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Abstract— Memristor is a passive electronic device that was
proposed and described by Leon Chua in 1971. The first
practical implementation has been realized by Stan Williams’
group at HP Labs in 2008. This paper is intended as a tutorial on
how to use memristor crossbars for logic design and is a
consolidation of various recent publications. The goal of this
paper is to give the reader a brief introduction to the
possibilities of logic design using memristors.

1. INTRODUCTION

HE crossbar structure shown in Fig. 1 has been used to

implement digital logic since the 1970s. The basic
structure contains a mesh of wires with switches that may be
present at junctions. The state of the switch can be open or
closed. The crossbar can be used to compute logic based on
the placement of these switches on the wire junctions and
their state. Current crossbar based logic designs have inherent
disadvantages to conventional CMOS design in terms of
performance (wire delay is dominant in crossbar designs),
density (large unused areas) and power dissipation (most of
the unused switches in junctions are inactive and hence
consume leakage power.) However, the disadvantages are
mainly due to the device choice used to implement the switch.
Many devices have been tried as the switch in the crossbar.
First, transistors were used and the structures were known as
PLAs and PLDs. However, they were too slow to compete
with conventional CMOS. FPGAs used pass transistors to
implement crossbar logic but the increased leakage due to
pass transistor design limits the viability of this choice
[Xilinx, Actel].
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Fig. 1 Generic cross-bar structure used for logic computation. The legend is
shown on the right. The switch mentioned can be implemented using diodes,
transistors, or other switches. The notation is copies form [12]

More recently, with the advent of Nano-scale devices there

have been many alternatives proposed for implementing the
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switch in the crossbar [5-8,16]. One such alternative is the
Memristor which is based on a theoretical device formulated
by Chua [1]. A practical implementation of this device has
been demonstrated by Stan Williams et al. [9,10]. This
device is the focus of this paper. Crossbar logic using a
memristor has been proposed by Snider et al.[12]. This paper
is aimed at consolidating the knowledge of these various
publications.

The rest of the paper is organized as follows: Section 11
describes the theory and technology of the memristor. Section
I1I describes the basic logic operations using memristors.
Section IV describes a memristor based crossbar and its uses
for logic computation with examples. Summary and
conclusions are reported in the final Section.

II. THE HP MEMRISTOR

A. Theory of Memristors

“Memristor” was coined by Leon Chua in a 1971 seminal
paper [1] for a two-terminal element characterized by a
relation of the type g(f,q)=0. It is charge (or flux) controlled if
it can be expressed as a single valued function of g or f. The
voltage across the device is V(t) = M(q(t))I(t), where the
memristance is given by:

M = d®/dq = (d®/dt)/(dq /dt

It can be inferred from this relation that memristance is
simply a charge-dependent resistance.

As an alternating voltage is applied at the terminal of the
device, the I-V curve is characterized by a pinched hysteresis
loop that passes through the origin as illustrated in Fig. 2.
This is a 2-valued function of the current. Around the origin,
the device acts as a traditional resistance (linear relation).
However, at V' = + V,, the device retains its resistance and
hence, the memory attribute of the memristor. Accordingly,
the conductance is either zero or at a higher value depending
on the device.
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Fig. 2 (a) Memristor I-V characteristics of a memristor; (b) Its conductance in
response to the application of alternating pulses.

More work on theoretical memristors has been continued by
Chua and professional colleagues [2-4]. In these articles,
Chua mentions a long list of papers where hysteric-type
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curves associated with nano-devices were mistakenly
reported as amoralities. We cite here two main examples:
representation of a CNT as having an inductance and a
resistance that are function of frequency [17]; and Huxley
nerve model [18].

B. HP Oxygen Vacancy Switch

The most acclaimed memristor realization was announced
recently by HP [10]. This TiO»/TiO,,. switch, shown in Fig. 3
is redrawn from [11] and it is a voltage regulated device. The
resistance between the terminals may be large enough (TiO,)
to represent the switch in an open position or a very low value
to represent the switch closed. By applying a voltage pulse to
the terminal of the switch, the resistance can be changed. The
final resistance is retained and can be kept, practically
speaking indefinitely.
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Fig. 3 (a) Memristor; (b) Its Model [11]

The memristance of this device is given by:

M(q) = Rore(1 — q(®)[1Ron/D’])

III. LOGIC DESIGN USING HP MEMRISTORS

In this Section, we first look at the Memristor as a state
element that can store logic data. We describe the basic
operations on a single memristor that can change its state. The
implementation of a wired-AND using multiple memristors is
also illustrated.

