Sheet 2

BJT as an amplifier

Problem (1):

Using the T equivalent model of the BJT, sketch the equivalent circuit of a transistor amplifier which a resistance $\left(\mathrm{R}_{\mathrm{E}}\right)$ is connected between the emitter \& the ground, the collector is grounded \& an input signal source $\left(\mathrm{v}_{\mathrm{b}}\right)$ is connected between the base \& the ground (It's assumed that the transistor is properly biased to operate in active mode). Show that:
a. The voltage gain between the base \& the emitter is given by:

$$
\frac{v_{e}}{v_{b}}=\frac{R_{E}}{R_{E}+r_{e}}
$$

b. The input resistance $\left(\mathrm{R}_{\mathrm{in}}\right)$:

$$
R_{i n}=\frac{v_{b}}{i_{b}}=(\beta+1)\left(R_{E}+r_{e}\right)
$$

Problem (2):

The transistor in the figure below is biased to operate in the active mode. Assuming that β is very large, find the collector bias current $\left(\mathrm{I}_{\mathrm{C}}\right)$. Replace the transistor with the small-signal equivalent model (T-model with CCCS) and analyze the resulting amplifier equivalent circuit to show that:

$$
\frac{v_{o 1}}{v_{o 2}}=-\frac{R_{c}}{R_{e}}
$$

Problem (3):

For the common emitter shown below: $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{v}, \mathrm{R}_{1}=27 \mathrm{k} \Omega, \mathrm{R}_{2}=15 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{E}}=1.2 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{C}}=2.2 \mathrm{k} \Omega$. The transistor $\beta=100$ and $\mathrm{V}_{\mathrm{A}}=100 \mathrm{v}$. Calculate the dc bias current I_{E}. If the amplifier is operating between a source resistance $\mathrm{R}_{\mathrm{s}}=10 \mathrm{k} \Omega$ and a load resistance $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, replace the transistor with its hybrid π-mode and find the value of $R_{i n}$, the voltage gain $\left(\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\text {sig }}\right)$ and the current gain $\left(\mathrm{i}_{\mathrm{o}} / i_{\mathrm{i}}\right)$.

Problem (4):

In the circuit shown below, $\left(\mathrm{v}_{\text {sig }}\right)$ is a small signal sine wave with a zero average. The transistor β is 100 .
a. Find the value of R_{E} to establish a dc emitter current of about 1 mA .
b. Find the value of R_{C} to establish a dc collector voltage of +5 v .
c. For $R_{L}=5 \mathrm{k} \Omega$ and the transistor $\mathrm{r}_{\mathrm{o}}=100 \mathrm{k} \Omega$, draw the small-signal equivalent circuit of the amplifier and determine its overall voltage gain, $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$.

Problem (5):

The amplifier below consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $\mathrm{R}_{\mathrm{in} 2}$, acts as the load resistance of the second stage.
a. For $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{v}, \mathrm{R}_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{2}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=6.8 \mathrm{k} \Omega$ and $\beta=100$, determine the dc collector current and collector voltage of each transistor.
b. Draw the small-signal equivalent circuit of the entire amplifier and give the values of its entire component. Neglect $\mathrm{r}_{\mathrm{o} 1} \& \mathrm{r}_{\mathrm{o} 2}$.
c. Find $\mathrm{R}_{\mathrm{in} 1}$ and $\frac{v_{b 1}}{v_{\text {sig }}}$ for $\mathrm{R}_{\mathrm{s}}=5 \mathrm{k} \Omega$.
d. Find $\mathrm{R}_{\mathrm{in} 2}$ and $\frac{v_{b 2}}{v_{b 1}}$.
e. For $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, find $\frac{v_{0}}{v_{b 1}}$.
f. Find the overall voltage gain $\frac{v_{o}}{v_{s i g}}$.

Problem (6):

Consider the common base amplifier in the figure below with a $10 \mathrm{k} \Omega$ load resistance connected to the collector via a large capacitance. Let $\mathrm{R}_{\mathrm{C}}=10 \mathrm{k} \Omega$, $V_{C C}=10 \mathrm{v}$ and $\mathrm{R}_{\mathrm{s}}=50 \Omega$.
a. To what value must (I) be set in order that the input resistance at Emitter is equal to that of the source (namely 50Ω)? What is the resulting voltage gain from the source to the load?
(Assume $\alpha=1$).
b. Find the voltage gain $\left(\mathrm{A}_{\mathrm{v}}\right)$ for $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.

Problem (7):

For the circuit shown, called a boot-strapped follower:
a. Find the dc emitter current, $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\mathrm{o}}$ and r_{π}. Use $\beta=100$.
b. Replace the BJT with its hybrid π-model (neglecting r_{o}) and analyze the circuit to determine the input resistance $\left(\mathrm{R}_{\text {in }}\right)$ and the voltage gain $\left(\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{sig}}\right)$.
c. Repeat (b) for the capacitor at the emitter is open circuit. Compare the results with those obtained in (b) to find the advantages of bootstrapping.

