Multiprocessor Scheduling

Example (1): A dual processor system uses FCFS scheduling with
a common ready queue. Both processors become idle when

gueue contain processes with process times of 2.4, 6, 6.7, 7.5,
and 9.7.

Find the average waiting time for the above processes and
compare it with the case of single processor with double speed.

ELC 467- Spring 2020 Lecture 4- Page 1

Multiprocessor Scheduling

Example (2): A multitasking system runs four processes A, B, C,
and D, with arrival times of 0, 2, 3 and 5 ms; and processing
times of 3, 7, 4 and 8 ms respectively.

Calculate the average process waiting time assuming RR
scheduling on two identical processors with q=2, with
assignment of each new process to the least loaded processor.

ELC 467- Spring 2020 Lecture 4- Page 2

Process Interaction and communication

Concurrent processes may interact in various ways.

Example:
Process A Process B
X:3
X: 1 LA
Y: 8
Writes x=1 and y=8
Process A | |
Reads x=3 \ Preemption Reads y=8
Process B | —l I—l Assumes x=3 and y=8

time

ELC 467- Spring 2020 Lecture 4- Page 3

Process Interaction and communication

Race condition: Multiple processes access and manipulate shared
data with the outcome dependent on the relative timing of the

processes.

Critical section: Part of process in which a shared data item is
accessed.

Mutual exclusion requirement: The critical section of a process
cannot be executed concurrently with the critical section of
another process accessing the same data item.

How to enforce this mutual exclusion?

ELC 467- Spring 2020 Lecture 4- Page 4

Mutual Exclusion

Using a shared binary flag to “lock” the data item

Pseudo-code for the critical section of each process is:

Shared int lock=0;

while (lock) {};

lock =1;
Access data item();
lock =0;

Unless this flag can be test and set in one uninterruptible
instruction, racing on flag itself can occur.

ELC 467- Spring 2020 Lecture 4- Page 5

Mutual Exclusion

Alternation method

Assume that n processes access the shared data. Use a shared
integer variable called turn.

Pseudo-code for the critical section of processii is:

while (turn !'=i) { };

Access data item();

If (turn != n) turn =turn +1;
else turn = 1;

O Number of processes should be known and fixed.
O A process may wait for processes in their non-critical sections.

ELC 467- Spring 2020 Lecture 4- Page 6

Mutual Exclusion

Peterson's algorithm

The algorithm is given here for the case of two processes. The

pseudo-code for process i (=1 or 2) is as follows:

while (flag[jl== true && t==1i)
Access data item();
flag[i]l= 0;

{1

Algorithm can be extended for the case of more than two processes.

ELC 467- Spring 2020

Lecture 4- Page 7

Mutual Exclusion

we observe the following:

o Solutions that allow the user to disable process switching
are unacceptable. This capability can only be given to the

system itself.

o Solutions based on "busy waiting" waste CPU time. It is
better to block the process that cannot enter a critical section.

o It is desirable to have a solution which is independent of the

number of processes.

ELC 467- Spring 2020

Lecture 4- Page 8

Semaphores

A semaphore is a shared integer variable on which the following
two system functions are defined

Down (s)

If s >

1 then s:= s-1

else block the calling process

Up(s)

If there are processes blocked by down (s)
then unblock one of them

else s:= s+1;

down() and up() are executed without interruption.

ELC 467~ Spring 2020

Lecture 4- Page 9

Semaphores

We can enforce mutual exclusion using semaphores as follows:

(m initially=1)
Process 1

down (m) ;
critical section;

up (m) ;

ELC 467~ Spring 2020

Process 2

down (m) ;
critical section;

up (m) ;

......

Process 3

down (m) ;
critical section;

up (m) ;

......

Lecture 4- Page 10