A. Memristor as a state element

CONTROL
CONTROL
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Fig. 4: Memristor as a logical state element. A) A closed memristor
showing logic “0” and B) Equivalent circuit during readout.

Consider the memristor in Figure 4(A). As shown the
memristor is a two terminal device connected between
terminals controland in. Note that even though terminals in
and out are on the same net, they will be used differently
depending on the operation being performed on the
memristor. Now a memristor can be used as a memory
element or a latch. However, the memristor holds logical state
as an impedance value and not as a voltage. If a memristor is
closed(as in Figure 4(A)), it has zero impedance across in and
control, and hence represents a logic “0”. This logic state “0”
can be read out by applying a positive voltage at control and

reading the Voltage at out. A high voltage at out designates a
logic “0”(since impedance Rin=0). The equivalent circuit
during readout is shown in Figure 4(B). Note that the output
of a memristor latch is a Voltage. Similarly, an open
memristor contains a non-zero impedance and designates
logic “1”.

B. Basic Logic Operations on two Memristors

The basis for any logical computation is the reliable
transfer of state from one state element to the next. This
transfer of state can be achieved from one memristor to the
other in two possible ways: inverting and non-inverting. The
differences between these two configurations described
below are the presence of the extra Resistance R, and the
voltages applied at the terminals.

1) Inverting Configuration

Two memristors can be connected in an inverting

configuration as shown in Figure 5(A).

Figure 5: Inverting configuration of two memristors. (A) Showing driving
memristor M1 and receiving memristor M2. (B) The memristor M2 is
unconditionally opened. (C) The memristor M2 is conditionally closed based
on state of M1. The inverting truth table of operation is also shown. (D) The
value stored in M2 is read out at terminal Vout.

The driving memristor M1 is placed in read out mode
where its value is not changed. The receiving memristor M2
can change state based on the value of memristor M1, thus
creating a logical computation. The logic computation can be
achieved in three stages as shown below.

a) Unconditional Open

The memristor M2 is preset to the open state by forcing a high
impedance on control of M1 and by applying a high negative
voltage -V, at the control of M2. The voltage -V, is above the
threshold required to open the memristor and hence the state
of the memristor M2 is set to “1” irrespective of its previous
state. This case is shown in Figure 5(B).
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b) Conditional Close

This stage as shown in Figure 5(C), has a voltage V, applied at
the control terminal of M1 which places the memristor M1 in
read out mode(its state cannot be changed). Now a Voltage
Vw is applied at the control node of M2. There can be two
scenarios that happen based on the state of memristor M1. If
memristor M1 is closed, then the impedance R,; = 0. This
makes the voltage at the intermediate node X to be close to V,
due to the presence of the resistor R,. The voltage across the
M2 is (Vw - V,) which is not enough to close the memristor
M2 and it remains open. The other scenario is when M1 is
open (Ry; = 1). The voltage on node X is close to 0 and the
voltage across M2 is Vy. This voltage drop is over the
threshold of the memristor M2 and it closes the memristor
(Ry; = 0). Thus, the logical action of the inverting
configuration is as shown in the truth table in Figure 5(C).
The memristor M2 takes the inverted value of memristor M1.

c) Read out

The inverted value of M1 has been written in to M2 as in the
previous step. Now the stored value in M2 is used as input to
the next stage of computation by configuring as shown in
Figure 5(D). The control node of M1 is placed in high
impedance state to not have an effect on the intermediate
node X. Now a voltage V, is applied at the control terminal of
M2. This will result in a Voltage at out, that can be used for
further computation (Voltage high = Logic 0 and vice versa).

2) Non-inverting configuration

Figure 6: Non-inverting configuration of two memristors. (A) Showing
driving memristor M1 and receiving memristor M2. (B) The memristor M2 is
conditionally closed based on state of M1. The non-inverting truth table of
operation is also shown.

