
In Windows, semaphores are declared using the API function
CreateSemaphore().

HANDLE CreateSemaphore (SecurityAttributes,

InitialCount, MaxCount, SemaphoreID);

Windows provides other synchronization objects such as mutexes
and critical sections.

.
down and up operations are performed using the API functions

WaitForSingleObject() and ReleaseSemaphore ().

Page 8Lecture 5

Windows Semaphores

Lecture 6 Page 7ELC 467– Spring 2020

Slide 1

The CreateSemaphore function returns a handle to the semaphore. Security attributes are
used if semaphore will be accessed by other processes. Initial count is the initial value given
to the semaphore. A feature that was not present in theoretical definition of semaphores is
that a maximum value can be specified. Last argument is a pointer to a variable that holds
the semaphore ID. Note that semaphore is declared in a way completely different from
normal integer variables.

Slide 2

WaitForSingleObject can be used for waiting for different types of objects, for example
another thread. When applied on a semaphore handle, it performs the down operation on
this semaphore. ReleaseSemaphore performs the up operation, with additional options that
can be found in the function documentation.

Slide 3

Mutexes are binary semaphores used for mutual exclusion.

DWORD WINAPI Fn1(LPVOID param)

{ int i;

while(1){ gotoxy(10,10); i=i+1;

printf("Thread 1 %d",i);

}

}

DWORD WINAPI Fn2(LPVOID param)

{ int i;

while(1){ gotoxy(10,20); i=i+1;

printf("Thread 2 %d",i);

}

}

Page 8Lecture 5

Example 3

Lecture 6 Page 8ELC 467– Spring 2020

Slide 4

In this example, we run two threads executing the above two functions. Each function
displays the value of an integer which is continuously incremented. gotoxy is a function that
moves the cursor to a particular position and line. Each thread writes its continuously
increasing count in a different position.

Example 3

Slide 5

Click on the video to see the program running. The output was not as expected. Instead of
writing the count value in the same location each time, threads writes the count sometimes
in wrong location, or after the output of the other thread. Try to explain this before going to
the next slide.

Slide 6

This occurs since thread may be preempted between the gotoxy and the printf functions.
When returning, the cursor position, which is a shared variable, was modified by the other
thread, causing the output to appear at an unexpected location. We thus expect this to be
corrected if we consider the part from gotoxy statement to printf as a critical section.

main()

{

DWORD ThreadID1,ThreadID2;

char Sem; char c;

hsem = CreateSemaphore(NULL,1,1,&Sem);

HANDLE ht1 = CreateThread(NULL,0,Fn1,NULL,0,&ThreadID1);

HANDLE ht2 = CreateThread(NULL,0,Fn2,NULL,0,&ThreadID2);

while(c != 'e') {c = getche();}

}

Page 8Lecture 5

Windows Semaphores

Lecture 6 Page 9ELC 467– Spring 2020

Slide 7

We declare a semaphore with handle hsem. We put the previous critical section between
WaitforsingleObject and ReleaseSemaphore operations on hsem, as seen on next slide.

Example 4

Slide 8

As expected, the ouput now appears always in the correct location. Next lecture, we will see
the effect of priorities and multiple cores on thread operation. Try to compile, run, and
experiment with the examples of this lecture. Programs should run with minor
modifications on any C compiler under Windows.

