&
&
)

In Windows, new threads are created using the CreateThread
API function:

HANDLE CreateThread (

LPSECURITY_ATTRIBUTES [pAttr, , //Security Attributes
DWORD StackSize //Stack size
LPTHREAD_START _ROUTINE IpFunc, , //Function name
LPVOID /pParam , //Argument

DWORD Flags , //Creation Flags
LPDWORD IpThreadID); //Pointer to thread ID

Slide 1

As an example of using the concepts studied so far, we consider the Windows operating
system as a case study. We start by studying how to create a new thread in a Windows
process. A new thread is created using the C function CreateThread, which has a meaningful
name as all Windows functions. API stands for Applications Programming Interface, and API
functions are the system functions that can be used by programs.

Slide 2

Function returns a handle, which is a pointer to the new created thread. System is treated
as a collection of objects (processes, threads, windows, files .etc.), each pointed to by a
handle. We refer to the thread later by this handle, e.g. to suspend thread, wait for the
thread,... etc.

Slide 3

Function takes six arguments as follows. Security attributes defines how thread can be
accessed by other processes. We will not make use of this in our examples, so we put the
first argument to NULL. Second parameter is a double word specifying the size of stack
reserved for the thread. We put it in our examples to zero, which gives it a default value.

Slide 4

Third argument specifies a function that will run in the new thread. If this function has any
arguments, these are passed in the fourth argument of CreateThread.

Slide 5

A number of Creation flags can be put to control how the thread is created. For example,
will it run immediately or will be suspended when created and started later. Possible flags
can be found in the help pages of any compiler or online. Last argument passes a pointer to
a variable that holds the unique id given to thread by the system.

J
(4
AL

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>

DWORD WINAPI Fn (LPVOID param)
{

while (1) {printf ("The thread is running.\n\n");}
}

int main ()

{
DWORD ThreadID;
char c;

HANDLE ht = CreateThread (NULL, 0, Fn,NULL, 0, &ThreadID) ;

while(c != 'e') {c=getche();}

}

Slide 6

In this simple example, we create a thread that runs a function that just repeatedly displays
“The thread is running”. Read the program carefully. Note that we must include windows.h
header file to use API functions. Some compilers require the function run in a thread to be
declared in a particular form with the word WINAPI. Main program and hence the created
thread ends when e is pressed.

Example 1 E'/]

6’00“%

Fie G Sewch View Promct Gmcute Took ASole Window

3
DGmud& & ~~ BEES 4480 BOB |« | dih|wocasz

L U vl

Preject | Clases | Dabug

=@ Projeat
Eaempie .30

83 Compier | @ fescurces | dlh CompieLog | o7 Do | (G Findpesuts

Slide 7

The program is run here as a console application on dev-c++ compiler. Click on the video to
see the program running.

Example 2

Projectz - [Project2 dev] - Dev-Ca s 511 - omm
Fie Gt Sewn View Priet e Tooh Ainde Windew b

OgEeE® 8|~ QB HE| €8 ® [BOBE | % ds||[mee 002 coms tmin
EE L= B

83 Compir | By oures |l Compi og | o Do | L. Pt e
“a

— e Ve % et — [- ——

Slide 8

This example is similar but the thread is created suspended. It is started when ‘s’ is pressed,
using the function ResumeThread. Note that we refer to the thread by its handle, returned
when created. The thread id is also displayed. Click on the video to see the program running.

Windows Threads

Thread has a base priority level determined by the priority class of its
process as well as its relative priority.

ELC 467— Spring 2020 Lecture 6 Page 5

Slide 9

Each Windows thread has a priority level, which is an integer between 0 and 31. 31 is the
highest priority level. Thread starts with a base priority level that may be changed later. The
priority thread is determined relative to the priority class of its process.

Windows Threads

Thread has a base priority level determined by the priority class of its
process as well as its relative priority.

Windows has six priority classes to which a process can belong: IDLE.
BELOW NORMAL, NORMAL, ABOVE NORMAL, HIGH, and REALTIME.
Priorities in all classes except REALTIME are variable.

The values for relative priorities of thread within class include: IDLE,
LOWEST, BELOW NORMAL, NORMAL, ABOVE NORMAL, HIGHEST,
TIME CRITICAL.

Threads are scheduled in a round-robin fashion at each priority level,
and only when there are no executable threads at a higher level will
scheduling of threads at a lower level take place.

ELC 457 Spring 2020 Lecture & Poge 5

Slides 10-11

Windows Threads

0 16 Idle
1 Idle Idle Idle Idle Idle 17
2 Lowest 18
3 BelowNormal 19
1 Normal Lowest 20
5 AboveNormal — BelowNormal 21
6 Highest Normal Lowest 22 Lowest
7 AboveNormal BelowNormal 23 BelowNormal
8 Highest Normal Lowest 24 Normal
9 AboveNormal BelowNormal 25 AboveNormal
10 Highest Normal 26 Highest
11 AboveNormal Lowest 27
12 Highest BelowNormal 28
13 Normal 29
14 AboveNormal 30
N - N - . . N . Highest N -
15 TimeCritical TimeCritical TimeCritical TimeCritical TimeCritical 31 TimeCritical

ELC 467- Spring 2020 Lecture 6 Page 6

Slide 12

This table shows the priority level of a thread as function of process priority class and thread
relative priority.

