
Answers of Problem Set (2):

[Q1] To insert new record between records

R1 and R2 for example, two operations are

required:

(1) Modify pointer in R1 to point to new

record. (2) Let pointer in new record point

at R2.

If a thread performs one operation and is

pre-empted before doing the other, then

other thread tries to traverse the list:

i) If only operation 1 is done then list is broken and error will result ii) If only

operation 2 is done, the second thread will read the list without the new item.

[Q2] Two processes may access the shared variable protected by s1 simultaneously,

resulting in possible errors. Processes trying to access the shared variable protected by

s2 will not be able to operate and remain blocked.

[Q3] As explained in the lecture the solution will operate correctly. It is necessary

however to have the same pointer to writing location in buffer by all writing processes

to avoid overwriting data. Additional semaphore for mutual exclusion is thus

necessary even if a circular buffer is used.

[Q4] We can perform the addition by p threads running in parallel, each adding a

different set of (n/p) variables to obtain a partial sum. Main thread then waits until all

these threads end, then add the p partial sums to obtain the total sum. Execution time

will be reduced by nearly a factor of p.

Semaphores will be needed to ensure that main thread will wait until other threads

end. Solution similar to problem P4 below can be used.

[Q5] If a low priority process enters the critical section first and is then pre-empted by

a high priority process accessing the same data, the high priority process is blocked

waiting for the low-priority process. This undesirable condition is called “priority

inversion”.

High priority process will be blocked for much longer times if there are many

intermediate priority processes that can pre-empt the low priority process forcing the

high priority process to wait for them.

To avoid this condition, the priority of the process in the critical section is raised to the

priority of process waiting for it, thus intermediate priority processes cannot pre-empt

it. This technique, called “priority inheritance” is especially important in real-time

systems.

[P1] a) Since m starts at 3 and is not incremented by any process, then process 1 will

run for three iterations of the while loop and is then blocked. Thus “A” will be

displayed three times.

b) Semaphore n starts at zero but process 1 performs up(n) three times before

blocking. Each up(n) will allow either process 2 or 3 to avoid blocking by down(n)

and perform an iteration. If process 2 runs, it performs up(n) again allowing

additional iteration by process 2 or 3. Blocking of all process only occurs if process 3

runs three times, and hence “D” will be displayed three times.

c) One possibility is that processes 1 and 3 iterate three times each with process 2

blocked all the time. Thus the minimum number of displayed “B”s is zero.

d) The following events can occur

Process 1 operates, m=2, prints A, n = 1

Process 2 operates, m=2, prints BC, n = 1

Process 2 operates, m=2, prints B and pre-empted before printing C, n = 0

Process 1 operates, m=1, prints A, n = 1

Process 3 operates, m=1, prints D, n = 0

Process 2 operates again, m=1, prints C, n = 1

Process 1 operates, m=0, prints A, n = 2

Process 2 operates, prints BC, n = 2

Process 3 operates, prints D, n = 1

Process 3 operates, prints D, n = 0

Thus, sequence is possible.

[P2] This is another example of the use of semaphores for signalling. The server

process waits for a request of service by any number of client processes. The server

should remain blocked if no request is made. Thus, s must be initially 0. If a client

process needs to issue a request it signals the server by the up(s) operation to be

unblocked. If c client processes issue requests, the server will loop for c times

performing the service for each and then blocks again.

[P3] We use two semaphore m and n initially equal to 0

 Process 1 Process 2

 ….. …..

 up(m); up(n);

 down(n); down(m);

 f1; f2;

Exercise: Extend the above solution to the case of three processes and three functions.

[P4] We use a semaphore m initially equal to zero

Thread 1 Thread 2 …. Thread n Required Thread
…. …… ….. down(m);

up(m); up(m); up(m); down(m);

 …..

 down(m); // n times

 // continue

Note that there is no need to use more than one semaphore. Also, a solution forcing

the n threads to run in particular order will not be correct.

[P5] We use a semaphore m initially equal to zero

Thread 1 Thread 2

….. …..

for (i=0; i<100; i++) for (i=0; i<100; i++)

{A[i]= B[i]; {down(m);

 up(m);} C[i]= A[i];}

….. …..

Note that if down(m) and up(m) operations are out of the for loops, this will force

thread 2 to wait until thread 1 modifies the whole array before making any changes,

which results in unnecessary delay.

[P6]

WAV= (8+13+13)/3 = 11.33

