Process Management

The Process Concept

A process is usually defined as a “program in execution”.

A program is a static sequence of instructions stored in

memory. The process is the dynamic operation of executing a
program

The process is the fundamental unit of computation that the

system must manage. It is the unit to which resources are
assigned.

ELC 467- Spring 2020 Lecture 2- Page 1

Process State Diagram

start

preemption

Blocked Running

~N

terminate

ELC 467- Spring 2020 Lecture 2- Page 2

Process State Diagram

UNIX process state diagram

Preempted

return ~ S
to user . ~

preempt

User
Running

return

system call,
interrupt

reschedule

enough
memory,

fork

Created

swap out

not enough memory
(swapping system only)

Ready to Run'

swap in

P Ready to Run

In Memory € Syapped

Kernel
Running
— sleep wakeup wakeup
interrupt return exit
Zombie e — R
Source:[Stallings 18]
ELC 467— Spring 2020 Lecture 2- Page 3
Process Tree
A new process is generated
using a system call, e.g. fork in Process A
UNIX or CreateProcess in
Windows.
Parent process can spawn one Process B
or more child processes.
Parent either wait for the child
or run concurrently with it.
Process C Process D

ELC 467- Spring 2020

Lecture 2- Page 4

Process Tree

Example: Typical LINUX process tree

systemd

pid=1

python
pid = 2808

logind sshd
pid = 8415 pid = 3028

pid=3610

\
tcsh
pid = 4005

Source: [Silberscahtz 18]

bash
pid =8416

ELC 467— Spring 2020 Lecture 2- Page 5

Process Control Block

Information needed by the system to control a process is stored
in an appropriate data structure.

Stored information include:

Q Process id, parent id, owner id.

O Process context.
Q Process state.

0 Memory and I/O resources assigned to the process.

ELC 467- Spring 2020 Lecture 2- Page 6

Process Control Block

PCB PCB1
PC
Registers
PID Process table State
1 »| Priority
PC and CPU registers 2
3
Process state .
Process priorit n PCB2
— PC
.] »| Registers
Event information State
Priority

Memory-related
information

Resource-related

information PCBn
PC
Scheduling-related »| Registers
information State
Priority

Various pointers

Source: [Chauhan 14]

ELC 467— Spring 2020 Lecture 2- Page 7

Threads

So far, we assumed that a process has a single thread of
execution: i.e. a single sequence of executed instructions.

In many applications, however, several parts of the same
process can run in parallel. These parts share memory address
space and other resources.

In a multithreading system, a process may be composed of
several threads that run in parallel.

Memory space, I/O devices, ..etc. are assigned to a process.
However, CPU time is assigned to a single thread. Each thread
has independent state and context.

ELC 467- Spring 2020 Lecture 2- Page 8

Threads

Advantages of Multithreading

0 Process can remain responsive if a part of it is blocked or
performs a long operation.

0 Creating a new thread of an existing process requires less time
and resources than spawning a new process. Also context
switching between threads of the same process is faster than
switching to another process.

0In a mutliprocessor system, threads can be assigned to
different processors (or cores), thus speeding up the execution
of a given process.

ELC 467— Spring 2020 Lecture 2- Page 9

CPU Scheduling

The problem of CPU scheduling is to decide which ready
process (thread) to run next on the CPU and for how long.

In multitasking (non real-time) systems, a scheduling algorithm
is selected trying to:

o increase the processor throughput.
o decrease the process waiting time.

o preserve fairness among users or tasks.

No single algorithm can achieve all these requirements under
all conditions.

ELC 467- Spring 2020 Lecture 2- Page 10

First-Come First-Served (FCFS) Scheduling

Whenever a running process is terminated or blocked, select
for running the oldest process in the ready queue, and run it
until it is terminated or blocked.

This algorithm is a non-preemptive scheduling algorithm: once
a process runs, it will not be interrupted by the OS until it is
terminated or blocked.

This algorithm is simple to implement, however:
» It can be unfair for short processes.
» It results in poor system reliability in case of errors.

ELC 467— Spring 2020 Lecture 2- Page 11

CPU Scheduling

Let a; = the arrival time of process i
t; = its termination time
p; = its process time (execution time)
Then for each process (t; - a;) > p;
The process waiting time is given by:
w; = (t; - a) - p;

We are interested in the average waiting time w,, or the
average value of w; / p;.

ELC 467- Spring 2020 Lecture 2- Page 12

CPU Scheduling

Example 1: Example 2:
Process a; Di Process a; Di
A 0 3 A 0 100
B 5 B 1 5
C 2 C 2 5
D 9 5
E 12 5

Find the average waiting time in the above two examples using
different scheduling algorithms.

Example 2 illustrates that FCFS may be unfair to short processes.

ELC 467— Spring 2020 Lecture 2- Page 13

