable (0x08|0x000a) ncmd 1
 status 0x00

lepc# hciconfig hci1 leadv
lepc#

16.5 GATT Operations 391

Figure 16.10 Scanning.

< HCI Command: LE Set Scan Parameters (0x08|0x000b) plen 7
 type 0x01 (active)
 interval 10.000ms window 10.000ms
 own address: 0x00 (Public) policy: All
> HCI Event: Command Complete (0x0e) plen 4
 LE Set Scan Parameters (0x08|0x000b) ncmd 1
 status 0x00
< HCI Command: LE Set Scan Enable (0x08|0x000c) plen 2
 value 0x01 (scanning enabled)
 filter duplicates 0x01 (enabled)
> HCI Event: Command Complete (0x0e) plen 4
 LE Set Scan Enable (0x08|0x000c) ncmd 1
 status 0x00
> HCI Event: LE Meta Event (0x3e) plen 12
 LE Advertising Report
 ADV_IND - Connectable undirected advertising (0)
 bdaddr 00:1B:DC:05:C8:D6 (Public)
 RSSI: -39
> HCI Event: LE Meta Event (0x3e) plen 12
 LE Advertising Report
 SCAN_RSP - Scan Response (4)
 bdaddr 00:1B:DC:05:C8:D6 (Public)
 RSSI: -39

HCI commands and events for scanning

dualpc# hcitool –i hci1 lescan
LE Scan ...
00:1B:DC:05:C8:D6 (unknown)
00:1B:DC:05:C8:D6 (unknown)
00:1B:DC:05:C8:D6 (unknown)
00:1B:DC:05:C8:D6 (unknown)
00:1B:DC:05:C8:D6 (unknown)
00:1B:DC:05:C8:D6 (unknown)
^C
dualpc#

Scanning on dualpc

dualpc# hcitool -i hci1 lecc 00:1B:DC:05:C8:D6
Connection handle 39

< HCI Command: LE Create Connection (0x08|0x000d) plen 25
 bdaddr 00:1B:DC:05:C8:D6 type 0
> HCI Event: Command Status (0x0f) plen 4
 LE Create Connection (0x08|0x000d) status 0x00 ncmd 1
> HCI Event: LE Meta Event (0x3e) plen 19
 LE Connection Complete
 status 0x00 handle 39, role master
 bdaddr 00:1B:DC:05:C8:D6 (Public)

HCI commands and events for creating a connection

Creating connection from dualpc to lepc

Figure 16.11 Creating an LE connection.

392 Developing LE ApplicationsDeveloping LE Applications

3. Link Loss Service.
4. Immediate Alert Service.
5. Tx Power Service.

This section configures lepc as a GATT server. To do this, the GATT server
needs to be enabled. The steps to do this are as follows:

1. Set EnableGatt to true in /etc/bluetooth/main.conf.
2. Kill the Bluetooth daemon by giving the command.

 sudo killall bluetoothd

3. Start Bluetooth daemon again by giving the command.

 sudo /usr/sbin/bluetoothd

16.5.2 Execute GATT Procedures from the Client

This section configures dualpc as the GATT client and uses the gatttool application.
The gatttool application can be used to send a single request to the GATT layer
or it can also be used in an interactive mode where a series of requests can be sent
interactively. In the interactive mode, gatttool comes up with a command prompt
where the requests can be given. This section will explain how to run the gatttool
in the interactive mode.

The syntax of the gatttool application is:

 gatttool [option…]

It can be invoked as follows:

 gatttool –i hciX –I –b BD_ADDR_OF_REMOTE_DEVICE

where:

-I hciX specifies the HCI Interface (local adapter interface)

-b BD_ADDR_OF_REMOTE_DEVICE specifies the BD_ADDR of the remote
device

-I specifies to use the interactive mode

In this example, the gatttool command is run as follows:

 gatttool –i hci1 –I –b 00:1B:DC:05:C8:D6

The –I switch is used to run gatttool in interactive mode so that further com-
mands can be given at the gatttool command prompt. Once this command is ex-
ecuted, the gatttool shows its own prompt where further commands can be given.
The prompt shown by gatttool is shown in Figure 16.12.

16.5 GATT Operations 393

16.5.2.1 Connecting from the Client

The command to create a connection is:

 connect

Once this command is given, the display changes as shown in Figure 16.13.
Note that the prompt in the first square bracket has changed to CON to indicate
that GATT client is now connected to a GATT server.

16.5.2.2 Getting the Primary Services

The command to get the primary services is:

 primary

The output of this command is shown in Figure 16.14.
The output shows the following for each primary service:

	• Attribute Handle;

	• End Group Handle;

Figure 16.12 Running gatttool in interactive mode.

dualpc# gatttool -i hci1 -I -b 00:1B:DC:05:C8:D6
[][00:1B:DC:05:C8:D6][LE]>

Figure 16.13 Connecting from the client.

[][00:1B:DC:05:C8:D6][LE]> connect
[CON][00:1B:DC:05:C8:D6][LE]>

Figure 16.14 Getting the primary services.

[CON][00:1B:DC:05:C8:D6][LE]> primary
[CON][00:1B:DC:05:C8:D6][LE]>
attr handle: 0x0001, end grp handle: 0x0008 uuid: 00001800-0000-1000-8000-
00805f9b34fb
attr handle: 0x0009, end grp handle: 0x000b uuid: 00001803-0000-1000-8000-
00805f9b34fb
attr handle: 0x000c, end grp handle: 0x000f uuid: 00001804-0000-1000-8000-
00805f9b34fb
attr handle: 0x0010, end grp handle: 0x0010 uuid: 00001801-0000-1000-8000-
00805f9b34fb
attr handle: 0x0011, end grp handle: 0x0013 uuid: 00001802-0000-1000-8000-
00805f9b34fb
attr handle: 0x0014, end grp handle: 0x0017 uuid: 0000a002-0000-1000-8000-
00805f9b34fb
attr handle: 0x0022, end grp handle: 0x002c uuid: 0000a004-0000-1000-8000-
00805f9b34fb
attr handle: 0xfffa, end grp handle: 0xfffe uuid: feee74dc-a8de-3196-1149-
d43596c00a4f
[CON][00:1B:DC:05:C8:D6][LE]>

394 Developing LE ApplicationsDeveloping LE Applications

	• UUID of that service (128-bit UUID of the service).

It indicates the primary services as shown in Table 16.1. Note that the service
UUID has been converted from 128-bit to 16-bit. As explained in Chapter 12, a 16-
bit UUID can be derived from the 128-bit bit UUID for the UUIDs that are already
defined by the Bluetooth SIG. It is shown as xxxx in the 128-bit representation when
the representation is in the form of 0000xxxx-0000-1000-8000-00805F9B34FB.

The service UUIDs are mapped to the Service Names by referring to the Blue-
tooth Assigned Numbers for GATT (see Reference [4]) and GATT based Service
UUIDs (see Reference [5]).

The transactions that are initiated on the ATT level for getting the primary
services can be captured by using the hcidump tool. The output of the hcidump
tool for getting the primary services is shown in Figure 16.15. The following points
may be noted:

1. The ATT Read_By_Group_Type request is used to read the services. It is
executed with the following parameters:
a. Start Handle: 0x0001.

b. Ending Handle: 0xffff.

c. UUID: 0x2800 (This means that <<Primary Service>> is requested).

2. All ATT methods use the ACL packets to send and receive data.
3. The ATT Read_By_Group_Type response returns the first three services

with the End Group Handle of the last service being 0x0f.
4. The ATT Read_By_Group_Type request is used again to read the next set

of services. It is executed with the following parameters:
a. Start Handle: 0x0010.

b. Ending Handle: 0xffff.

c. UUID: 0x2800 (This means that <<Primary Service>>) is requested.

5. This continues till an Error Response is received from the remote side.

16.5.2.3 Getting the Characteristics

The command to get the characteristics that are included in the service is:

Table 16.1 Primary Services on the GATT Server
S. No Service UUID Service Name Starting Handle Ending Handle

1 1800 <<Generic Access Service>> 0x0001 0x0008

2 1803 <<Link Loss Service>> 0x0009 0x000b

3 1804 <<Tx Power Service>> 0x000c 0x000f

4 1801 <<Generic Attribute Servie>> 0x0010 0x0010

5 1802 <<Immediate Alert Service>> 0x0011 0x0013

6 a002 0x0014 0x0017

7 a004 0x0022 0x002c

8 User define 128-bit User defined service 0xfffa 0xfffe

16.5 GATT Operations 395

 characteristics start_handle end_handle

The output of this command is shown in Figure 16.16.
Table 16.2 shows the following characteristics for service <<Generic Access

Profile>> (UUID=0x1800).

Figure 16.15 ATT procedures during GATT primary service discovery.

dualpc# hcidump -i hci1 -X
HCI sniffer - Bluetooth packet analyzer ver 2.3
device: hci1 snap_len: 1028 filter: 0xffffffff
< ACL data: handle 39 flags 0x00 dlen 11
 ATT: Read By Group req (0x10)
 start 0x0001, end 0xffff
 type-uuid 0x2800
> HCI Event: Number of Completed Packets (0x13) plen 5
 handle 39 packets 1
> ACL data: handle 39 flags 0x02 dlen 24
 ATT: Read By Group resp (0x11)
 attr handle 0x0001, end group handle 0x0008
 value 0x00 0x18
 attr handle 0x0009, end group handle 0x000b
 value 0x03 0x18
 attr handle 0x000c, end group handle 0x000f
 value 0x04 0x18
< ACL data: handle 39 flags 0x00 dlen 11
 ATT: Read By Group req (0x10)
 start 0x0010, end 0xffff
 type-uuid 0x2800
> HCI Event: Number of Completed Packets (0x13) plen 5
 handle 39 packets 1
> ACL data: handle 39 flags 0x02 dlen 24
 ATT: Read By Group resp (0x11)
 attr handle 0x0010, end group handle 0x0010
 value 0x01 0x18
 attr handle 0x0011, end group handle 0x0013
 value 0x02 0x18
 attr handle 0x0014, end group handle 0x0017
 value 0x02 0xa0

Figure 16.16 Getting the characteristics of a service.

[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0001 0x0008
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x0004, char properties: 0x02, char value handle: 0x0006, uuid:
00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0007, char properties: 0x02, char value handle: 0x0008, uuid:
00002a01-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]>

Table 16.2 Characteristics of Generic Access Profile

S. No
Characteristic
UUID

Characteristic
Name

Characteristic
Handle

Characteristic
Properties

Characteristic
Value Handle

1 2a00 <<Device Name>> 0x0004 0x02 0x0006

2 2a01 <<Appearance Characteristic>> 0x0007 0x02 0x0008

396 Developing LE ApplicationsDeveloping LE Applications

Note that the Characteristic UUID is mapped to Characteristic Name in the
Bluetooth Assigned Numbers. (See Reference [6]). Similarly, the characteristics of
each of the service can also be retrieved. Figure 16.17 shows the commands used to
retrieve the characteristics of all the services. The meaning of each of the character-
istics is shown in Table 16.3.

A few points worth noting in the table are:

1. The Generic Access Service contains two characteristics—Device Name
and Appearance Characteristic. Both these services were explained in detail
in Chapter 14.

2. The Generic Attribute Service does not contain any characteristic in this
example. It can only contain one characteristic—Service Changed Charac-
teristic which was explained in Chapter 13. In this particular device this
characteristic is missing. This means that the list of services supported by
this device cannot change. In general, if this service is absent for an LE only
implementation, this would have given information to the clients that the
services cannot change over the entire lifetime of the device.

Figure 16.17 Getting the characteristics of all services.

