Sheet 3

BJT as a switch

Problem (1):

For the circuit shown, select a value for R_{B} so that the transistor saturates with an overdrive factor of 10 . The BJT is specified to have minimum (β) of 30 and $\mathrm{V}_{\text {CEsat }}=0.2 \mathrm{v}$. What is the value of forced (β) achieved?

Problem (2):
For the circuit below, select a value for R_{E} so that the transistor saturates with a forced β of 5 .

Problem (3):

For the circuit shown, find V_{B}, V_{E} and V_{C} for $R_{B}=100 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$. Let $(\beta)=100$.

Problem (4):

For the circuit shown, find V_{B} and V_{E} for $V_{i}=0,+3 v,-5 v$ and $-10 v$. Assume that the BJTs have $(\beta)=100$.

Problem (5):

Using the three-terminal-short circuit model for a saturated transistor, find the approximate collector voltages in the circuits below. Also, calculate the forced (β) for each of the transistors.

(a)

(b)

