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The Process Concept

A process is usually defined as a “program in execution”.

A program is a static sequence of instructions stored in
memory. The process is the dynamic operation of executing a
program

The process is the fundamental unit of computation that the
system must manage. It is the unit to which resources are
assigned.
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Process Management

Process State Diagram
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UNIX process state diagram

Source:[Stallings 18]

Process State Diagram
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Parent process can spawn one 
or more child processes.

Parent either wait for the child 
or run concurrently with it.

A new process is generated
using a system call, e.g. fork in
UNIX or CreateProcess in
Windows.

Process Tree
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Example: Typical LINUX process tree

Source: [Silberscahtz 18]

Process Tree
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Information needed by the system to control a process is stored 
in an appropriate data structure.

Stored information include:

 Process id, parent id, owner id.

 Process context.

 Process state.

 Memory and I/O resources assigned to the process.

Process Control Block
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Process Control Block

PCB

Source: [Chauhan 14]
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So far, we assumed that a process has a single thread of
execution: i.e. a single sequence of executed instructions.

In many applications, however, several parts of the same
process can run in parallel. These parts share memory address
space and other resources.

In a multithreading system, a process may be composed of
several threads that run in parallel.

Memory space, I/O devices, ..etc. are assigned to a process.
However, CPU time is assigned to a single thread. Each thread
has independent state and context.

Threads
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Advantages of Multithreading

 Process can remain responsive if a part of it is blocked or
performs a long operation.

 Creating a new thread of an existing process requires less time
and resources than spawning a new process. Also context
switching between threads of the same process is faster than
switching to another process.

 In a mutliprocessor system, threads can be assigned to
different processors (or cores), thus speeding up the execution
of a given process.

Threads
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The problem of CPU scheduling is to decide which ready
process (thread) to run next on the CPU and for how long.

In multitasking (non real-time) systems, a scheduling algorithm 
is selected trying to:

o increase the processor throughput.

o decrease the process waiting time.

o preserve fairness among users or tasks.

No single algorithm can achieve all these requirements under
all conditions.

CPU Scheduling
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Whenever a running process is terminated or blocked, select
for running the oldest process in the ready queue, and run it
until it is terminated or blocked.

This algorithm is a non-preemptive scheduling algorithm: once
a process runs, it will not be interrupted by the OS until it is
terminated or blocked.

This algorithm is simple to implement, however:

 It can be unfair for short processes.

 It results in poor system reliability in case of errors.

First-Come First-Served (FCFS) Scheduling
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Let 𝑎𝑖 = the arrival time of process 𝑖

𝑡𝑖 = its termination time

𝑝𝑖 = its process time (execution time)

Then for each process (𝑡𝑖 – 𝑎𝑖)  𝑝𝑖

𝑤𝑖 = (𝑡𝑖 – 𝑎𝑖) – 𝑝𝑖

The process waiting time is given by:

We are interested in the average waiting time 𝑤𝑎𝑣 or the
average value of 𝑤𝑖 / 𝑝𝑖 .

CPU Scheduling
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Example 1: Example 2:

Find the average waiting time in the above two examples using
different scheduling algorithms.

Example 2 illustrates that FCFS may be unfair to short processes.

Process 𝑎𝑖 𝑝𝑖

A 0 3

B 1 5

C 3 2

D 9 5

E 12 5

Process 𝑎𝑖 𝑝𝑖

A 0 100

B 1 5

C 2 5

CPU Scheduling
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