[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0001 0x0008
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x0004, char properties: 0x02, char value handle: 0x0006, uuid:
00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0007, char properties: 0x02, char value handle: 0x0008, uuid:
00002a01-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0009 0x000b
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x000a, char properties: 0x0a, char value handle: 0x000b, uuid:
00002a06-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x000c 0x000f
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x000d, char properties: 0x12, char value handle: 0x000e, uuid:
00002a07-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0010 0x0010
[CON][00:1B:DC:05:C8:D6][LE]>
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0010 0x0010
[CON][00:1B:DC:05:C8:D6][LE]>
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0011 0x0013
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x0012, char properties: 0x04, char value handle: 0x0013, uuid:
00002a06-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0014 0x0017
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x0015, char properties: 0x12, char value handle: 0x0016, uuid:
0000a003-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0x0022 0x002c
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0x0025, char properties: 0x02, char value handle: 0x0026, uuid:
0000a006-0000-1000-8000-00805f9b34fb
handle: 0x0029, char properties: 0x02, char value handle: 0x002a, uuid:
0000a009-0000-1000-8000-00805f9b34fb
[CON][00:1B:DC:05:C8:D6][LE]> characteristics 0xfffa 0xfffe
[CON][00:1B:DC:05:C8:D6][LE]>
handle: 0xfffc, char properties: 0x02, char value handle: 0xfffd, uuid:
e9258c1e-8962-c4b6-0b45-2c9018f28880
[CON][00:1B:DC:05:C8:D6][LE]>

16.5 GATT Operations 397

3. The meaning of the different bits in the bit-map of characteristic values was
explained in Chapter 13. For example:
a. 0x02 means that only read is permitted on the Characteristic Value.

b. 0x4 means that only write without response is permitted.

c. 0x0a means that the Characteristic Value can be read and written.

d. 0x12 means that it can be read and notified.

4. There are two instances of <<Alert Level>> characteristic:
a. First time as a part of Link Loss Service where it has permissions of

0x0a (read, write permitted).

b. Second time as a part of Immediate Alert Service where it has permis-
sions of 0x04 (It can only be written). This was also explained in
Chapter 15.

5. There are certain user defined UUIDs apart from the ones defined in Blue-
tooth Assigned Numbers.

6. The handle to the Characteristic Value is provided in the last column. This
is the handle that would be used to access the characteristic provided there
are sufficient permissions as per Characteristic Properties.

The transactions that are initiated on the ATT level for getting the characteris-
tics are shown in Figure 16.15.

The following points may be noted:

Table 16.3 List of All Characteristics within the Primary Services

S. No
Characteristic
Handle

Characteristic
UUID Characteristic Name

Characteristic Value Related

Characteristic
Properties

Characteristic Value
Handle

Generic Access Service [0x0001 – 0x0008]

1 0x0004 2a00 <<Device Name>> 0x02 0x0006

2 0x0007 2a01 <<Appearance
Characteristic>>

0x02 0x0008

Link Loss Service [0x0009 – 0x000b]

3 0x000a 2a06 <<Alert Level>> 0x0a 0x000b

Tx Power Service [0x000c – 0x000f]

4 0x000d 2a07 <<Tx Power Level>> 0x12 0x000e

Generic Attribute Service [0x0010 – 0x0010] – No Characteristics

Immediate Alert Service [0x0011 – 0x0013]

5 0x0012 2a06 <<Alert Level>> 0x04 0x0013

a002 [0x0014 – 0x0017]

6 0x0015 a003 0x12 0x0016

a004 [0x0022 – 0x002c]

7 0x0025 a006 0x02 0x0026

8 0x0029 a009 0x02 0x002a

feee74dc-a8de-3196-1149-d43596c00a4f [0xfffa – 0xfffe]

9 0xfffc User defined
128-bit UUID

0x02 0xfffd

398 Developing LE ApplicationsDeveloping LE Applications

1. The ATT Read_By_Type request is used to read the characteristics. It is
executed with the following parameters:
a. Start Handle: 0x0001.

b. Ending Handle: 0x0008 (Handles that were received for the first
service).

c. UUID: 0x2803 (This is the UUID for means that <<Characteristic>>).

2. The ATT Read_By_Type response returns the two characteristics.

16.5.3 Reading and Writing Characteristics

Now that the handles for all the characteristics values and characteristic permis-
sions are available, the next step is to read and write these characteristics.

16.5.3.1 Reading and Writing Alert Level in Link Loss Service

This section will show how to read and write the Alert Level Characteristic in the
Link Loss Service. This has an attribute handle of 0x000b and has Characteristic
Properties of 0x0a. This means that this Characteristic Value can be read and writ-
ten. This is in line with the description of Link Loss Service in Chapter 15.

The read and write operations are shown in Figure 16.19. The following may
be noted:

1. The syntax of the command to read Characteristic Value is:

Figure 16.18 ATT procedures for reading characteristics.

dualpc # hcidump -i hci1 -X
HCI sniffer - Bluetooth packet analyzer ver 2.3
device: hci1 snap_len: 1028 filter: 0xffffffff
< ACL data: handle 39 flags 0x00 dlen 11
 ATT: Read By Type req (0x08)
 start 0x0001, end 0x0008
 type-uuid 0x2803
> HCI Event: Number of Completed Packets (0x13) plen 5
 handle 39 packets 1
> ACL data: handle 39 flags 0x02 dlen 20
 ATT: Read By Type resp (0x09)
 length: 7
 handle 0x0004, value 0x02 0x06 0x00 0x00 0x2a
 handle 0x0007, value 0x02 0x08 0x00 0x01 0x2a

Figure 16.19 Reading and writing the alert level characteristic in the link loss service.

[CON][00:1B:DC:05:C8:D6][LE]> char-write-cmd 0x000b 0x01
[CON][00:1B:DC:05:C8:D6][LE]> char-read-hnd 0x000b
Characteristic value/descriptor: 01

[CON][00:1B:DC:05:C8:D6][LE]> char-write-cmd 0x000b 0x02
[CON][00:1B:DC:05:C8:D6][LE]> char-read-hnd 0x000b
Characteristic value/descriptor: 02

16.5 GATT Operations 399

 char-read-hnd <handle> [offset]

2. The syntax of the command to write Characteristic Value is:

 char-write-cmd <handle> <new value>

3. The first command writes the value 0x01 to the Alert Level Characteristic.
The command is:

 char-write-cmd 0x000b 0x01

4. The second command reads the value of the Alert Level Characteristic. The
command is:

 char-read-hnd 0x000b

5. This returns the same value that was written. This confirms that the value
was written correctly.

6. The next two commands do the same write and read operations with a
value of 0x02.

The transactions that are initiated on the ATT level for reading and writing
characteristics are shown in Figure 16.20. The following points may be noted:

1. The ATT Write command is used to write the characteristics. It is executed
with the following parameters:
a. Handle: 0x000b.

b. Value: 0x0001.

2. The ATT Read request is used to read a characteristic. It is executed with
the following parameters:
a. Handle: 0x000b.

Figure 16.20 ATT procedures for reading and writing characteristics.

< ACL data: handle 39 flags 0x00 dlen 9
 ATT: Write cmd (0x52)
 handle 0x000b value 0x00 0x01
> HCI Event: Number of Completed Packets (0x13) plen 5
 handle 39 packets 1

< ACL data: handle 39 flags 0x00 dlen 7
 ATT: Read req (0x0a)
 handle 0x000b
> HCI Event: Number of Completed Packets (0x13) plen 5
 handle 39 packets 1
> ACL data: handle 39 flags 0x02 dlen 6
 ATT: Read resp (0x0b)
 0000: 01

400 Developing LE ApplicationsDeveloping LE Applications

3. The remote side responds with a ATT Read response. It contains the fol-
lowing parameters:
a. Value: 0x0001.

16.5.3.2 Writing Alert Level in Immediate Alert Service

This section will show how to read and write the Alert Level Characteristic in the
Immediate Alert Service. This has an attribute handle of 0x0013 and has Character-
istic Properties of 0x04. This means that this Characteristic Value can only be writ-
ten. This is in line with the description of Immediate Alert Service in Chapter 15.

The write operations are shown in Figure 16.21. The following may be noted:

1. The first command writes the value 0x01 to the Alert Level Characteristic.
The command is:

 char-write-cmd 0x0013 0x01

2. The second command writes the value of 0x02 to the Alert Level Charac-
teristic. The command is:

 char-write-cmd 0x0013 0x01

3. The third command writes the value of 0x00 to the Alert Level Character-
istic. The command is:

 char-write-cmd 0x0013 0x00

16.6 Disconnecting

16.6.1 Disconnecting the GATT Connection

The GATT connection can be disconnected by the following command:

 disconnect

This is shown in Figure 16.22. Note that the CON message disappears in the
second line after giving the disconnect command. This indicates that the connec-
tion is no longer there. The final command given is quit to come out the gatttool
interactive interface.

Figure 16.21 Writing the alert level characteristic in the immediate alert service.

[CON][00:1B:DC:05:C8:D6][LE]> char-write-cmd 0x0013 0x01
[CON][00:1B:DC:05:C8:D6][LE]>
[CON][00:1B:DC:05:C8:D6][LE]> char-write-cmd 0x0013 0x02
[CON][00:1B:DC:05:C8:D6][LE]>
[CON][00:1B:DC:05:C8:D6][LE]> char-write-cmd 0x0013 0x00
[CON][00:1B:DC:05:C8:D6][LE]>

16.7 Real-World Application—Find Lost Keys 401

16.6.2 Disconnecting the LE Connection

The existing LE connection can be disconnected by the following command on
dualpc:

 hcitool –i hci1 ledc connection_handle

This is shown in Figure 16.23. The connection handle is that same that was
returned while creating the LE connection in Figure 16.11. The HCI Disconnect
command is used to terminate the connection.

16.7 Real-World Application—Find Lost Keys

The previous sections provided all the components that are needed to make a real
world application to find lost keys. These components can be used as building
blocks to make a full real world LE application.

An example of such an application can be one used to find lost keys (or any
other lost devices). The example of this was explained in Chapter 1. Such an ap-
plication will use the Find Me profile which was explained in Chapter 15.

The broad steps this application will need to perform are as follows:

1. Search for LE devices in the vicinity.
2. Select the device that has been lost.
3. Create a connection to the device.
4. Create a GATT connection.
5. Get the primary services.
6. Check if it contains the Immediate Alert Service.

Figure 16.22 Disconnecting the GATT connection.

[CON][00:1B:DC:05:C8:D6][LE]> disconnect

[][00:1B:DC:05:C8:D6][LE]> quit
dualpc#

Figure 16.23 Disconnecting the LE connection.

dualpc# hcitool –i hci1 ledc 39
dualpc#

< HCI Command: Disconnect (0x01|0x0006) plen 3
 handle 39 reason 0x13
 Reason: Remote User Terminated Connection
> HCI Event: Command Status (0x0f) plen 4
 Disconnect (0x01|0x0006) status 0x00 ncmd 1
> HCI Event: Disconn Complete (0x05) plen 4
 status 0x00 handle 39 reason 0x16

Reason: Connection Terminated by Local Host

Disconnecting from dualpc

HCI commands and events for disconnection

402 Developing LE ApplicationsDeveloping LE Applications

7. If it contains the Immediate Alert Service, then find the characteristics con-
tained in this service.

8. This will return the Characteristic Value Handle for the Alert Level
characteristic.

9. Write a “High Alert” to the Characteristic Value handle.
10. The key fob should start raising an alert (Audio or Visual indication).
11. Disconnect the GATT and LE connection.

The commands to be sent for each of these steps (along with the parameters)
were explained in previous sections. These can be put together into a script or a
program to perform all the steps. Applications can also use services provided by
BlueZ through the D-Bus interface. D-bus is a message bus system that can be used
for interprocess communication. The applications can be written in either Python
or C and are simple and straightforward to implement.

16.8 Debugging LE Applications

16.8.1 Logging the HCI Interface

The first and most common mechanism used for debugging Bluetooth applications
is logging the packets exchanged on the HCI interface. This includes commands sent
from the host to the controller and the events that are sent back by the controller.

BlueZ includes the hcidump tool which provides the facility to print command
and event packets exchanged on the HCI interface. A similar tool may be available
on the system on which the LE application is developed. If such a tool is not avail-
able, adding the facility to log the packets may be as easy as dumping (or printing)
the packets that are sent and received.

At a very preliminary level, the packets sent and received can be analyzed to
check if the transactions initiated by the application or the remote side were cor-
rect. For example, if the host sends an LE connection command, the packets at the
HCI level can be checked to see if the command packet was sent with the correct
values and to the correct device.

