## Exercise V: Antenna Arrays

## Problem (1)

Find the space factor in the following cases (use conventional coordinate system):

1. Two equal in-phase sources at $(0,0,0)$ and $(d, 0,0)$.
2. Two equal in-phase sources at $(0,0,0)$ and $(d, d, 0)$.
3. Four equal in-phase sources at $(0,0,0),(d, 0,0),(0, d, 0)$ and $(d, d, 0)$.
4. Three in-phase sources at $(0,0,0),(0,0, d)$ and $(0,0,2 d)$ with ratio of magnitudes 1:2:1.

## Problem (2)

Show that the array factor of a binomial array with four elements excited in phase with relative amplitudes 1:3:3:1 is given by:

$$
S(\theta)=\cos ^{3}\left(\frac{k d}{2} \cos (\theta)\right), \quad d \text { is the inter - element spacing }
$$

Hence, draw the pattern and determine the $3-\mathrm{dB}$ beam width for $d=\lambda / 2$.

## Problem (3)

1. Show that for long linear arrays of isotropic sources the beam width between the first nulls is approximately given by:

$$
B W B F N= \begin{cases}\frac{2 \lambda}{N d}, & \text { in case of broadside array } \\
2 \sqrt{\frac{2 \lambda}{N d}}, & \text { in case of end - fire array }\end{cases}
$$

where $N$ is the total number of elements
$d$ is the inter-element spacing
2. For a large broadside array, show that the amplitude of the $m^{\text {th }}$ side-lobe relative to the main beam is approximately given by:

$$
\frac{1}{N \sin \left(\frac{\pi}{2 N}(2 m+1)\right)}
$$

## Problem (4)

1. Use the directional pattern of a thin center-fed $\lambda / 2$ dipole to obtain the pattern of a center-fed $\lambda$ dipole.
2. Show how the radiation pattern of a straight travelling wave wire antenna of arbitrary length can be obtained using the principle of pattern multiplication.

## Problem (5)

Determine the space factor of a linear end-fire array of eight elements spaced $\lambda / 4$ apart, giving directions and relative magnitudes of side-lobes. Sketch the pattern showing the positions of nulls.

Problem (6) (Jan. 1997)
A two-element antenna array consists of thin half-wave dipoles on the $Z$-axis at $z=0$ and $z=d$. The dipoles are parallel to the $X$-axis with feed currents $I_{0}$ and $I_{0} e^{-j \alpha d}$. Find $\alpha$ and $d$ in order to have zero radiation in the negative $Z$ direction and maximum in the positive $Z$ direction. Sketch the directional patterns in the principal planes.

## Problem (7)

Four vertical antennas, parallel to $Z$-axis, are equally spaced along the $X$-axis, and excited with equal currents. If the inter-element spacing is $0.8 \lambda$, determine the radiation pattern in the $X Y$-plane.

## Problem (8)

1. A linear array of $N=50$ equally spaced elements with $d=\lambda / 2$ is excited for endfire operation. If the elements are along the $Z$-axis, give an expression for the space factor $S$ and find its first two zeros.
2. If the array consists of equal dipoles parallel to the $X$-axis find the radiation pattern in the $X Y$ and $X Z$ planes. What is the difference for $N=49$ ?

## Problem (9)

A linear array 80 wavelengths long has equally spaced elements with $\lambda / 2$ interelement spacing. The elements are excited with equal in-phase currents. Assuming isotropic elements, determine the directions and widths of the principal maximum as well as the side-lobe level in the two cases:

1. All elements ( $N=161$ ) in operation.
2. Elements $1,5,9, \ldots . . ., 157,161$ in operation.

## Problem (10)

Consider a two-element array with $d=2 \lambda$, fed with in-phase, equal magnitude currents. Sketch, without formulation, the space factor pattern, showing nulls and maxima. Comment on the values of lobe maxima.
The inter-element separation is now filled with three additional elements to form a 5 element broadside array. Obtain an expression for the space-factor ( $S$ ) and determine the zeros as well as the side-lobe level (SLL).

## Problem (11)

A linear array consists of 60 parallel coplanar equally spaced $\lambda / 2$ dipoles parallel to the $Z$-axis, operating at 1 GHz with equal magnitude current excitation. The array is placed $\lambda / 4$ above and parallel to a perfectly conducting screen in the $X Z$ plane with inter-element spacing of $0.4 \lambda$.

1. Determine, for broadside operation, the radiation pattern in $X Y$ and $X Z$ plane.
2. Give the beam width between nulls and the directions and relative levels of side-lobes with beam scanning $60^{\circ}$ off broadside in the $X Y$ plane, keeping the exciting current magnitude unchanged. Give the change in maximum radiation intensity relative to its value at broadside.