Two memristors combined in this configuration are shown
in Figure 6(A). It is similar to the inverting configuration
described earlier, but with the resistance R, removed. It takes
three stages for the logical computation in this configuration
as described below.

a) Unconditional open

This can be achieved by applying a high Voltage -V, at the
control terminal of M2(same as inverting configuration).

b) Conditional close

This can be achieved by connecting the control terminal of
M1 to GND(V=0) and connecting the control of M2 to
voltage V. The two scenarios are shown in Figure 6(B). If
M1 is closed (Ry; = 0), then the intermediate node voltage
Vx=0 and this will create the voltage across M2 to be V. This
voltage is enough to close the memristor M2 making its logic
state Ry;,=0. If M1 were open(R,,=1), then the node Vy is
un-driven and floating. This makes the Voltage across M2<
Vy and it leaves the memristor M2 in open state. The truth
table of the computation is shown in Figure 6(B). It can be
noted that in this configuration, the logical value of M1 is
copied into M2.

c) Read out
The read out in the non-inverting configuration is similar to
the inverting configuration. The control of M1 is
un-driven(high impedance state) and the control of M2 is
driven with =0(GND). This results in a voltage at the Out
terminal of M2, which can be used as input to another
memristor.

C. Logic operation on multiple memristors (wired-AND

logic)

In the previous Section, we have seen two memristors
combined to create both inverting and non-inverting logic
functions. In this Section, we look at combining the state of
multiple memristors to create the wired-AND logic function.
This function will form the basis of the crossbar logic module
which will be described later.

Figure 7: Wired-AND logic implementation. The memristors M1-M3 are
connected in the Inverting configuration as shown. The output will be stored
in RM4 which will be (RM1.RM2.RM3)’.

Consider the set of memristors shown in Figure 7. The
configuration is similar to the inverting configuration shown
earlier in Figure 5A. The memristor M1 in Figure 5A is
replaced by a set memristors M1-M3, which are all connected
in parallel.

Note that the control terminals of M1-M3 are shorted
together. The working principle is similar in this
configuration too. The computation can be performed in three
stages as before.
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The memristor M4 is unconditionally open by applying a
high negative Voltage V, at the control terminal. The
conditional close phase is achieved by applying a voltage V,
at the common control terminal and Vyy at the control terminal
of M4. Now consider the scenario where all memristors
M1-M3 are open(Ry; = Ry = Ryz; = 1). In this case, the
voltage at the common terminal X is close to 0. The voltage
drop across the memristor M4 is V', which is enough to close
the memristor(R,;s=0). Now consider the scenario where one
memristor M1 is closed and M2 and M3 are still open. The
intermediate node settles close to ¥,®¢F°°™) and the voltage
drop across M4 is not enough to close the memristor. Thus,
the output of the computation is that M4 remains open or
Ry~1. 1t is trivial to extrapolate this result to all cases in
which at least one of the memristors M1-M3 is closed. So, the
result is Ry,~=1 for all cases except when Ry;,= Ry= Ryis=1.
Hence, the logical computation can be treated as:
M4 = (MI1.M2.M3)’

which is nothing but a NAND gate. This configuration is
referred to as a “wired-AND” as the various inputs can be
wired together to produce the result.

IV. MEMRISTOR CROSSBAR BASED LOGIC DESIGN

In the previous section, we have looked at the underlying
principles of logic design using memristors. In this Section,
we will describe the characteristics of Memristor based
crossbar arrays, and how they can be used for logical
computation.

A. Memristor Crossbar Array

An example of a memristor based crossbar array is shown in
Figure 8. It is similar to a regular crossbar array but the wire
junctions contain memristors instead of the usual diodes or
transistors. As shown in the legend of Figure 8, any wire
junction can have a memristor that is open, closed or in an
unknown state and some junctions do not have a memristor
altogether®® ™2 Each wire in the crossbar contains
drivers that can possibly be connected to various voltages as
needed for computation. The crossbar shown is a small tile
that can be replicated to create larger tiles for more complex

operations.

Footnotel: To be strict, when only one memristor is closed, a potential
divider exists between the closed memristor and the resistance Rs. Hence, the
voltage at the intermediate node is close to Vr/2. But in this case too, the drop
across M4 is not enough to close the switch and M4 remains open.