At a bit more advanced level, the packets can be decoded to print the friendly
names of the commands along with meaning of each of the arguments that were
passed. Besides this, the higher layer protocol data can also be decoded and used
for debugging instead of just confining to the HCI interface. This facility is pro-
vided by the hcidump tool (examples of this were shown earlier.) For example,
the ATT level transactions at the time of discovering services of the remote device
were shown in Figure 16.15. The source code for hcidump is also available from
the BlueZ website. This could be used as a reference for implementation in other
environments as well.

At a still more advanced level, the packets could be converted to a format
which a sniffer tool can open so that the packets can directly be opened in the
sniffer tool. The sniffer can provide more detailed analysis of the packets which can
be useful for debugging. One such format is the BT-Snoop file format. The conver-
sion from the raw send/receive packets to the BT-Snoop format is straightforward
and can be done using a simple script.

16.8 Debugging LE Applications 403

16.8.2 Air Sniffer

Air sniffer is a very powerful tool to understand what is happening on the air, and to
quickly find the root cause of any problems. It provides several features including:

1. Analysis of the various packets that are sent over the air. The packets can
be analyzed at various levels starting from the baseband layer up to the
protocol layers. The various transactions along with the parameters are
displayed in an easy to understand format.

2. The profile level data may also be extracted for separate analysis.
3. Display of the used/unused channels.
4. Message sequence charts of the various transactions.
5. Facility to save logs so that these can be reopened for further analysis later

on.

These are only some of the features provided by the air sniffers. Most of the
sniffers available in the market provide several other advanced features that can
simplify the LE development a great deal.

16.8.3 Peer Devices and Interoperability Testing

Bluetooth communications require at least two devices to interact with each other.
In many of the scenarios, the application writer or device manufacturer may be
focusing only on one of the roles. For example, if an LE key fob is being made,
then the application writer needs to focus on the key fob functionality only which
may include the Immediate Alert Service. Though the peer functionality is also
important from a testing perspective, the application writer may not need to spend
time on writing that functionality from scratch. Instead of that, a peer device which
already has this functionality can be used. In this particular example, a Linux based
PC can be used as a peer device to test all the functionality of the key fob. A good
selection of peer device can help in speedier development of applications and also to
ensure that the device is exhaustively tested before releasing to the marked.

Once the device is functioning well, the set of peer devices can be increased for
getting further testing coverage. This is known as interoperability testing where the
device is tested with several other devices to ensure that it works well with all those
devices. It will be explained in detail in the next chapter.

16.8.4 Profile Tuning Suite (PTS)

The Profile Tuning Suite is a powerful, PC-based, black box testing tool provided
by the Bluetooth SIG. It can be used during product development, testing, and
qualification stages. It has support for most of the BR/EDR profiles and several LE
profiles as well. It is semi-automated which leads to reduction of testing time and
also ensuring that novice users can ramp-up in using this tool faster. It provides
an ample amount of debugging information along with message sequence charts
(MSCs) which can be useful for debugging the LE implementation. The PTS tool
will be covered in further detail in the next chapter.

404 Developing LE ApplicationsDeveloping LE Applications

16.9 Disclaimer

The examples provided here are only for educational purposes to illustrate the
various LE operations. These may not work or may have unpredictable results.
So you are advised to use them at your own risk. To make them suitable for com-
mercial needs several enhancements, error checks, and exhaustive testing would be
required.

16.10 Summary

The previous chapters explained the various components of the LE architecture
including the link layer, HCI, L2CAP, ATT, GATT, GAP, and GATT-based profiles.
This chapter illustrated how these various components come together for an end-
to-end use case like finding lost keys.

Besides the commands and events needed to perform various operations, this
chapter also showed the various transactions that are happening ‘behind the scenes’
on the HCI level and ATT level. This would give a good overview on how the vari-
ous layers interact with each other. Lastly this chapter also covered some of the
tools and techniques that could be useful during development for debugging the
LE applications. The next chapter will cover another aspect about developing LE
applications, which is the testing and qualification of these applications.

References

[1] Bluetooth Core Specification 4.0 http://www.bluetooth.org.
[2] Bluetooth SIG, Specifications of the Bluetooth System, Profiles http://www.bluetooth.org.
[3] BlueZ website (http://www.bluez.org).
[4] Bluetooth Assigned Numbers for Generic Attribute Profile (http://www.bluetooth.org/

Technical/AssignedNumbers/Generic-Attribute-Profile.htm).
[5] Bluetooth Assigned Numbers for GATT-based service UUIDs (http://developer.bluetooth.

org/gatt/services/Pages/ServicesHome.aspx).
[6] Bluetooth Assigned Numbers for Characteristic Descriptions (http://developer.bluetooth.

org/gatt/characteristics/Pages/default.aspx).

405

C H A P T E R 17

Testing and Qualification

17.1 Introduction

One of the strong points about the Bluetooth SIG besides the specification, is that it
provides a full-fledged qualification program along with tools for testing and quali-
fying devices. The test tools include the Bluetooth test specifications, test vectors, as
well as software to test the Bluetooth implementation.

It is mandatory for all devices to undergo Bluetooth qualification before these
can be sold in the market. The qualification program is designed so that a majority
of the testing can be done by the developers on their own.

In addition, the Bluetooth SIG regularly conducts events where developers
from all over the world can come together and test their products.

17.2 Need for Bluetooth Qualification

Bluetooth qualification ensures that the device conforms to the Bluetooth specifica-
tions. It assures product quality, conformance to the standards, and is an important
mechanism to ensure interoperability between devices from different vendors. Blue-
tooth qualification is one of the major reasons behind the huge success of Bluetooth
technology. When consumers buy Bluetooth products, they are assured that these
products will work with other Bluetooth products in the market.

Bluetooth qualification allows a manufacturer to use the Bluetooth trademark
and logos and is the precondition of the intellectual property license for use of
Bluetooth wireless technology. This is mandatory before the product can be sold
in the market.

First and foremost, the device manufacturer needs to sign up for Bluetooth SIG
membership. SIG membership provides access to Bluetooth resources and specifi-
cations to build Bluetooth products and the license to use the Bluetooth trademark
and logos. The membership is open to all companies that are wishing to develop,
market, and promote Bluetooth products.

Once a product has been qualified, it gets listed on the SIG website among the
Bluetooth Qualified Products List and is assigned a QDID (Qualification Design
ID). Anybody can look up the Bluetooth website to check the set of features that

406 Testing and Qualifi cationTesting and Qualification

the product was qualified against by getting the listing details of the QDID of that
product. (In fact a QDID can be bought from the SIG at the product concept stage
and can be used throughout the product development lifecycle to define features
and test plans). The Bluetooth SIG has a comprehensive and well defined qualifica-
tion program which provides step-by-step guide to the various requirements and
phases during qualification.

17.3 What Is Interoperability?

In simple terms, interoperability means that a device from one vendor should work
seamlessly with device from another vendor. So, for example, a mobile phone from
one vendor should work with any headset, car kit, thermometer, or glucose meter
irrespective of who manufacturers them.

For the consumers, this means that they don’t get restricted to one particu-
lar vendor for all their Bluetooth products. They can buy Bluetooth products just
about anywhere in the world without worrying whether those products will be
compatible with their existing Bluetooth devices. The consumers buying decisions
can focus more on the product appeal, features, and price than on the technical
jargon and compatibility concerns.

For the developers this means ensuring full compliance to the specifications.
The specifications are written in such a manner that if these are properly complied
to, then interoperability is inherently guaranteed. The profiles define very clear
roles for the devices that need to interact along with how each device is expected
to behave. The specifications even define the terms to be used at the User Interface
(UI) level for a uniform user experience. So if a heart rate monitor has to interact
with a laptop, the roles and responsibilities of both the heart rate monitor and ap-
plication running on the laptop are clearly documented.

17.4 Development Resources and Events

Bluetooth SIG hosts several events throughout the year in different parts of the
world. These include UnPlugFest, Round Table meetings, All Hands Meetings, Au-
tomotive events, and several more. Besides this, the Bluetooth SIG hosts mailing
lists, working groups, and discussion forums and provides ample of resources to
assist during product development and testing.

Bluetooth SIG has working groups and SIG committees where people can fol-
low what is happening as well as actively contribute to developing the technology
further.

17.4.1 UnPlugFest (UPF)

UnPlugFests are interoperability testing events organized by the Bluetooth SIG three
times a year, once in each region (Asia, North America, and Europe). The partici-
pants can register for the event on the SIG website after paying the participation fee.
During registration, the participants register the platform and provide information

17.4 Development Resources and Events 407

on the set of tests that they plan to run. The set of tests are broadly divided into
three categories:

1. Category-1: This includes the tests for the Bluetooth Lower layers (below
HCI) including RF, Baseband and link manager.

2. Category-2: This includes the test cases for different protocol layers—SDP,
RFCOMM, TCS, BNEP, AVDTP, AVCTP, ATT, GATT, GAP, SM, etc

3. Category-3: This includes the tests at a profile level. Such tests usually in-
volve the complete system including the application. The testing includes
both BR/EDR profiles as well as GATT-based profiles and services for LE.

In addition, there are special testing categories which focus on things like multi-
profile test suites.

During the event participants are allocated test slots with other participants
depending on Category/Profiles selected at the time of registration. During the test
slot the participants test and debug the functionality of the profiles that they had
selected against a device from another participant. Once a slot is over, they move to
the next slot with a different participant. This way they get an opportunity to test
their implementation with several other implementations. There are also special
debug slots which allow the developers to retest bug fixes or issues found during
regular testing hours.

Certain events also feature robustness testing where the ability to withstand
scenarios like buffer overflow, receiving corrupt packets, misbehavior of the peer
device, etc. can be tested to ensure that the product will not break under extreme
conditions. The event serves as an excellent mechanism for interoperability testing.
This is particularly useful in the case of new protocols and profiles where the num-
ber of available off-the-shelf devices may be very limited.

17.4.2 Automotive Events

The use of Bluetooth devices in automotive applications is increasing. There are
several profiles like HandsFree, A2DP, AVRCP, MAP, PBAP, SAP, Proximity which
can be used in automobiles. The automotive event is specially focused to cater to the
increasing need of testing mobile devices with automotive accessories.

In addition there are several private car kits events organized by various groups
where interoperability testing for car kits can be carried out. These events are either
invitation-only or open for registration. The details of the forthcoming events can
be looked up on the Bluetooth SIG website.

17.4.3 SIG Device Library

The Bluetooth SIG maintains a library of devices that can be used for interoperabil-
ity testing. The SIG has a program where developers can donate their devices to the
SIG with those devices then becoming part of the device library. Other developers
can then use those devices for interoperability testing. This library is continuously
growing with the addition of new devices that support the latest protocols and
profiles. This is useful especially when off-the-shelf devices are not available in the
market for testing.

408 Testing and Qualifi cationTesting and Qualification

17.4.4 Profile Tuning Suite (PTS)

Profile Tuning Suite (PTS) is a PC-based test tool that is provided by the Bluetooth
SIG for testing the Bluetooth implementation. PTS helps to automate the testing
environment which helps both in getting results faster and getting more accurate
results. Execution of PTS tool requires a PTS radio module (USB Dongle) that is
attached to the PC. After that the PTS software can be run on the PC to test the
Implementation Under Test (IUT). The PTS radio module and the PTS software can
be ordered from the Bluetooth SIG website. A typical PTS setup is shown in Figure
17.1.

PTS supports testing most of the full range of Bluetooth Protocols and Profiles
including LE profiles. Depending on the role that is being tested, PTS acts as an ini-
tiator or acceptor. During testing some operations may also need to be performed
on the IUT (for example, accept/reject an incoming connection, initiate/accept file
transfer, etc). The IUT needs to support these operations in order to utilize the full
power of this tool.

PTS is very useful during development and debugging because it provides com-
plete message sequence charts and debug logs of the communication with the IUT.
It also allows the developer to generate and save XML based test reports. Once the
tests pass, these reports can be used during the qualification process as an evidence
of compliance with the specification. PTS includes informative messages at each
step on the operations that need to be performed (e.g., initiate a pairing from the
remote device). This allows even new users to quickly understand the tool and start
using it effectively.

