

Cairo University Faculty of Engineering Giza Campus

Department of Electronics and Communications Engineering ELCN405 – ELC405A

EXERCISE I: BASIC ANTENNA PARAMETERS

Problem (1)

The maximum radiation intensity of a 90% efficiency antenna is 200 mW/unit solid angle. Find the directivity and gain (dimensionless and in dB) when:

- a) The input power is 125.66 mW.
- b) The radiated power is 125.66 mW.

Problem (2)

The power radiated by a lossless antenna is 10 watts. The directional characteristics of the antenna are represented by the radiation intensity of

a) $U(\theta, \phi) = B_0 \cos^2 \theta$ (watts/unit solid angle)

b) $U(\theta, \phi) = B_0 \cos^3 \theta \left\{ (0 \le \theta \le \frac{\pi}{2}, 0 \le \phi \le 2\pi) \right\}$

For each case find:

- a) The maximum power density (in watts/square meter) at a distance of 1,000 m (assume far-field distance). Specify the angle where this occurs.
- b) The beam solid angle Ω_A .
- c) The directivity of the antenna (dimensionless and in dB).

Problem (3)

The radiation intensity of an antenna is given by

$$J(\theta,\phi) = \cos^4\theta \sin^2\phi$$

 $U(\theta,\phi) = \cos^4 \theta \sin^2 \phi$ For $0 \le \theta \le \frac{\pi}{2}$ and $0 \le \phi \le 2\pi$ (i.e., in the upper half-space). It is zero in the lower halfspace. Find:

- a) The directivity (dimensionless and in dB).
- b) The elevation plane half-power beam width (in degrees).

Problem (4)

The maximum gain of a horn antenna is +20 dB, while the gain of its first side lobe is -15 dB. What is the difference in gain between the maximum and first side lobe:

- a) In dB.
- b) As a ratio of the field intensities.

Problem (5)

A base station cellular communication system's lossless antenna has a maximum gain of 16 dB (above isotropic) at 1,900 MHz. Assuming the input power to the antenna is 8 watts, what is the maximum radiated power density (in watts/cm²) at a distance of 100 meters?

Problem (6)

A $\lambda/2$ dipole, with a total loss resistance of 1 ohm, is connected to a generator whose internal impedance is 50 + i25 ohms. Assuming that the peak voltage of the generator is 2 V and the impedance of the dipole, excluding the loss resistance, is 73 + j42.5 ohms, find:

- a) The power supplied by the source.
- b) The power radiated by the antenna.
- c) The power dissipated by the antenna.

Problem (7)

An antenna with a radiation resistance of 48 ohms, a loss resistance of 2 ohms, and a reactance of 50 ohms is connected to a generator with open-circuit voltage of 10 V and internal impedance of 50 ohms via a $\lambda/4$ -long transmission line with characteristic impedance of 100 ohms.

- a) Draw the equivalent circuit
- b) Determine the power supplied by the generator
- c) Determine the power radiated by the antenna

Problem (8)

The input reactance of an infinitesimal linear dipole of length $\lambda/60$ and radius $a = \lambda/200$ is given by

$$X_{in} \approx -120 \frac{\ln\left(\frac{l}{2a}\right) - 1}{\tan\left(\frac{kl}{2}\right)}$$

Assuming the wire of the dipole is copper with a conductivity of 5.7×10^7 S/m, determine at a frequency of 1 GHz:

- a) The loss resistance.
- b) The radiation resistance.
- c) The radiation efficiency.
- d) The VSWR when the antenna is connected to a 50-ohm line.