
1

Example (1): A dual processor system uses FCFS scheduling with
a common ready queue. Both processors become idle when
queue contain processes with process times of 2.4, 6 , 6.7, 7.5,
and 9.7.

Find the average waiting time for the above processes and
compare it with the case of single processor with double speed.

Multiprocessor Scheduling

Lecture 4- Page 1ELC 467– Spring 2020

Example (2): A multitasking system runs four processes A, B, C,
and D, with arrival times of 0, 2, 3 and 5 ms; and processing
times of 3, 7, 4 and 8 ms respectively.

Calculate the average process waiting time assuming RR
scheduling on two identical processors with q=2, with
assignment of each new process to the least loaded processor.

Multiprocessor Scheduling

Lecture 4- Page 2ELC 467– Spring 2020

2

Concurrent processes may interact in various ways.

X: 3
Y: 5X: 1

Y: 8

Process A Process B

Process A

Process B
Reads x=3

Writes x=1 and y=8

Preemption
Assumes x=3 and y=8

Reads y=8

Example:

time

Process Interaction and communication

Lecture 4- Page 3ELC 467– Spring 2020

Race condition: Multiple processes access and manipulate shared
data with the outcome dependent on the relative timing of the
processes.

Critical section: Part of process in which a shared data item is
accessed.

Mutual exclusion requirement: The critical section of a process
cannot be executed concurrently with the critical section of
another process accessing the same data item.

How to enforce this mutual exclusion?

Process Interaction and communication

Lecture 4- Page 4ELC 467– Spring 2020

3

Using a shared binary flag to “lock” the data item

Pseudo-code for the critical section of each process is:

Unless this flag can be test and set in one uninterruptible
instruction, racing on flag itself can occur.

Shared int lock=0;

………

while (lock){};

lock =1;

Access_data_item();

lock =0;

Mutual Exclusion

Lecture 4- Page 5ELC 467– Spring 2020

Alternation method

Assume that n processes access the shared data. Use a shared
integer variable called turn.

Pseudo-code for the critical section of process i is:

 A process may wait for processes in their non-critical sections.

 Number of processes should be known and fixed.

while (turn !=i) { };

Access_data_item();

If (turn != n) turn =turn +1;

else turn = 1;

Mutual Exclusion

Lecture 4- Page 6ELC 467– Spring 2020

4

Peterson's algorithm

The algorithm is given here for the case of two processes. The
pseudo-code for process i (=1 or 2) is as follows:

Algorithm can be extended for the case of more than two processes.

.....

//non-critical section

.....

flag[i]= 1;

t= i;

while (flag[j]== true && t==i) { };

Access_data_item();

flag[i]= 0;

.....

Mutual Exclusion

Lecture 4- Page 7ELC 467– Spring 2020

we observe the following:

o Solutions that allow the user to disable process switching
are unacceptable. This capability can only be given to the
system itself.

o Solutions based on "busy waiting" waste CPU time. It is
better to block the process that cannot enter a critical section.

o It is desirable to have a solution which is independent of the
number of processes.

Mutual Exclusion

Lecture 4- Page 8ELC 467– Spring 2020

5

A semaphore is a shared integer variable on which the following
two system functions are defined

Down(s)
If s  1 then s:= s-1

else block the calling process

Up(s)
If there are processes blocked by down(s)

then unblock one of them

else s:= s+1;

down() and up() are executed without interruption.

Semaphores

Lecture 4- Page 9ELC 467– Spring 2020

We can enforce mutual exclusion using semaphores as follows:
(m initially=1)

Process 1 Process 3Process 2

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

……
<non-critical>

down(m);

critical section;

up(m);

<non-critical>

……

Semaphores

Lecture 4- Page 10ELC 467– Spring 2020