17.5 Bluetooth Qualification Program

The purpose of the Bluetooth Qualification Program is to promote interoperability,
verify conformance to the Bluetooth specifications, enforce compliance, grant IP
license, and recognize members who meet a high standard of testing. One of the rea-
sons for the huge success of the Bluetooth technology is this qualification program.
Once a user buys a Bluetooth certified product, he or she is assured that his product
will be interoperable with other Bluetooth certified products.

Figure 17.1 PTS setup.

PTS Radio Module
(USB Dongle)

Windows Based Tester
(PC running Windows ®)

Implementation
Under Test (IUT)

17.5 Bluetooth Qualification Program 409

The qualification process encompasses creating the test plans based on the fea-
tures supported by the device, executing the test cases, and then providing evidence
to prove that the test cases are running correctly. The test cases involve a set of
mandatory and optional tests for each component (protocol stack layers, profiles,
etc). The mandatory test cases define the bare minimum scenarios which need to be
passed. On top of that, based on the features supported by the product, additional
optional tests can be executed.

The main focus is to ensure compliance which includes not only the end Pass/
Fail status but also adherence to the message sequence charts to ensure that all the
steps are in the correct sequence. It is mandatory for a device to undergo Bluetooth
qualification before being sold in the market. Once a device is qualified, it gets
listed on the Bluetooth website as a part of End Product Listing (EPL).

The Bluetooth SIG provides an online interface where the developers can cre-
ate their own test plans depending on the features supported by the device and then
submit the test results. The broad outline of the qualification process is shown in
Figure 17.2. A product undergoes four broad phases before it can be qualified:

1. Concept: This entails logging on the Bluetooth Qualification page and cre-
ating a project by entering the project name and expected qualification
date. Bluetooth SIG provides several resources like online tutorials, train-
ing material, white papers, specification documents, etc. to assist during
this phase.

2. Prototype: This phase includes defining which Bluetooth protocol and pro-
file features the end product will support and generating a test plan based
on those features. During this phase, the member starts building a design
based on the concept that was defined in the previous phase. There are
various events like UnPlugFests which can be used to test the prototype.
Tools like PTS can also be used for testing the prototype.

3. Testing: This includes testing the prototype using tools like PTS and sub-
mitting the test results. Any bugs found during this phase are fixed and
retesting is done to ensure that there are no side effects of the fixes.

4. Qualification: This includes signing a declaration of compliance and pay-
ing the requisite certification fee to get the product listed on the Bluetooth
website. Qualification includes obtaining IP license protection and permis-
sions to use the Bluetooth trademark and logos.

Figure 17.2 Overview of the Bluetooth qualification program.

Concept

Prototype

Testing

Qualification

410 Testing and Qualifi cationTesting and Qualification

The qualification process can be carried out by the device manufacturers solely
or with assistance from third parties known as Bluetooth Qualification Test Facil-
ity (BQTF). Some of the tests require involvement of a BQTF during the qualifica-
tion process.

17.6 Test Categories

The test cases for Bluetooth qualification have been split into 4 categories. Each
category has a well-defined set of requirements on the test equipment used for run-
ning the test cases and the evidence needed to prove that the test cases are passing.

	• Category A test cases focus on areas such as RF, Baseband, Link Manager,
and HCI. It is mandatory to perform these test cases at a SIG authorized test
facility (BQTF or BRTF: These will be introduced shortly).

	• Category B test cases can be tested at the member’s end using a member
defined test setup as per the test requirements specified in the test specifica-
tions. The member can submit evidence of passing these test cases and does
not necessarily take the test equipment to a test facility. This evidence in-
cludes information about the test setup, execution, and results.

	• Category C test cases can be tested at the member’s end using a test setup
similar to Category B. For these test cases, the member just has to provide a
declaration of the test performed and test results. Details regarding the test
setup and execution are not needed.

	• Category D test cases are informative and optional. These can be run on
member-defined test equipment and no evidence needs to be submitted.

17.6.1 BQTF, BRTF

A Bluetooth Qualification Test Facility (BQTF) and a Bluetooth Reference Test
Facility (BRTF) are testing labs that are formally recognized by the Bluetooth SIG
as competent to perform the Bluetooth qualification conformance tests. The main
difference between the two is that a BRTF is authorized to do testing for the mem-
ber’s own company while BQTF provides testing services to all member companies.

The “Category A” tests require special validated and commercially available
test equipment. Some of these tests including the tests in the areas like RF, Base-
band, Link Manager, and HCI are required to be performed at a BQTF or BRTF.

In addition to these tests, BQTF also provides assistance during the qualifica-
tion process including qualifying the complete protocol stack and profiles. These
facilities provide services beyond qualification such as more exhaustive testing of
the device, interoperability testing, etc.

17.6.2 BQE

Bluetooth Qualification Expert (BQE) is an individual who is recognized by the
Bluetooth SIG to provide qualification related services to the SIG members. The

17.6 Test Categories 411

BQE is a subject matter expert for all matters related to qualification including
understanding the qualification process, and requirements for qualification. A BQE
service includes checking declarations and documents against the qualification and
test requirements, reviewing all test reports, and providing assistance to get the
product listed.

17.6.3 Test Documents

Bluetooth SIG provides a comprehensive set of documents to test each protocol and
profile. These are explained briefly below.

17.6.3.1 Test Specifications

The Bluetooth test specifications describe the test cases in detail including informa-
tion about the purpose, message sequence charts and verdicts for each of the test
cases. These provide sufficient information to the members to carry out the tests on
their own and to find out whether the test cases pass or fail. These help the members
to ensure that all test cases are passing before they start a formal qualification cycle
of their product.

The test cases include testing for both valid behavior and invalid behavior.

	• Valid Behavior (BV) tests are used to ensure that the implementation works
properly when it receives a valid message.

	• Invalid Behavior (BI) tests are used to test whether the implementation works
properly even when it receives an invalid message.

17.6.3.2 Test Case Reference List (TCRL)

The TCRL is a reference document that contains the complete list of test cases for
each protocol or profile. This is a living document that is continually upgraded with
new test cases added, old/invalid/obsolete test cases removed, and updates includ-
ing newer versions of the specifications. It is a big spreadsheet which has tabs for
different entities. Each tab provides the list of test cases that are defined for that
entity.

17.6.3.3 Implementation Conformance Statement (ICS)

The ICS provides a standard means to define the Bluetooth capabilities supported
by a product. It is a template which contains the list of test cases and whether those
test cases are Mandatory, Optional or Conditional. The member can fill in this
statement to indicate the capabilities of the implementation to be qualified.

17.6.3.4 Implementation Extra Information for Testing (IXIT)

The IXIT typically contains information about the test environment including phys-
ical setup, conditions for running the test cases, configuration parameters, etc.

412 Testing and Qualifi cationTesting and Qualification

17.6.4 Prequalification

Prequalification refers to the internal tests that a vendor does before going for
qualification. This process involves exhaustive testing of the device against the set
of test cases planned to be finally run during the qualification round. If any bugs are
found, those are fixed. The tests are then rerun to ensure there are no side effects
of the fixes. The output of the prequalification phase is a complete set of passing
results which indicate that the device is now ready for qualification.

17.7 Summary

Bluetooth SIG has a very comprehensive qualification program to ensure that a
product meets all requirements before it can be sold in the market. The Bluetooth
SIG also offers tools and services which are very helpful during the development
of the product to help improve product interoperability and smooth qualification.
These tools help in debugging the product to reduce both the development cost and
cycle time.

The Bluetooth SIG also conducts regular events where the developers can par-
ticipate to test their product. These events are particularly helpful to test implemen-
tations where the peer devices are not easily available.

Besides Bluetooth qualification, since the Bluetooth devices use ISM band ra-
dios, the Bluetooth products may also need to pass regulatory tests to ensure that
they comply with the government regulations for transmission in the ISM band.
Different countries may have different requirements about these regulatory tests.

Bibliography

Information available on the Bluetooth SIG website. http://www.bluetooth.org.
Bluetooth Qualification Program Reference Document (PRD).

413

Glossary of Acronyms and Important
Terms

ACL Asynchronous Connection Oriented. (Due to legacy reasons
 it is abbreviated as ACL)
ACL-C ACL Control
ACL-U ACL User
AD Advertising Data
AES Advanced Encryption Standard
AFH Adaptive Frequency Hopping
AM_ADDR Active Member Address
AMP Alternate MAC PHY
ANP Alert Notification Profile
ANS Alert Notification Service
ARQ Acknowledgement/Repeat Request
ARQN Unnumbered ARQ
ATT Attribute Protocol
AVCTP Audio/Video Control Transport Protocol
AVDTP Audio/Video Distribution Transport Protocol
BAS Battery Service
BB Baseband
BD_ADDR Bluetooth Device Address
BER Bit Error Rate
BLE Bluetooth Low Energy. Also referred to as LE.
BLP Blood Pressure Profile
BLS Blood Pressure Service
BT Bandwidth Time
CT Controller (Used in context of AVCTP)
CAC Channel Access Code
CLK Clock
CMAC Cipher-based message authentication code
CODEC Coder Decoder
CRC Cyclic Redundancy Check
CSRK Connection Signature Resolving Key
CVSD Continuous Variable Slope Delta Modulation
DAC Device Access Code

414 Glossary of Acronyms and Important TermsGlossary of Acronyms and Important Terms

DH Data—High Rate
DIAC Dedicated Inquiry Access Code
DIS Device Information Service
DIV Diversifier
DM Data—Medium Rate
DPSK Differential Phase Shift Keying
DV Data-Voice Packet
ECDH Elliptic Curve Diffie Hellman
EDIV Encrypted Diversifier
EDR Enhanced Data Rate
EIR Extended Inquiry Response
ER Encryption Root
eSCO Extended Synchronous Connection Oriented
ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission
FCS Frame Check Sequence
FDMA Frequency Division Multiple Access
FEC Forward Error Correction Code
FHS Frequency Hop Synchronization
FHSS Frequency Hopping Spread Spectrum
FIPS Federal information processing standards
FM Frequency Modulation
FMP Find Me Profile
GAP Generic Access Profile
GATT Generic Attribute Profile
GFSK Gaussian Frequency Shift Keying
GIAC General Inquiry Access Code
GLP Glucose Profile
GLS Glucose Service
HCI Host Controller Interface
HIDS HID Service
HOGP HID Over GATT Profile
HRP Heart Rate Profile
HRS Heart Rate Service
HTP Health Thermometer Profile
HTS Health Thermometer Service
HV High Quality Voice
IAC Inquiry Access Code
IAS Immediate Alert Service
ID Identity
IEEE Institute of Electronic and Electrical Engineers
IETF Internet Engineering Task Force
IPSP Internet protocol support profile
IPSS Internet protocol support service
IR Identify Root
IrDA Infrared Data Association (http://www.irda.org)
IRK Identity Resolution Key

Glossary of Acronyms and Important Terms 415

IrOBEX OBject EXchange protocol that is maintained by the Infrared Data
 Association (IrDA)
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
IUT Implementation Under Test
IV Initialization Vector
L2CAP Logical Link Control and Adaptation Protocol
LAP Lower Address Part
LC Link Control or Link Controller
LE Bluetooth Low Energy
LIAC Limited Inquiry Access Code
LLCP Link Layer Control Protocol
LLID Link Layer ID
LLS Link Loss Service
LM Link Manager
LMP Link Manager Protocol
LSB Least Significant Bit
LSTO Link Supervision Timeout
LTK Long Term Key
MIC Message Integrity Check
MITM Man In The Middle
MMI Man Machine Interface
MPS Maximum PDU size
MSB Most Significant Bit
MSC Message Sequence Chart
MTU Maximum Transmission Unit
NAK Negative Acknowledgement
NESN Next Expected Sequence Number
NIST National Institute of Standards and Technology
NFC Near Field Communication
OBEX OBject EXchange
OCF OpCode Command Field
OGF OpCode Group Field
OOB Out of Band
OUI Organizationally Unique Identifier
PCB Printed Circuit Board
PIN Personal Identification Number
PDU Protocol Data Unit
PM_ADDR Parked Member Address
POS Point Of Sale
PPM Parts Per Million
PSK Phase Shift Keying
PSM Protocol/Service Multiplexer
PXP Proximity Profile
QOS Quality Of Service
RAND Random Number
RF Radio Frequency
RFC Request For Comments

416 Glossary of Acronyms and Important TermsGlossary of Acronyms and Important Terms

RFU Reserved for Future Use
RSSI Received Signal Strength Indication
RTC Real Time Clock
SAR Segmentation And Reassembly
SCO Synchronous Connection Oriented
SDP Service Discovery Protocol
SEP Stream End Point (Used in context of AVDTP)
SEQN Sequential Numbering Scheme
SM Security Manager
SMP Security Manager Protocol
SN Sequence Number
SRK Signature Resolving Key
SSP Secure Simple Pairing
STK Short Term Key
TDD Time Division Duplex
TDMA Time Division Multiple Access
TG Target (Used in context of AVCTP)
TK Temporary Key
TPS Transmit Power Service
UART Universal Asynchronous Receiver Transmitter
UI User Interface
TX Transmit
USB Universal Serial Bus
UTF-8 8-bit UCS/Unicode Transformation Format
UUID Universally Unique Identifier

417

About the Author

Naresh Gupta holds a bachelor of engineering degree in computer engineering from
Delhi College of Engineering, one of the premier institutes in India, along with an
MBA in operations. He has over two decades of industry experience, including
more than 11 years of experience with Bluetooth technology.

