
1

In Round-Robin (RR) scheduling, each ready process is run for a
specific time slice (or quantum), then execution switches to the
next ready process in a ready list (or queue), even if the first
process has not ended.

The quantum (q), determined by a clock interrupt is a critical
parameter in the algorithm. It should be neither too small nor too
large (typical compromise value is 10 to 100 ms).

If there are n ready processes, each process is assigned 1/n of the
CPU time.

Round-Robin (Time Slicing) Scheduling

Lecture 3- Page 1ELC 467– Spring 2020

To solve the examples of previous lecture using RR scheduling, we
assume the following:

o Ready processes are placed in a linked list with last node
pointing to the first node. A moving pointer determines the
next process to run. New ready process is inserted at the end
of the list.

o At the end of a quantum, updating of list (removing or
inserting nodes) is done before deciding the next process to
run.

o q=1 and time of context switching is negligible.

Lecture 3- Page 2ELC 467– Spring 2020

Round-Robin (Time Slicing) Scheduling



2

Example 1 of previous 
lecture

𝑤𝑎𝑣 = 3.6 (𝑤/𝑝)𝑎𝑣 = 0.98

0

A

1

time

B

2

A B

3 4

C

5

A B C

6 7 8

B

9

D

10

B

11

D

12

E

13

D E D E D E

14 15 16 17 18

E

2019

Process 𝑎𝑖 𝑝𝑖 𝑡𝑖 𝑤𝑖

A 0 3 6 3

B 1 5 11 5

C 3 2 8 3

D 9 5 18 4

E 12 5 20 3

Lecture 3- Page 3ELC 467– Spring 2020

Round-Robin (Time Slicing) Scheduling

In any system, some processes must be given a higher priority. For
example:

 System (kernel) processes.

 Real-time processes.

 Processes holding many resources.

A priority level is associated with each process (thread). The
priority levels should be reflected in the scheduling decisions.

Priority Scheduling

Lecture 3- Page 4ELC 467– Spring 2020



3

Priority Scheduling

Lecture 3- Page 5ELC 467– Spring 2020

A potential problem will be the “starvation” (indefinite
postponement) of low priority processes. This can be avoided by
allowing variable or dynamic priorities. For example:

o As process waits more, its priority level increases.

o Alternatively, as process consumes more CPU time, its priority
level decreases.

Priority Scheduling

Priority scheduling can be either: 

o Non-preemptive: e.g. add a new high priority process at the head
of the ready queue.

o Preemptive: e.g. an arriving high priority process causes a
preemption of currently running low priority process.

Lecture 3- Page 6ELC 467– Spring 2020



4

 n priority levels with n corresponding ready queues.

 Processes with highest priority run first.

 If several processes have the same priority level, they are
scheduled using round-robin (or other suitable algorithm).

 Priorities are changed dynamically: process moves between
queues according to its recent CPU behavior (multilevel
feedback queue scheduling).

Multilevel Queue Scheduling

Lecture 3- Page 7ELC 467– Spring 2020

For a set of processes that arrive at the same time, SPN
minimizes the average waiting time.

Shortest Process Next (SPN) Scheduling

𝑃1 𝑃2 𝑃3 𝑃4

𝑤𝑎𝑣 =
3𝑃1 + 2𝑃2 + 𝑃3

4
Which order will minimize 𝑤𝑎𝑣?

Lecture 3- Page 8ELC 467– Spring 2020

Start with the process that has the shortest process time. Run it
until it is terminated or blocked (i.e. SPN is non-preemptive).



5

However, for normal interactive systems, process time cannot be
known a-priori.

Shortest Process Next (SPN) Scheduling

One possible approach is to approximate SPN by trying to estimate the
length of the next process CPU burst. For example:

𝜏𝑛+1 = 𝛼 𝑡𝑛 + 1 − 𝛼 𝜏𝑛

where 𝑡𝑛 is the measured length of the nth CPU burst.

𝜏𝑛 is the estimated length of the nth CPU burst.