Footnote2: From a manufacturability perspective, it might be expensive to
fabricate memristors on certain junctions only. So, it is conceivable that all
wire junctions are manufactured with memristors but the memristors in
certain junctions are destroyed(made permanently open) by applying a
drastically high voltage at the terminals.

No Memristor
atjunctien

NMemristor
closed

Memristor
open

Memristor
unknown

Wjes, 88

Figure 8: An example crossbar with Memristors at wire junctions. The
legend is shown on the right. Each wire junction can contain no memristor, or
one memristor which is closed, open or in an unknown state.

B. Implementing a NAND using a crossbar

A 3-input NAND gate implementation using a Memristor
crossbar array is shown in Figure 9(A).
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Figure 9: Memristor crossbar based implementation of a 3-input NAND
gate. (A) The crossbar needs a 4x3 tile as shown. (B) The equivalent circuit of
the NAND gate with the case where all inputs A=B=C=1. The memristors are
connected in the inverting configuration and a conditional close operation is
performed on memristor M8.

It contains 8 memristors connected as shown in the Figure.
The circuit shown can function as a NAND gate by applying
the following sequence.
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1) Unconditional Open
Open all junctions by applying a large negative voltage at all
control terminals.

2) Latch inputs

In this stage, the input data from the three input terminals
A,B,C is stored in the memristors M1-M3. To accomplish
this, we need to apply a voltage Vy at the input terminal IN.
Considering that the inputs A,B,C are outputs of other
memristors (which are also impedance encoded), the logic
state of signals A,B,C is latched in to M1-M3 respectively.
This is similar to the conditional close in the non-inverting
configuration as described in Section III.

3) Copy inputs & Close-AND

In this stage, we try to copy the state of M1-M3 to M4-M6
respectively. This can be achieved by connecting the M1-M3
in non-inverting configuration with M4-M6 as described
earlier. A voltage of Vy is applied at the AND terminal and
V=0 applied at IN. The other objective of this stage is to close
the memristor M7. This can be achieved by applying V=0 at
K and Vy at AND. This closed memristor will be used in the
next stage as the Rs in inverting configuration.

4) Evaluate and Capture

In this stage, a voltage V, is applied at /N and Vy is applied at
the OUT terminal. The equivalent circuit for this stage is
shown in Figure 9(B). Notice the similarity between this
configuration and the wired-AND configuration of Figure 7.
It can easily be identified that the memristors M1 and M4 can
be simplified to a single resistance, as both of them contain
the same state. The combined resistance of M1 and M4 (call it
M1) can be thought similar to the memristor RM1 in Figure
7. Similarly the pairs M2-M5 and M3-MS5 in Figure 9B are
analogous to M2 and M3 in Figure 7. Now the memristor M7
in Figure 9B acts as the R, in Figure 7. The result in both cases
is the “inverted wired-AND” value of the logic stored in the
memristors. As noted before, the output (which is stored in
M8 in this case) can be expressed as: M8 = (M1.M2.M3)’
Thus, the NAND function of the inputs is captured in the
memristor M8.

5) Open AND
In order to be able to read the output of the memristor M8, we
need to disable the memristor M7. This can be achieved by
applying a large negative voltage on AND and opening
memristors M4-M7.

6) Read Output
The output of the memristor M8 can be read out by applying a
voltage V=0 at OUT and using the output terminal as an input
to a subsequent crossbar logic gate.

V. CONCLUSION REMARKS AND COMPARISONS

Although so far we stayed close to HP logic
implementations as explained in many of their public

presentations and in their US patent [12], it is actually
possible to use other perspectives.

A. Implementing an output that is a “Sum of Products”

For, example, we can organize the crossbar plane into
AND-blocks and OR-blocks (see for example Fig. 1 of [16])
and , use the same tools available for PLA/PLD design.

B. Use of Implication logic

It would be more challenging however, to take advantage
of the attribute of HP memristor to implement logic in
material implication, since it is more likely that this approach
will help in reducing the circuit size even further (fewer
switches needed when compared to a crossbar using
transistors.)

C. Advantage of the Technology

There are many: drastic reduction of size, higher speed of
operation and lower power dissipation. In addition, the
architecture is defect tolerant. More importantly, the design,
verification and test tools do not demand a drastic change
from current practices when compared to the change
encountered by the manufacturing.
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