Naresh started working on Bluetooth in 2001 as a part of HCL Technolo-
gies when he was requested to lead a project related to Bluetooth protocol stack.
This project involved development of the complete Bluetooth protocol stack
from scratch and porting it on embedded operating systems like microITRON,
VxWorks, and Windows CE.

Thereafter he moved to STMicroelectronics and ST-Ericsson, where he led de-
velopment activities related to connectivity technologies including Bluetooth and
Bluetooth Low Energy. He and his team were involved with implementing the latest
evolutions in wireless connectivity technologies. He worked with STMicroelectron-
ics and ST-Ericsson for close to 9 years before moving into a senior management
role at another multinational technology company.

Naresh specializes in conceptualizing innovative ideas and translating them
into successful products. He has built several wireless devices and taken them to
market. He has a rich startup experience and has a proven track record of build-
ing global teams that are highly focused, motivated, and productive. He has been
actively involved in delivering guest lectures, conducting semester courses, and or-
ganizing workshops at some of the premier educational institutes in India. He has
traveled extensively across the globe to conduct Bluetooth training programs and
workshops. He has filed several patents on wireless technologies and published
papers in international journals.

You may contact him on http://in.linkedin.com/in/guptanaresh.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47419

Index

3GPP (3rd Generation Partnership Program), 4,
15, 112, 120

6LBR, 372, 374, 375
6LN, 372, 374, 375

A

Acceptor
 Generic Audio Video Distribution Profile

(GAVDP), 116
 Profile Tuning Suite (PTS), 408
Access Address, 141, 164, 179
Asynchronous Connection Oriented (ACL)
 ACL, ACL-C, ACL-U, Logical Link,

Channel, 44–46, 48, 51, 65, 66, 82,
83, 85, 86, 87, 107, 115, 116

 Buffers, Buffer Size, 66, 69, 70, 122, 200,
203, 387

 Data Packet, 49, 50, 64, 65, 68, 71, 72, 88,
198, 199, 202, 203

 Logical Transport, 43, 44, 55, 57, 60
 Packet Types, 48, 53
Active Scanning, 176, 177, 214, 341, 389
Adaptive Frequency Hopping (AFH), 22,

38–42, 60, 182
Adopted Protocols, 25, 26, 81
Advanced Audio Distribution Profile (A2DP),

90, 94, 95, 101, 116–118
Advertiser, 154, 159, 160, 171
Advertiser Address (AdvA), 172–177
Advertising Data (AD, AdvData), 172–177,

335–337
Advertising, 151, 153–157, 170–175, 207, 335,

388
Advertising Channel PDU, 165
Advertising Channels, 157, 159, 160
Advertising Channel Index, 157
Advertising Events, 159, 160, 171, 332, 335
Advertising Enable, Disable, 212, 213, 214
Advertising Filter Policy, 193, 212

Advertising Indication, 171, 173, 175
Advertising Parameters, 193, 207, 212–215,

347–350
Advertising PDU, Advertising Packets, Format,

165, 166, 171
Advertising Physical Channel, See Advertising

Channels
Advertising Report, Advertising Packets, 67,

154, 193, 194, 207, 212
Advertising State, 153–155, 170, 171, 387
Air Sniffer, 403
Alert Notification Profile (ANP), 377
Alert Notification Service (ANS), 377
Anchor Point, 161, 164
ANT, ANT+, 2, 3, 13
Appearance Characteristic, 338–340, 395–397
Architecture
 Asymmetrical, See Asymmetrical

Architecture
 Bluetooth, 24, 25
 Data Transport, 41
 GATT Based, 136, 142, 143, 286, 297
 LE, 142–144
Association Models, 74
Asymmetrical Architecture, 232
Atomic Operations, 263
ATT_MTU, 267, 271, 272, 301, 302, 315,

320, 327
Attribute
 Caching, 295
 Client, 263, 264
 Definition, 259, 293
 Grouping, 296
 Handle, 260, 261, 293, 294, 298
 Permissions, 260, 261, 294, 298, 299
 Server, 263, 264
 Structure, 260, 294
 Type, 260–264, 294, 297, 298
 Value, 91–93, 260–262, 294, 297, 298

420 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Attribute Protocol (ATT), 219, 259
Attribute Protocol PDU, 264
Audio Gateway (AG), 94, 111, 124
Audio/Video Control Transport Protocol

(AVCTP), 86, 100
Audio/Video Distribution Transport Protocol

(AVDTP), 86, 95, 100
Audio/Video Remote Control Profile (AVRCP),

118, 119
Authenticated MITM Protection, 235, 236
Authenticated Payload Timeout, 190, 201, 210,

211
Authentication, 61, 62, 108, 210, 242, 243,

298, 330, 334
Authentication Permissions, 261
Authentication Procedure, 354
Authentication Signature, 265, 277, 278
Authorization, 262, 294, 298, 329, 330
Authorization Procedure, 355
Authorization Permissions, 262
Automatic Gain Control (AGC), 164
Automotive Events, 407

B

Baseband Controller, 37
Basic L2CAP Mode, 84, 221
Battery Service (BAS), 365
Bit Stream Processing, 168
Blood Pressure Profile (BLP), 370
Blood Pressure Service (BPS), 369
Bluetooth Architecture, See Architecture
Bluetooth Clock, 29, 30
Bluetooth Device Address (BD_ADDR), 28, 29,

37, 66, 104, 106, 155
Bluetooth Device Inquiry, 31, 32, 37, 55,

66–68, 76
Bluetooth Device Name, 29, 104, 107, 334,

344
Bluetooth Passkey, 61, 104, 105, 331
Bluetooth PIN, See Bluetooth Passkey
Bluetooth Qualification Expert (BQE), 410
Bluetooth Qualification Program, 23, 408
Bluetooth Qualification Test Facility (BQTF),

410
Bluetooth Radio, 35

Bluetooth Reference Test Facility (BRTF), 410
Bluetooth SIG, 19, 20, 406
Bluetooth Smart, 135, 136
Bluetooth Smart Marks, 135, 136
Bluetooth Smart Ready, 136
BlueZ, 121, 381
Body Area Network (BAN), 3, 21
Bondable Mode(s), 106, 350–352
Bonding, 106, 107, 334, 341
Bonding Modes, 341, 350
Bonding Modes and Procedures, 341, 350
BQE, See Bluetooth Qualification Expert
BQTF, See Bluetooth Qualification Test Facility
Broadcast Mode, 341
Broadcaster, 332, 333, 341, 346, 354
Browsing Services, 93, 123
BRTF, See Bluetooth Reference Test Facility

C

CEN, See European Commission for
Standardization

Central, 332, 333
Channel Access Code (CAC), 48
Channel Classification, 40, 201, 209
Channel Establishment, 107, 108
Channel Identifier (CID), 83, 219, 224
Channel Map, 40, 60, 158, 201, 210
Channel Map Update Procedure, 181, 182
Channel Multiplexing, 85, 86, 220
Characteristic, 287, 288, 290, 291, 359–361
Characteristic Declaration, 291, 298, 299, 329
Characteristic Definition, 291, 297–299, 329
Characteristic Descriptor Discovery, 301, 312
Characteristic Descriptor Declaration, 298–300
Characteristic Descriptors, 291, 292, 324
Characteristic Discovery, 301, 307
Characteristic Properties, 299, 300
Characteristic UUID, 298, 299, 311
Characteristic Value Attribute Handle, 298,

299
Characteristic Value Declaration, 298, 299
Characteristic Value Indication, 301, 323
Characteristic Value Notification, 301, 323
Characteristic Value Read, 301, 314
Characteristic Value Write, 301, 318

Index 421

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Characteristic Values Reliable Writes, 320
Class of Device (CoD), 29, 30, 66, 76, 105,

106, 334, 338
Clock, See Bluetooth Clock
Command Reject, 90, 219, 223, 224
Command Type Methods, 277
Comparison between BR/EDR and LE, 143
Configured Broadcast, 301
Confirm value generation, 236
Confirmation, 266, 278
Confirmation Type Methods, 278
Connectable Directed, 166
Connectable Directed Event, 171, 173
Connectable Undirected, 166, 335, 341
Connectable Undirected Event, 171
Connection Establishment, 53, 54, 59, 77, 107,

108, 347, 348
Connection Establishment Substates, 53, 54
Connection Event Interval (connInterval),

160–162, 183, 341
Connection Events, 161, 162
Connection Modes and Procedures, 341, 345
Connection Parameter Update Procedure, 346,

349, 351
Connection Parameter Update Request, 90,

223–225
Connection Parameter Update Response, 90,

223–225
Connection Setup, 31, 200, 208
Connection Signature Resolving Key (CSRK),

244
Connection State, 53, 153, 155, 170, 177, 180,

208
Connection Update Procedure, 181
Control Point Attributes, 262, 277, 329
Controller Configuration, 200, 207
Controller Flow Control, 200, 202
Controller Information, 200, 206
Controller, AVCTP, 86, 100
Core Protocols, 25, 81
CRC, 164, 169
Credit Based Flow Control, 84, 98, 220, 222,

226
Cryptographic Functions, 236
Current Time Service (CTS), 367

D

Data Channel PDU, 161, 165, 166
Data Physical Channel, 157, 161, 163
Data Rates, 2, 3, 31, 145
Data Rates and Coverage, 2, 3
Data Signing, 278, 354–356
Data Transport Architecture, 42
Defragmentation, 219, 220
Device Access Code (DAC), 48, 50
Device Address, See Bluetooth Device Address
Device Discovery, 53, 103, 107, 200, 207
Device Discovery Substates, 53, 54
Device Filtering, 192
Device Information Service (DIS), 287, 289,

290, 366
Device Name Characteristic, 291, 337, 338,

344
Device Setup, 201
Discover All Characteristic Descriptors, 313,

314, 377
Discover All Characteristics of a Service, 301,

309, 377, 379
Discover All Primary Services, 301–305
Discover Primary Services By Service UUID,

301, 302
Discoverable Mode, 105, 336, 342, 343, 344
Discovering Devices, 123, 157
Discover Characteristics by UUID, 309, 311,

313
Discovery Modes, 341, 342
Discovery Modes and Procedures, 341, 342
DM1 Packet, 58
Dual Mode Devices, 140, 134, 135, 137

E

Enabling and Disabling Bluetooth, 122
Encrypted Diversifier (EDIV), 244, 245, 245,

251
Encryption, 61, 62, 169, 186, 201, 210, 239
Encryption Information, 246, 251, 252
Encryption Key Size, 241, 248, 262
Encryption Pause Procedure, 181, 184
Encryption Procedure, 182, 355
Encryption Restart Procedure, 181, 184
Encryption Start Procedure, 181, 182

422 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

End Product Listing (EPL), 409
Enhanced Retransmission Mode, 84, 221
eSCO, See Extended Synchronous Connection

Oriented
eSCO Logical Transport, 43–46, 48, 59
European Telecommunications Standards

