
Page 8Lecture 5

Windows Threads

Lecture 7 Page 1ELC 467– Spring 2020

SetThreadPriority(ht1,THREAD_PRIORITY_IDLE);

SetThreadPriority(ht2,THREAD_PRIORITY_TIME_CRITICAL);

We repeat the last example of two counting threads. Now we give the
two threads different priority levels using the functions:

Will this have an effect on the speed at which the threads count?

Slide 1

We give one of the threads the highest priority level in its class, and give the other the
lowest level. This is done using the API function SetThreadPriority applied to the handle of
each thread. We expect that the second thread will be given more CPU time than the first
thread, causing it to have a faster counting rate. Run the video on the next slide to see if this
happens.

Windows Threads

Page 8Lecture 5 Lecture 7- Page 2ELC 467– Spring 2020

Slide 2

As seen here, changing the priority levels of treads has no effect on the counting speed. Try
to find why this happened before going to the next slide. Hint: on older hardware the change
in counting speed is observable.

Windows Threads

Page 8Lecture 5 Lecture 7 Page 3ELC 467– Spring 2020

The higher priority thread did not cause a delay in the low priority thread.
Possible causes are:

o Current architectures have multiple cores. The two threads may
ran on different cores, thus not delaying each other.

o The threads in our example are very short, not consuming long CPU
times. Thus, on fast processor the delay they cause on each other
is not noticeable.

Windows Threads

Page 8Lecture 5 Lecture 7 Page 4ELC 467– Spring 2020

To test if this is true, we force the two threads to run on the same core
using the API functions:

SetThreadAffinityMask(ht1,1);

SetThreadAffinityMask(ht2,1);

We also increase the thread CPU times by adding a delay loop in each
thread:

for(j=0;j<25000;j++){};

The resulting code is in file Example5.cpp.

Slide 4

The function SetThreadAffinityMask forces the system to run a thread on a particular core.
Here we cause the two threads to interfere with each other by running them on the same
core. Note that we use this function here for testing only, but normally users will let the
operating system select the core on which threads run to have the best possible
performance.

Windows Threads

Page 8Lecture 5 Lecture 7 Page 5ELC 467– Spring 2020

Slide 6

As we can see, the modifications made resulted in observed difference in the speed at which
the two threads count. Try to experiment with the effect of each modification alone.

