
Looking-up Process

….
down(s);

r:=r+1;
if r=1 then down(m);

up(s);
Look_up_item;
down(s);

r:=r-1;
if r=0 then up(m);

up(s);
……

Writer Process

…..
down (m);
Write_item;
up (m);
……

Multiple Looking-Up Processes

Lecture 6 Page 1ELC 467– Spring 2020

Slide 1

In the racing problem considered before, errors occur when several processes try to access
the same data and some of the processes modify the data. If any number of processes read
the data only (or look it up as we call it here) they may run together without problems. In
the following, we assume that many processes look up data, and one process try to modify
it.

Slide 2

The process modifying data is called here the writer process. Since its critical section must
access data exclusively, it uses a mutual exclusion semaphore "m" initially equal to 1 as
before.

Slide 3

Each looking-up process uses the shown code. Here, “r” is a normal integer variable (not a
semaphore!). It is used to count how many processes are currently looking up data, and
initially equals 0. Since “r” will be accessed by many processes, it should be protected by
semaphore “s” to avoid racing on it. Again, “s” initially equals 1.

Slide 4

Before looking up data, process increments r, showing that one more process is going to
read data. IF r=1, this means that this is the first looking up process. Thus, it must perform
down on m as writer may be accessing data now. If r is not equal to 1, this means that there
are already processes looking up data. In this case, process access data directly without a
need for down operation.

Slide 5

When process finishes looking up data, it decrements r to indicate that number of reading
processes will be reduced by 1. If r=0, this means there are no more looking up processes.
Thus, process performs up(m) to allow writer to run. If r is not 0, this means that other
processes are still looking up data. In this case, process ends without performing an up
operation. In short, first reader performs down(m), and last reader performs an up(m).

Slide 6

There is, however, a shortcoming in this solution. If writer wants to access data it will wait
not only for currently looking up processes, but also for any number of new starting looking
up processes. We say that this solution gives precedence to looking up processes. This may
not be the logical solution. For example, if a process is going to reserve an airplane seat, we
do not want many processes to read that the seat is empty first.

Lecture 6 Page 2ELC 467– Spring 2020

Looking-up Process

….
down(readtry);
down(s);

r:=r+1;
if r=1 then down(m);

up(s);
Up(readtry);
Look_up_item;
down(s);

r:=r-1;
if r=0 then up(m);

up(s);
……

Writer Process

…..
down(readtry);
down (m);
Write_item;
up (m);
up(readtry);
……

Multiple Looking-Up Processes – Writer precedence

Slide 7

To give precedence to writer, we modify the solution as shown. Readtry is a semaphore
initially equal to 1. When writer tries to write, it decrements this semaphore to 0. This will
cause new looking up processes to be blocked. Writer will wait thus for currently reading
processes only. When writer finishes, new looking up processes will run.