Institute (ETSI), 4, 5, 81, 96
European Commission for Standardization

(CEN), 4
Exchange MTU, 280, 301, 302
Exchange MTU Request, 266
Exchange MTU Response, 266, 267
Execute Write Request, 263, 266, 275, 276,

319, 320
Execute Write Response, 266, 276, 321, 328
Extended Reject Indication, 181, 185, 186
Extended Synchronous Connection Oriented

(eSCO), 43–49, 52, 57, 59, 63, 71

F

Feature Exchange Procedure, 181, 184, 185,
239

Feature Set, 184–186
Federal Communications Commission (FCC), 5
FHS Packet, 50, 51, 55, 56
FHSS (Frequency Hopping Spread Spectrum),

23
File Transfer Profile (FTP), 114
Find By Type Value Request, 266, 268,
Find By Type Value Response, 243, 279
Find Included Services, 280–282
Find Information Request, 241, 287, 288, 305
Find Information Response, 269, 305
Find Me Profile (FMP), 288–290, 362
Flow Control Mode, 84, 221
Fragmentation, 219, 220
Frequency Band, 36, 137, 147, 157
Frequency Hopping, 23, 35, 37–42, 60, 137,

147, 158, 182
FTP, See File Transfer Protocol

G

GAP, See Generic Access Profile
GAP Characteristics, 337
GATT, See Generic Attribute Profile

GATT based Architecture, 136, 142, 143, 286,
297

GATT Features, 301
GATT operations, 390
GATT Service, 327
General Discoverable Mode, 105, 336, 342–

344
General Inquiry, 105
General Inquiry Access Code (GIAC), 106
Generic Access Profile (GAP), 102, 103, 156,

286, 331–358
Generic Attribute Profile (GATT), 142, 285–

330
Generic Audio/Video Distribution Profile

(GAVDP), 115
Generic Object Exchange Profile (GOEP), 112
Glucose Profile (GLP), 345
Glucose Service (GLS), 371
GOEP (Generic Object Exchange Profile), See

Generic Object Exchange Profile
Grouping of Attribute Handles, 263, 288
GSM, 2, 3

H

Handle Information List, 269, 305, 306
Hands-Free (HF), 30, 94, 103, 110–112, 117
Hands-Free Profile, See Hands-Free (HF)
HCI ACL Data Packet, 64, 65, 69, 198
HCI Command, 62
HCI Command Packets, 62, 63, 198
HCI Commands and Events, 65, 67, 68, 199,

200
HCI Event, 60–62, 64, 198
HCI Event Packet, 69, 70, 186
HCI Flow Control, 67
HCI Packet Types, 63, 198
HCI Transport Layer, 70
HCI UART Interface, 71, 72
Headset Profile, 110
Health Thermometer Profile (HTP), 287, 296,

369
Health Thermometer Service (HTS), 260, 294,

300, 367
Health, Sports and Fitness Profiles, 370

Index 423

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Heart Rate Monitor Profile (HRP), 289, 292,
297, 371

Heart Rate Service (HRS), 289, 290, 292, 371
HID, See Human Interface Devices
HID over GATT (HOGP), 377
HID Service, 377
History (Bluetooth Specification), 21
Hop Increment, 158, 179, 180, 182
Host Controller Interface (HCI), 25, 26, 28,

62, 70, 197–216
Host Flow Control, 200, 203
Human Interface Devices (HID), 25, 86, 377

I

ID Packet, 50
Identity Information, 246, 251, 252
Identity Resolution Key (IRK), 191, 192, 204,

244, 245, 248, 252
Idle Mode Procedures, 106
IEEE, See Institute of Electrical and Electronics

Engineers
IEEE 802.15, 21
IEEE Word Usage, IEEE Language, 32
Immediate Alert Service (IAS), 262, 281,

288–291, 361–364
Implementation Conformance Statement (ICS),

411
Implementation Extra Information for Testing

(IXIT), 411
Include Definition, 290, 291, 297, 298
Indication, 264, 266, 293, 295, 296
Indication Type Methods, 278,
Industry, Scientific and Medical (ISM) Band,

23, 35, 36, 137, 156
Infrared Data Association (IrDA), 3, 19, 25, 98
Initiating PDU, 165, 166
Initiating State, 153–155, 170, 177
Initiator, 77, 78, 115, 116, 154, 155, 170
Initiator Address (InitA), 173, 179, 194
Initiator Key Distribution, 248, 253
Initiator Filter Policy, 194, 212, 347, 348
Inquiry, See Bluetooth Device Inquiry
Inquiry Access Code (IAC), 48, 50, 106
Inquiry Scan, 37, 42, 53–55, 76, 106

Institute of Electrical and Electronics Engineers
(IEEE), 5, 21, 25, 28, 29, 33, 34, 155,
156, 366

Interference with WiFi, 157
Internet Protocol Support Profile (IPSP), 226,

359, 371
Interoperability, 4, 20, 23, 24, 99, 102, 331,

403, 405, 406
Interoperability Testing, 403, 406, 407, 410
Invalid Behavior (BI), 411
International Organization for Standardization

(ISO), 5, 14
International Telecommunications Union (ITU),

5
IPv6, 371, 372
IrDA, See Infrared Data Association
ISM Band, See Industrial, Scientific and

Medical
ISO, See International Organization for

Standardization
ITU, See International Telecommunications

Union

J

Just Works, 74, 75, 109, 234, 241–243, 248

K

Key generation, 231, 236
Keypress Notification, 246, 248, 250, 256

L

L2CAP, See Logical Link Control and
Adaptation Protocol

L2CAP Features, 85, 219
L2CAP Modes of Operation, 84
L2CAP Parameters, 221
L2CAP PDU, 84, 217, 218, 223, 227
L2CAP Signaling, 83, 88–90, 219, 222
LE Architecture, See Architecture
LE Credit Based Flow Control, 84, 222, 226,

374
LE Meta Event, 67, 198, 199, 391
LE Ping, 181, 185–189
LE Security Mode 1, 353, 354
LE Security Mode 2, 354, 355

424 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

LE Timeline, 151
LE Topology, 162
Limited Discoverable Mode, 105, 107, 336,

342–345
Limited Inquiry, 105, 106
Link Control Packets, 49, 50
Link Controller, See Baseband Controller
Link Controller States, 52, 54
Link Information, 201, 209
Link Layer, 139, 153–196
Link Layer Control Procedures, 180, 181
Link Layer Control Protocol (LLCP), 180
Link Layer Packet Format, 164
Link Layer States, 153, 170, 171
Link Loss Service (LLS), 288, 289, 363
Link Manager, 58, 59, 75, 103
Link Manager Protocol (LMP), 58
Link Supervision, 43, 59
Local Area Network (LAN), 3
Logical Link Control and Adaptation Protocol

(L2CAP), 41, 46, 82–93, 98, 217–229
Logical Transport, 43, 44, 48, 55, 57, 60
Long Term Key (LTK), 182, 201, 210, 238,

239, 244, 245
Low Duty Cycle Mode, 161,

M

MAN, See Metropolitan Area Network
Man In The Middle (MITM), 73–75, 109, 233,

235, 236
Man Machine Interface (MMI), 24, 26
Master Identification, 246, 251, 252
Master Response, 53, 54, 56
Maximum Transmission Unit (MTU), 87, 90,

218, 219, 223–225, 266, 267, 280
Memory footprint, 140, 332
Message Integrity Check (MIC), 166, 168, 188,

211
Method Type, ATT, 263, 264
Metropolitan Area Network (MAN), 3
MMI, See Man Machine Interface
Modulation Characteristics, 149
More Data (MD), 167
Mostly Off Technology, 138, 151

N

Narrow Band Speech, 45
Near Field Communication (NFC), 3, 6, 14,

75, 235, 236, 241
Next Expected Sequence Number (NESN),

166, 167
NFC, See Near Field Communication
No Security, 108, 235, 236, 353
Non-Bondable Mode, 106, 352
Non-Connectable Directed, 166, 335
Nonconnected States, 170
Non-Discoverable Mode, 105
Non-Resolvable Private Address, 156, 357
Notification, 264–267, 278, 293, 296, 297,

323
Notification Type Methods, 278
NULL Packet, 50, 51, 54, 59, 139, 141, 164

O

OBEX, See Object Exchange Protocol
OBEX Client and Server, 99
OBEX Operations, 98, 99
Object Exchange Protocol (OBEX), 98
Object Push Profile (OPP), 113
Observation Procedure, 341
Observer, 332, 333, 341, 346
OOB Authentication Data, 241, 243
OpCode, 58, 63, 64, 72, 198, 199, 264, 265
Opcode Command Field (OCF), 61, 62, 187
Opcode Group Field (OGF), 63, 64, 199
OPP, See Object Push Protocol
Organizationally Unique Identifier (OUI), 29,

156, 366
Out of Band (OOB), 75, 236, 241–243, 247
Output Power, 23, 35, 36, 149

P

Packet Format
 BR/EDR, 48
 HCI, 64, 65, 199
 LE, Link Layer, 163, 164
 LE L2CAP, 221
Page, 32, 52–54, 56
Page Scan, 37, 42, 53, 54, 56, 77, 105–107,

131

Index 425

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Pairing, 58, 61, 62, 106, 234, 239, 334
Pairing Confirm, 246, 249
Pairing DHKey Check, 246, 250
Pairing Failed, 250
Pairing Feature Exchange, 239, 240, 247
Pairing Keypress Notification, 246, 250
Pairing Methods, 234, 235
Pairing Public Key, 246, 250, 256 �
Pairing Random, 246, 249, 250, 254
Pairing Request, 106, 246, 251, 253
Pairing Response, 246–248, 251, 253, 254
Pairing, Simple Secure, See Secure Simple

Pairing
PAN, See Personal Area Network
Parameter Total Length, 64, 72, 198, 199
Park State, 53, 57, 59
Passive Eavesdropping, 73, 75, 232, 233
Passive Eavesdropping Protection, 73, 75, 232,

233
Passive Scanning, 176, 212, 214, 341
Passkey Entry, 74, 75, 109, 234, 236, 241–243,

248
PDU and SDU, 217
Periodic Inquiry, 77
Peripheral, 332, 333, 342, 345
Peripheral Preferred Connection Parameters

(PPCP), 340, 341
Peripheral Privacy Flag Characteristic, 339
Peripheral, Optimized power consumption,

141, 232
Personal Area Network (PAN), 3, 13, 372
Phone Alert Status Profile (PASP), 377
Phone Alert Status Service (PASS), 377
Physical Channel, 37, 38, 41, 42, 157, 156,

159, 163
Physical Link, 43, 88, 201, 209
Piconet, 32, 33, 37–39, 41, 139, 162, 163, 170
Piconet Channel, Basic, Adapted, Inquiry Scan,

Page Scan, 42, 51
POLL Packet, 50, 54
Power Class, 35, 36
Preamble, 164
Prepare Write Request, 263, 266, 274–276,

319–322
Prepare Write Response, 266, 275, 276,

320–322

Prequalification, 412
Primary Service, 260, 263, 280, 291, 296
Primary Service Discovery, 301, 302, 307, 309,

395
Privacy Feature, 156, 191, 234, 245, 356
Private Address, 156, 191, 194, 207, 357
Private Address Generation Interval, 192
Profile Dependencies, 102, 103, 286
Profile Tuning Suite (PTS), 20, 403, 408
Profiles, 24–26, 82, 102, 142, 285–287, 290,

359, 260
Protocol Data Unit (PDU), 30, 84, 164, 165,

217
Protocol/Service Multiplexing (PSM), 85, 86,

224
Proximity Profile (PXP), 288, 289, 365
PTS, See Profile Tuning Suite
Public Device Address, 155, 244, 357

Q

Qualification, 23, 405, 406
Qualification Design ID (QDID), 406

R

Radio, 35, 103, 147, 148
Radio Frequency Identification (RFID), 2, 3
Random Address, 156, 200, 207, 245, 357
Random Address function, 236, 237
Read Blob Request, 266, 271, 316
Read Blob Response, 266, 271, 272, 316
Read By Group Type Request, 266, 273, 281,

302, 303
Read By Group Type Response, 266, 273, 282,

302, 303
Read By Type Request, 266, 269, 270, 306,

307
Read By Type Response, 266, 270, 306, 307
Read Characteristic Descriptors, 324
Read Characteristic Value, 301, 314, 315
Read Long Characteristic Descriptors, 301,

