
1

The Process Concept

A process is usually defined as a “program in execution”.

A program is a static sequence of instructions stored in
memory. The process is the dynamic operation of executing a
program

The process is the fundamental unit of computation that the
system must manage. It is the unit to which resources are
assigned.

Lecture 2- Page 1ELC 467– Spring 2020

Process Management

Process State Diagram

Lecture 2- Page 2ELC 467– Spring 2020

Ready

Blocked Running

start

terminate

preemption

2

UNIX process state diagram

Source:[Stallings 18]

Process State Diagram

Lecture 2- Page 3ELC 467– Spring 2020

Parent process can spawn one
or more child processes.

Parent either wait for the child
or run concurrently with it.

A new process is generated
using a system call, e.g. fork in
UNIX or CreateProcess in
Windows.

Process Tree

Lecture 2- Page 4ELC 467– Spring 2020

Process A

Process B

Process DProcess C

3

Example: Typical LINUX process tree

Source: [Silberscahtz 18]

Process Tree

Lecture 2- Page 5ELC 467– Spring 2020

Information needed by the system to control a process is stored
in an appropriate data structure.

Stored information include:

 Process id, parent id, owner id.

 Process context.

 Process state.

 Memory and I/O resources assigned to the process.

Process Control Block

Lecture 2- Page 6ELC 467– Spring 2020

4

Process Control Block

PCB

Source: [Chauhan 14]

Lecture 2- Page 7ELC 467– Spring 2020

So far, we assumed that a process has a single thread of
execution: i.e. a single sequence of executed instructions.

In many applications, however, several parts of the same
process can run in parallel. These parts share memory address
space and other resources.

In a multithreading system, a process may be composed of
several threads that run in parallel.

Memory space, I/O devices, ..etc. are assigned to a process.
However, CPU time is assigned to a single thread. Each thread
has independent state and context.

Threads

Lecture 2- Page 8ELC 467– Spring 2020

5

Advantages of Multithreading

 Process can remain responsive if a part of it is blocked or
performs a long operation.

 Creating a new thread of an existing process requires less time
and resources than spawning a new process. Also context
switching between threads of the same process is faster than
switching to another process.

 In a mutliprocessor system, threads can be assigned to
different processors (or cores), thus speeding up the execution
of a given process.

Threads

Lecture 2- Page 9ELC 467– Spring 2020

The problem of CPU scheduling is to decide which ready
process (thread) to run next on the CPU and for how long.

In multitasking (non real-time) systems, a scheduling algorithm
is selected trying to:

o increase the processor throughput.

o decrease the process waiting time.

o preserve fairness among users or tasks.

No single algorithm can achieve all these requirements under
all conditions.

CPU Scheduling

Lecture 2- Page 10ELC 467– Spring 2020

6

Whenever a running process is terminated or blocked, select
for running the oldest process in the ready queue, and run it
until it is terminated or blocked.

This algorithm is a non-preemptive scheduling algorithm: once
a process runs, it will not be interrupted by the OS until it is
terminated or blocked.

This algorithm is simple to implement, however:

 It can be unfair for short processes.

 It results in poor system reliability in case of errors.

First-Come First-Served (FCFS) Scheduling

Lecture 2- Page 11ELC 467– Spring 2020

Let 𝑎𝑖 = the arrival time of process 𝑖

𝑡𝑖 = its termination time

𝑝𝑖 = its process time (execution time)

Then for each process (𝑡𝑖 – 𝑎𝑖) 𝑝𝑖

𝑤𝑖 = (𝑡𝑖 – 𝑎𝑖) – 𝑝𝑖

The process waiting time is given by:

We are interested in the average waiting time 𝑤𝑎𝑣 or the
average value of 𝑤𝑖 / 𝑝𝑖 .

CPU Scheduling

Lecture 2- Page 12ELC 467– Spring 2020

7

Example 1: Example 2:

Find the average waiting time in the above two examples using
different scheduling algorithms.

Example 2 illustrates that FCFS may be unfair to short processes.

Process 𝑎𝑖 𝑝𝑖

A 0 3

B 1 5

C 3 2

D 9 5

E 12 5

Process 𝑎𝑖 𝑝𝑖

A 0 100

B 1 5

C 2 5

CPU Scheduling

Lecture 2- Page 13ELC 467– Spring 2020