𝛼 is a weighting factor, 0 ≤ 𝛼 ≤ 1

Lecture 3- Page 9ELC 467– Spring 2020

Shortest Remaining Time (SRT) Scheduling

A preemptive version of SPN is the Shortest Remaining Time (SRT)
Next scheduling algorithm.

An arriving short process may preempt a process with longer
remaining processing time.

This algorithm minimizes the average waiting time for any values
of arrival time (if context switching time is neglected).

At which instants will the system need to decide which process to
run next?

Lecture 3- Page 10ELC 467– Spring 2020



6

Example using SRT

0

A

2
time

B

5

A

9

D

14

C

22

Shortest Remaining Time (SRT) Scheduling

Process 𝑎𝑖 𝑝𝑖 𝑡𝑖 𝑤𝑖

A 0 6 9 3

B 2 3 5 0

C 5 8 22 9

D 7 5 14 2

𝑤𝑎𝑣 = 3.5

Lecture 3- Page 11ELC 467– Spring 2020

Currently, architectures in most applications include multiple
processors. In the following, we assume that processors are
identical, running at the same clock frequency, and have access
to shared main memory.

Multicore processor chips became widely used when it was not
possible to increase the speed of single processors without
consuming too much power. Having a multicore architecture
will not speed up the execution of a given program unless it is
divided into parallel threads.

Multiprocessor Scheduling

Lecture 3- Page 12ELC 467– Spring 2020



7

Multiprocessor Scheduling

Symmetric Multiprocessing (SMP) architecture

Source: [Silberscahtz 18]

Lecture 3- Page 13ELC 467– Spring 2020

Multiprocessor Scheduling

A dual core chip design

Source: [Silberscahtz 18]

Lecture 3- Page 14ELC 467– Spring 2020



8

CPU1

CPU2

CPU3

𝑡1𝑡2𝑡3𝑡4𝑡5

Single CPU scheduler can be
extended by having a single
scheduler that assigns
threads from a global ready
queue to CPUs.

Ready Queue

Advantages:

o Single CPU scheduling algorithms can be directly extended to the
case of multiple CPUs.

o We can ensure the best use of the processing capacity. E.g. No
CPU remains idle while there are some ready tasks.

Scheduler

Single Scheduler – Single Ready Queue

Lecture 3- Page 15ELC 467– Spring 2020

o A thread will repeatedly become blocked or preempted then will
run again. Migrating a thread from one CPU to another usually
causes the overhead of refilling the cache.

Disadvantages:

o As number of processors increase, load on single scheduler will be
higher.

Single Scheduler – Single Ready Queue

Lecture 3- Page 16ELC 467– Spring 2020



9

CPU1

CPU2

CPU3

𝑡1𝑡2𝑡3𝑡4𝑡5

Ready Queue

Scheduler

Scheduler

Scheduler

Having multiple schedulers will reduce the load of a single common
scheduler.

However, the single ready queue is a shared resource and conflicts of
its use will result in longer delays as number of schedulers increase.

Multiple Schedulers – Single Ready Queue

Lecture 3- Page 17ELC 467– Spring 2020

CPU1

CPU2

CPU3

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

Scheduler

Scheduler

Scheduler

In this partitioned scheduling approach, each new thread is assigned
to a particular CPU during its lifetime. No migration takes place.

System will have a particular assignment policy: e.g. assign a new
thread to the least loaded CPU (not always possible to determine
accurately).

Multiple Schedulers – Multiple Ready Queues

Lecture 3- Page 18ELC 467– Spring 2020



10

Advantages:

o Less overheads on schedulers and hence faster operation.

o Processor affinity (i.e. thread linked always on the same CPU) will
reduce time spent in cache refilling.

Disdvantages:

o Difficult to achieve load balancing: one CPU may be overloaded
while another one is idle. Optimal use of processing capacity
will not be achieved.

Multiple Schedulers – Multiple Ready Queues

Lecture 3- Page 19ELC 467– Spring 2020