324, 325
Read Long Characteristic Values, 301, 314
Read Multiple Characteristic Values, 301, 314,

317
Read Multiple Request, 266, 272, 317

426 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Read Multiple Response, 266, 272, 317
Read Request, 266, 270, 271, 315
Read Response, 266, 270, 271, 315
Read Using Characteristic UUID, 301, 314,

316, 317
Reconnection Address Characteristic, 339, 356
Relationship Discovery, 301, 306
Reliable Writes, 318, 320, 322
Remote Information, 200, 206
Repeated Attempts, 241
Request and Response Type Methods, 266
Resolvable Private Address, 156, 200, 207, 357
Resolving List, 191, 192, 200, 204, 205
Retransmission Mode, 84, 221
RF Channels, 145, 148, 156, 157
RFCOMM, 25, 86, 96–98
RFID, See Radio Frequency Identification
RS-232 Nine Circuits, 97, 98
RS-232 Serial Interface, 97
RTP Control Protocol (RTCP), 100
RTP Data Transfer Protocol (RTP), 100
RxAdd, 165, 173, 176

S

Scannable Undirected, 166, 171, 175, 335, 343
Scanner Filter Policy, 193, 349, 350
Scanning PDU, 165, 166
Scanning State, 153, 154, 170, 176
Scatternet, 32, 33, 37–39, 139, 145, 155, 163
SCO, See Synchronous Connection Oriented
SCO Logical Transport, 43–46,
SDP, See Service Discovery Protocol
SDP Client and Server, 92
SDP Transactions, 94
Searching and Browsing Services, 93
Secondary Service, 263, 291, 298
Secure Simple Pairing (SSP), 61, 62, 63, 73
Security, 60, 73, 108, 231, 352–355
Security Breaches, 232
Security in Host instead of Controller, 231
Security function, 236
Security Manager (SM), 231–258, 353
Security Manager Protocol (SMP), 219, 246
Security Modes, 108, 109, 353, 354
Security Properties, 235

Security Request, 246, 247, 355
Segmentation and Reassembly (SAR), 83, 86,

87
Sequence Number (SN), 48, 167
Sequential Transactions, 265
Serial Port Profile (SPP), 109
Server Configuration, 301
Service Changed Characteristic, 295, 327–329
Service Declaration, 297, 298, 329, 361, 363,

365–367
Service Discovery Protocol (SDP), 86, 89–95
Short Term Key (STK), 237, 239, 242, 249
Short Term Key (STK) Generation, 239
SIG Device Library, 407
Signed Write Without Response, 301, 318, 319
Single Mode, 134–136
Single Mode versus Dual Mode Devices, 134
Slave Initiated Feature Exchange, 185, 186
Slave Latency (connSlaveLatency), 162, 182,

224, 340, 341
Slave Response, 53, 54, 56
Sniff Mode, 54, 57, 59, 66
SNK (AVDTP Sink), 100, 101, 117
SRC (AVDTP Source), 100, 101, 117
Standby State, 153–155, 170, 171
Static Address, 156, 357
STK Generation, 239
Stream End Point (SEP), 101, 102, 116
Streaming Channels, 85, 88, 115
Streaming Mode, 84, 221
Sub-Band Codec (SBC), 47, 101, 117, 118
Supervision Timeout

(connSupervisionTimeout), 162, 179,
180, 188

Synchronous Connection Oriented (SCO),
42–49, 52–55, 57–59, 63, 65, 69, 71,
111

Synchronous Packets, 49, 50, 52

T

Target, AVCTP, 100
Temperature Measurement Characteristic, 291,

292, 296, 300, 368
Termination Procedure, 180, 181, 186
Test Case Reference List (TCRL), 411

Index 427

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Test categories, 410
Test Specifications, 20, 405, 410, 411
Testing, 59, 201, 211, 403, 405
Three Phase Pairing Process, 240
Time Division Duplex (TDD), 25, 38, 40–42
Topology, 37, 39, 44, 142, 162, 163
Tracking, 156, 190, 191, 234, 356
Transmit Power Service (TPS), 364, 365
transmitWindowsOffset, 179
transmitWindowSize, 179
Transport Specific Key Distribution, 240, 251,

258
Tx Power Service, 281, 288, 289, 291, 364,

365, 392
TxAdd, 165, 172–176

U

Unauthenticated no MITM Protection, 236
UnPlugFest (UPF), 20, 406
UUID, 92, 261

V

Valid Behavior (BV), 411
Version Exchange Procedure, 181, 186, 187

W

WAN, See Wide Area Network
White List, 192–194, 200, 204, 211, 212, 215,

347–349
Wide Area Network (WAN), 2
Wide Band Speech (WBS), 45
Wireless Communication, 1, 2
Write Characteristic Descriptors, 301, 324–326
Write Characteristic Value, 301, 318–320, 363,

364
Write Long Characteristic Descriptors, 301,

324, 326
Write Long Characteristic Values, 301
Write Request, 263, 266, 274
Write Response, 266, 274
Write Without Response, 300, 301, 318

Z

ZigBee, 2, 3, 6, 13

	Inside Bluetooth Low Energy Second Edition

	Contents
	Preface to the First Edition
	Preface to the Second Edition
	Acknowledgments
	Foreword to the First Edition
	Chapter 1
Introduction
	1.1 Introduction to Wireless Communication
	1.2 Data Rates and Coverage

	1.2.1 Wide Area Network
	1.2.2 Metropolitan Area Network
	1.2.3 Local Area Network
	1.2.4 Personal Area Network
	1.2.5 Body Area Network

	1.3 Why Have Standards?
	1.4 Introduction to Bluetooth and Bluetooth Low Energy
	1.5 Applications
	1.5.1 Finding and Alerting Devices
	1.5.2 Proximity and Presence Detection
	1.5.3 Health Care
	1.5.4	Sports and Fitness Equipment
	1.5.5 Mobile Payments
	1.5.6 The Internet of Things (IoT)

	1.6 Competing Technologies
	1.6.1 ANT and ANT+
	1.6.2 ZigBee
	1.6.3 Near Field Communication (NFC)

	1.7 Summary
	References

	Chapter 2
Background of Bluetooth
	2.1 Introduction
	2.2 Ad Hoc Networks—Why?
	2.2.1 Printing Documents, Photos
	2.2.2 Exchanging Business Cards, Photos, Music, Files

	2.3 What is Bluetooth?
	2.4 Bluetooth SIG
	2.5 History of the Bluetooth Specification
	2.6 IEEE 802.15 Family of Specifications
	2.7 Bluetooth Basics
	2.8 Bluetooth Architecture Overview
	2.9 Basic Terminology
	2.9.1 Host, Host Controller, and Host Controller Interface (HCI)
	2.9.2 Device Address (BD_ADDR) and Device Name
	2.9.3 Class of Device (CoD)
	2.9.4 Bluetooth Clock
	2.9.5 Protocol Data Unit (PDU)

	2.10 Data Rates
	2.11 Connection Setup and Topology
	2.12 IEEE Language
	2.13 Summary
	References

	Chapter 3
Bluetooth Lower Layers
	3.1 Introduction
	3.2 Bluetooth Radio
	3.2.1 Frequency Band and Hopping

	3.3 Baseband Controller
	3.3.1 Topology—Piconet and Scatternet
	3.3.2 Time Division Duplex
	3.3.3 Adaptive Frequency Hopping (AFH)
	3.3.4 Master, Slave Roles and Role Switch
	3.3.5 Channel, Transport and Links
	3.3.6 Packet Format
	3.3.7 Packet Types
	3.3.8 Link Controller States

	3.4 Link Manager (LM)
	3.4.1 Connection Control
	3.4.2 Security

	3.5 Host Controller Interface (HCI)
	3.5.1 HCI Packet Types

	3.5.2 HCI Commands and Events
	3.5.3 Buffers
	3.5.4 HCI Flow Control
	3.5.5 Connection Handle
	3.5.6 HCI Transport Layer

	3.6 Security—Secure Simple Pairing (SSP)
	3.6.1 Passive Eavesdropping Protection
	3.6.2 Man-in-the-Middle (MITM) Attack Protection
	3.6.3 Association Models

	3.7 Practical Scenarios
	3.7.1 Inquiry
	3.7.2 Connection Establishment

	3.8 Summary
	Reference

	Chapter 4
Bluetooth Upper Layers and Profiles
	4.1 Introduction
	4.2 Logical Link Control and Adaptation Protocol (L2CAP)
	4.2.1 Modes of Operation
	4.2.2 L2CAP PDUs
	4.2.3 L2CAP Features
	4.3.3 L2CAP Signaling

	4.4 Service Discovery Protocol (SDP)
	4.4.1 Service Record, Service Attributes and Service Class
	4.4.2 Searching and Browsing Services
	4.4.3 SDP Transactions

	4.5 RFCOMM
	4.6 Object Exchange Protocol (OBEX)
	4.6.1 OBEX Operations

	4.7 Audio/Video Control Transport Protocol (AVCTP)
	4.8 Audio/Video Distribution Transport Protocol (AVDTP)
	4.9 Profiles
	4.10 Generic Access Profile (GAP)
	4.10.1 Bluetooth Parameters Representation
	4.10.2 Modes
	4.10.3 Idle Mode Procedures
	4.10.4 Establishment Procedures
	4.10.5 Authentication
	4.10.6 Security

	4.11 Serial Port Profile (SPP)
	4.12 Headset Profile, Hands-Free Profile
	4.13 Generic Object Exchange Profile (GOEP)
	4.14 Object Push Profile (OPP)
	4.15 File Transfer Profile (FTP)
	4.16 Generic Audio/Video Distribution Profile (GAVDP)
	4.17 Advanced Audio Distribution Profile (A2DP)
	4.18 Audio/Video Remote Control Profile (AVRCP)
	4.19 Summary
	Bibliography

	Chapter 5
Getting the Hands Wet
	5.1 Introduction
	5.2 Ingredients
	5.3 Basic Bluetooth Operations
	5.3.1 Enabling and Disabling Bluetooth
	5.3.2 Discovering Devices
	5.3.3 Browsing Services

	5.4 Real World Application—Café Bluebite
	5.4.1 Requirements Specification
	5.4.2 High Level Design
	5.4.3 Code
	5.4.4 Complete Code

	5.5 Disclaimer
	5.6 Summary
	Bibliography

	Chapter 6
Bluetooth Low Energy—Fundamentals
	6.1 Introduction
	6.2 Single Mode versus Dual Mode Devices
	6.3 Bluetooth Smart Marks
	6.3.1 Bluetooth Smart (Sensor-Type Devices)
	6.3.2 Bluetooth Smart Ready (Hubs)

	6.4 LE Fundamentals
	6.4.1 Frequency Bands
	6.4.2 Mostly Off Technology
	6.4.3 Faster Connections
	6.4.4 Reduced Functionality
	6.4.5 Shorter Packets
	6.4.6 Reduced Dynamic Memory Footprint
	6.4.7 Optimized Power Consumption of Peripherals
	6.4.8 No Need for Continuous Polling
	6.4.9 Backward Compatibility with BR/EDR

	6.5 LE Architecture
	6.6 Comparison between BR/EDR and LE
	6.7 Summary
	Bibliography

	Chapter 7
Physical Layer
	7.1 Introduction
	7.2 Frequency Bands
	7.3 Transmitter Only, Receiver Only, or Both
	7.4 Output Power
	7.5 Range
	7.6 Modulation Characteristics
	7.7 LE Timeline
	7.8 Summary
	Bibliography

	Chapter 8
Link Layer
	8.1 Introduction
	8.2 Overview of Link Layer States
	8.2.1 Standby State
	8.2.2 Advertising State (Advertiser)
	8.2.3 Scanning State (Scanner)
	8.2.4 Initiating State (Initiator)
	8.2.5 Connection State (Master or Slave)

	8.3 Device Address
	8.3.1 Public Device Address
	8.3.2 Random Address

	8.4 Physical Channel
	8.5 Channel Map
	8.6 Adaptive Frequency Hopping
	8.7 Events
	8.7.1 Advertising Events
	8.7.2 Connection Events

