
Computer Architecture, Lecture 3:
The processor’s structure

Hossam A. H. Fahmy

Cairo University

Electronics and Communications Engineering

1 / 14



Structure versus organization

Architecture: the structure and organization of a computer’s
hardware or system software.

Within the processor: Registers, Operational Units (Integer,
Floating Point, special purpose, . . . )

Outside the processor: Memory, I/O, . . .

Instruction Set Architecture (ISA): What is the best for the
target application? Why?
Examples: Sun SPARC, MIPS, Intel x86 (IA32), IBM S/390.
Defines: data (types, storage, and addressing modes),
instruction (operation code) set, and instruction formats.

2 / 14



ISA

The instruction set is the “language” that allows the hardware
and the software to speak.

It defines the exact functionality of the various operations.

It defines the manner to perform these operations by
specifying the encoding formats.

It does not deal with

the speed of performing these operations,

the power consumed when these operations are invoked,
and

the specific details of the circuit implementations.

3 / 14



There are many languages

Arabic and Hebrew are semitic languages. English and Urdu
are Indo-European languages. The ISAs have their “families” as
well.

Stack architectures push operands onto a stack and issue
operations with no explicit operands. The result is
put on top of the same stack.

Accumulator architectures use one explicit operand with the
accumulator as the second operand. The result is
put in the accumulator.

Register-memory architectures have several registers. The
operands and the result may be in the registers or
the memory.

Register-register architectures have several registers as well.
The operands and result are restricted to be in the
registers only. Why?

4 / 14



Metrics

Code size: Number of instructions in a program and their
sizes. It is better to use complex instructions with
implicit arguments. Order from best to worst:
memory, accumulator, stack, register.

Memory traffic for data: Number of data bytes moved. It is
better to have as many operands as possible in the
registers. Order: register, stack, accumulator,
memory.

CPI: Number of clock cycles to perform the operation.
It is better to use simple instructions with little
variability. Order: register, stack, accumulator,
memory.

Most new architectures are from the load-store type.

5 / 14



CISC versus RISC

Do you remember? The time a program takes is

CPU time = Dynamic instruction count

× average CPI

× Clock cycle time.

Complex Instruction Set Computers (CISC) improve the
number of instructions.
Reduced Instruction Set Computers (RISC) improve the other
two.

6 / 14



What about compatibility?

The longest surviving architectures are the IBM 360/370 and
the Intel x86.

Both are CISC, so why do they survive?

How are they implemented efficiently to compete with
RISC?

7 / 14



Addressing the memory

The (virtual) address space is a critical ISA design decision.

It affects the encoding formats.

The usage frequency of the integer data types
corresponding to the address size is usually the highest.

If it is too small, it can limit the lifetime of the ISA.

8 / 14



Memory modes

In addition to using registers and getting the operands as
immediate constants in the instruction, programs have many
ways to specify memory addresses.

Direct: mem[1204];

Register indirect: mem[R4];

Displacement: mem[R1+constant];

Indexed: mem[R1+R2];

Memory indirect: mem[mem[R3]];

Autoincrement/decrement: mem[R3]; R3=R3±constant;

Scaled: mem[constant1+R2+(R3*constant)];

Relative to PC: mem[PC+constant];

The most widely used are immediate and displacement.

9 / 14



Endian-ness and alignment

How do we represent the number A6F0B345?

↓ MSB
Big Endian . . . A 6 F 0 B 3 4 5 . . .

↕ address 0
Little Endian . . . 4 5 B 3 F 0 A 6 . . .

↑ MSB

Is the hardware capable of accessing any byte or half-word from
the memory?

Aligned half word
Non-aligned half word

In any case, it should support operations on 8-, 16-, 32-, and
64-bit operands.

10 / 14



Types of instructions

The most widely used (available on all processors) are

arithmetic and logical,

data transfer, and

control instructions.

The following are available on some processors

system,

floating point,

decimal,

string, and

graphics instructions.

11 / 14



A look on control instructions

Those instructions include

conditional branches,

unconditional jumps,

function calls, and

function returns.

They benefit greatly from a PC-relative addressing mode but
some cases require register indirect. Why?

1 How big is the distance from the program counter?

2 How do we resolve the conditions?

12 / 14



Instruction formats

Fixed length

+ Simple memory transfers.
+ Simple decoding.
+ Simple pipelines.
− Larger code size.

Variable length.

+ Compact code.
− Hard (but possible) to make the hardware faster.

Hybrid: two lengths only.

+ A compromise for embedded systems.

13 / 14



Compiler interaction

For the current compilers technology

provide a regular and orthogonal instruction set,

If done one way somewhere, should be done the same way
elsewhere.
All the different addressing modes should be independent
from the instructions and you should be able to use any
mode with any instruction.

provide primitives not solutions, and

simplify trade-offs among alternatives.

CPUs, GPUs, and DNNs support backwards compatibility and
leverage prior compiler optimizations.

14 / 14