	8.8 Topology
	8.9 Packet Format
	8.9.1 Preamble
	8.9.2 Access Address
	8.9.3 CRC
	8.9.4 PDU

	8.10 Bit Stream Processing
	8.11 Link Layer States
	8.11.1 Nonconnected States
	8.11.2 Connection State

	8.12 Link Layer Control Procedures
	8.12.1 Connection Update Procedure
	8.12.2 Channel Map Update Procedure
	8.12.3 Encryption Procedure
	8.12.4 Feature Exchange Procedure
	8.12.5 Version Exchange Procedure
	8.12.6 Termination Procedure
	8.12.7 Connection Parameters Request Procedure
	8.12.8 LE Ping Procedure
	8.12.9 Data Length Update Procedure

	8.13 Management of Link Layer Procedures
	8.13.1 Procedure Response Timeout
	8.13.2 Procedure Collisions
	8.13.3 LE Authenticated Payload Timeout

	8.14 Link Layer Privacy 1.2
	8.14.1 Address Resolution in the Controller Instead of the Host
	8.14.2 Better Privacy

	8.14 Device Filtering and White List
	8.14.1 Advertising Filter Policy
	8.14.2 Scanner Filter Policy
	8.14.3 Initiator Filter Policy

	8.15 Practical Examples
	8.16 Summary
	Bibliography

	Chapter 9
Host Controller Interface and Commands
	9.1 Introduction
	9.1.1 HCI Packet Types
	9.1.2 HCI Command Packets
	9.1.3 HCI Event Packet
	9.1.4 HCI ACL Data Packet

	9.2 HCI Commands and Events
	9.2.1 Device Setup
	9.2.2 Controller Flow Control
	9.2.3 Host Flow Control
	9.2.4 Controller Information
	9.2.5 Remote Information
	9.2.6 Controller Configuration
	9.2.7 Device Discovery
	9.2.8 Connection Setup
	9.2.9 Connection State
	9.2.10 Physical Links
	9.2.11 Link Information
	9.2.12 Authentication and Encryption
	9.2.13 Testing
	9.2.14 Usage of White Lists

	9.3 Practical Sequence Diagrams
	9.3.1 Passive Scanning
	9.3.2 Typical Sequence for Active Scanning
	9.3.3 Connection Establishment
	9.3.4 Setting up White list

	9.4 Summary
	Bibliography

	Chapter 10
Logical Link Control and Adaptation Protocol (L2CAP)
	10.1 Introduction
	10.2 PDU and SDU
	10.3 Basic Assumptions
	10.4 Maximum Transmission Unit (MTU)
	10.5 L2CAP Features
	10.5.1 Fixed Channel Identifiers
	10.5.2 Fragmentation and Defragmentation of Data
	10.5.3 Channel Multiplexing

	10.6 Data Packets
	10.7 L2CAP Parameters
	10.8 L2CAP Signaling
	10.8.1 Command Reject
	10.8.2 Connection Parameter Update Request
	10.8.3 Connection Parameter Update Response
	10.8.4 LE Credit-Based Connection Request
	10.8.5 LE Credit-Based Connection Response
	10.8.6 LE Flow Control Credit

	10.9 Credit-Based Flow Control
	10.10 Practical Examples
	10.11 Summary
	Bibliography

	Chapter 11
Security Manager (SM)
	11.1 Introduction
	11.2 Security in Host Instead of Controller
	11.3 Asymmetrical Architecture
	11.4 Security Breaches
	11.4.1 Passive Eavesdropping
	11.4.2 Man-in-the-Middle (MITM) (Active Eavesdropping)
	11.4.3 Tracking

	11.5 Pairing Methods
	11.5.1 Just Works
	11.5.2 Numeric Comparison
	11.5.3 Passkey Entry
	11.5.4 Out of Band

	11.6 Security Properties
	11.6.1 LE Secure Connections Pairing
	11.6.2 Authenticated MITM Protection
	11.6.3 Unauthenticated no MITM Protection
	11.6.4 No Security

	11.7 Cryptographic Functions
	11.7.1 Security Function e
	11.7.2 Random Address Function ah
	11.7.3 Confirm Value Generation Function c1
	11.7.4 Key Generation Function s1
	11.7.5 Security Function AES-CMAC
	11.7.6 LE Secure Connections Confirm Value Generation Function f4
	11.7.7 LE Secure Connections Key Generation Function f5
	11.7.8 LE Secure Connections Check Value Generation Function f6
	11.7.9 LE Secure Connections Numeric Comparison Value Generation Function g2
	11.7.10 LE Secure Connections Link Key Conversion Function h6

	11.8 Pairing
	11.8.1 Phase 1: Pairing Feature Exchange
	11.8.2 Phase 2: Authentication and Encryption
	11.8.3 Phase 3: Transport Specific Key Distribution

	11.9 Security Manager Protocol
	11.9.1 Commands Used During Phase 1 (Pairing Feature Exchange)
	11.9.2 Commands Used During Phase 2 (Key Generation)
	11.9.3 Commands Used During Phase 3 (Transport Specific Key Distribution)

	11.10 Practical Examples
	11.10.1 Message Sequence for LE Legacy Pairing
	11.10.2 Message Sequence for LE Secure Connections

	11.11 Summary
	Bibliography

	Chapter 12
Attribute Protocol (ATT)
	12.1 Introduction
	12.2 Attribute
	12.2.1 Attribute Type
	12.2.2 Attribute Handle
	12.2.3 Attribute Permissions
	12.2.4 Attribute Value
	12.2.5 Control Point Attributes
	12.2.6 Grouping of Attribute Handles
	12.2.7 Atomic Operations

	12.3 Attribute Protocol
	12.3.1 PDU Format
	12.3.2 Sequential Transactions

	12.4 Methods
	12.4.1 Request and Response Type Methods
	12.4.2 Command Type Methods
	12.4.3 Notification Type Methods
	12.4.4 Indication and Confirmation Type Methods

	12.5 Practical Examples
	12.5.1 Exchange MTU
	12.5.2 Reading Primary Services of a Device

	12.6 Summary
	Bibliography

	Chapter 13
Generic Attribute Profile (GATT)
	13.1 Introduction
	13.1.1 Profile Dependencies

	13.1.2 GATT-Based Profile Architecture

	13.2 Roles
	13.3 Attributes
	13.3.1 Attribute Caching
	13.3.2 Attribute Grouping
	13.3.3 Notification and Indication

	13.4 Service Definition
	13.4.1 Service Declaration
	13.4.2 Include Definition
	13.4.3 Characteristic Definition

	13.5 Configured Broadcast
	13.6 GATT Features
	13.6.1 Server Configuration
	13.6.2 Primary Service Discovery
	13.6.3 Relationship Discovery
	13.6.4 Characteristic Discovery
	13.6.5 Characteristic Descriptor Discovery
	13.6.6 Characteristic Value Read
	13.6.7 Characteristic Value Write
	13.6.8 Characteristic Value Notification
	13.6.9 Characteristic Value Indication
	13.6.10 Characteristic Descriptors

	13.7 Timeouts
	13.8 GATT Service
	13.8.1 Service Changed Characteristic

	13.9 Security Considerations
	13.9.1 Authentication and Authorization Requirements

	13.10 Summary
	Bibliography

	Chapter 14
Generic Access Profile
	14.1 Introduction
	14.2 Roles
	14.2.1 Broadcaster Role
	14.2.2 Observer Role
	14.2.3 Peripheral Role
	14.2.4 Central Role

	14.3 Representation of Bluetooth Parameters
	14.3.1 Bluetooth Device Address
	14.3.2 Bluetooth Device Name
	14.3.3 Bluetooth Passkey
	14.3.4 Bluetooth Class of Device
	14.3.5 Pairing—Authentication and Bonding

	14.4 Advertising and Scan Response Data Format
	14.4.1 Local Name (AD Type = 0x08 or 0x09)
	14.4.2 Flags (AD Type = 0x01)
	14.4.3 Manufacturer Specific Data (AD Type = 0xFF)

	14.5 GAP Characteristics
	14.5.1 Device Name Characteristic
	14.5.2 Appearance Characteristic
	14.5.3 Peripheral Privacy Flag Characteristic
	14.5.4 Reconnection Address Characteristic
	14.5.5 Peripheral Preferred Connection Parameters Characteristic

	14.6 Operational Modes and Procedures
	14.6.1 Broadcast Mode and Observation Procedure
	14.6.2 Discovery Modes and Procedures
	14.6.3 Connection Modes and Procedures
	14.6.4 Bonding Modes and Procedures

	14.7 Security
	14.7.1 LE Security Mode 1
	14.7.2 LE Security Mode 2
	14.7.3 Secure Connections-Only Mode
	14.7.4 Authentication Procedure
	14.7.5 Authorization Procedure
	14.7.6 Encryption Procedure
	14.7.7 Data Signing
	14.7.8 Privacy Feature
	14.7.9 Random Device Address

	14.8 Summary
	Bibliography

	Chapter 15
GATT-Based Profiles
	15.1 Introduction
	15.2 Profile, Services, and Characteristics
	15.3 Immediate Alert Service (IAS)
	15.3.1 Service Declaration
	15.3.2 Service Characteristics

	15.4 Find Me Profile (FMP)
	15.4.1 Roles

	15.5 Link Loss Service (LLS)
	15.5.1 Service Declaration
	15.5.2 Service Characteristics

	15.6 Transmit Power Service (TPS)
	15.6.1 Service Declaration
	15.6.2 Service Characteristics

	15.7 Proximity Profile (PXP)
	15.7.1 Roles

	15.8 Battery Service (BAS)
	15.8.1 Service Declaration
	15.8.2 Service Characteristics

	15.9 Device Information Service (DIS)
	15.9.1 Service Declaration
	15.9.2 Service Characteristics

	15.10 Current Time Service (CTS)
	15.10.1 Service Declaration
	15.10.2 Service Characteristics

	15.11 Health Thermometer Service (HTS)
	15.11.1 Service Declaration
	15.11.2 Service Characteristics

	15.12 Health Thermometer Profile (HTP)
	15.12.1 Roles

	15.13 Blood Pressure Service (BPS)
	15.13.1 Service Declaration
	15.13.2 Service Characteristics

	15.14 Blood Pressure Profile (BLP)
	15.14.1 Roles

	15.15 Health, Sports and Fitness Profiles
	15.16 Internet Protocol Support Profile (IPSP)
	15.16.1 Service Declaration
	15.16.2 Configuration
	15.6.3 Profile Stack Requirements
	15.6.4 Typical IPv6 operations

	15.16 Other Services and Profiles
	15.17 Practical Examples
	15.18 Summary
	Bibliography

	Chapter 16
Developing LE Applications
	16.1 Introduction
	16.2 Ingredients
	16.2.1 Installing hcidump
	16.2.2 Basic Bluetooth operations

	16.3 Advertising and Scanning
	16.4 Creating a Connection
	16.5 GATT Operations
	16.5.1 Enable GATT Functionality on Server
	16.5.2 Execute GATT Procedures from the Client
	16.5.3 Reading and Writing Characteristics

	16.6 Disconnecting
	16.6.1 Disconnecting the GATT Connection
	16.6.2 Disconnecting the LE Connection

	16.7 Real-World Application—Find Lost Keys
	16.8 Debugging LE Applications
	16.8.1 Logging the HCI Interface
	16.8.2 Air Sniffer
	16.8.3 Peer Devices and Interoperability Testing
	16.8.4 Profile Tuning Suite (PTS)

	16.9 Disclaimer
	16.10 Summary
	References

	Chapter 17
Testing and Qualification
	17.1 Introduction
	17.2 Need for Bluetooth Qualification
	17.3 What Is Interoperability?
	17.4 Development Resources and Events
	17.4.1 UnPlugFest (UPF)
	17.4.2 Automotive Events
	17.4.3 SIG Device Library
	17.4.4 Profile Tuning Suite (PTS)

	17.5 Bluetooth Qualification Program
	17.6 Test Categories
	17.6.1 BQTF, BRTF
	17.6.2 BQE
	17.6.3 Test Documents
	17.6.4 Prequalification

	17.7 Summary
	Bibliography

	Glossary of Acronyms and Important Terms
	About the Author
	Index

