Topic 3
 Fundamental Parameters of Antennas

Tamer Abuelfadl

Electronics and Electrical Communications Department
Faculty of Engineering
Cairo University

Electromagnetic Radiation

Time-changing current radiates and accelerated charge radiates.

Fundamental Parameters of Antennas

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Many of the definitions of these terms are taken from the IEEE Std 145-1993.

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Radiation Patterns

Antenna Radiation Pattern or Antenna Pattern

The spatial distribution of a quantity that characterizes the electromagnetic field generated by an antenna.

- Radiation is a spherical

TEM fields with
propagation in âr
direction and fields in \hat{a}_{θ}
and $\hat{\mathbf{a}}_{\phi}$ directions.

- $\left|E_{\theta}\right|$ and $\left|E_{\phi}\right| \propto 1 / r$
- $\left|E_{\theta}\right|$
- $\left|F_{\phi}\right|$
- Phases of these fields, δ_{θ} and δ_{ϕ}.

Radiation Patterns

Antenna Radiation Pattern or Antenna Pattern

The spatial distribution of a quantity that characterizes the electromagnetic field generated by an antenna.

- Radiation is a spherical TEM fields with propagation in $\hat{\mathbf{a}}_{r}$ direction and fields in $\hat{\mathbf{a}}_{\theta}$ and \mathbf{a}_{ϕ} directions.
- $\left|E_{\theta}\right|$ and $\left|E_{\phi}\right| \propto 1 / r$
- $\left|E_{\theta}\right|$
- $\left|E_{\phi}\right|$
- Phases of these fields, δ_{θ} and δ_{ϕ}.

Radiation Patterns

Antenna Radiation Pattern or Antenna Pattern

The spatial distribution of a quantity that characterizes the electromagnetic field generated by an antenna.

- Radiation is a spherical TEM fields with propagation in $\hat{\mathbf{a}}_{r}$ direction and fields in $\hat{\mathbf{a}}_{\theta}$ and $\hat{\mathbf{a}}_{\phi}$ directions.
- $\left|E_{\theta}\right|$ and $\left|E_{\phi}\right| \propto 1 / r$
- $\left|E_{\theta}\right|$
- $\left|E_{\phi}\right|$
- Phases of these fields, δ_{θ} and δ_{ϕ}.

Radiation Patterns

- Field Pattern: A plot of the field magnitude $(|\mathbf{E}|$ or $|\mathbf{H}|)$ on a linear scale.
- Power Pattern: A plot of the square of the field magnitude $\left(|\mathbf{E}|^{2}\right.$ or $\left.|\mathbf{H}|^{2}\right)$ on either a linear or decibel $(\mathrm{dB}, 20 \log |\mathbf{E}|)$.

Field Pattern
Linear Scale

Power Pattern
Linear Scale

Decibel Scale (dB)

Radiation Patterns

Radiation Pattern Lobes

- Major lobe
- Minor lobes
- Side lobe
- Back lobe

Radiation Patterns

Isotropic, Directional, and Omnidirectional Pattern

Isotropic radiator

a hypothetical lossless antenna having equal radiation in all directions.

Directional antenna

having the property of radiating or receiving electromagnetic waves more effectively in some directions than in others, usually applied on antennas having directivity greater than that of half-wave dipole.

Omnidirectional pattern

having an essentially nondirectional pattern in a given plane.

Omnidirectional in azimuth

Radiation Patterns

Principal Patterns

E-Plane
 H-Plane

The plane containing the electric-field The plane containing the vector and the direction of maximum magnetic-field vector and the radiation. direction of maximum radiation.

Radiation Patterns

Field Regions

- Reactive near field region:

Far-field (Fraunhofer)
reactive fields predominates radiating fields.

- Radiating near field (Fresnel) region: radiation fields predominates, but the radiation pattern varies with the radius r.
- Far-field (Fraunhover) region:
- Fields vary as $\frac{e^{-j k r}}{r}$, and the radiation pattern is independent on r.
- Electric and magnetic fields are predominantly in \mathbf{a}_{θ} and \mathbf{a}_{ϕ} directions, and are in phase.

Radiating near-field (Fresnel) region

Radiation Patterns

Solid Angle (Steradian)

$$
\begin{gathered}
d A=r^{2} \sin \theta d \theta d \phi, \quad d \Omega=\frac{d A}{r^{2}}=\sin \theta d \theta d \phi \\
\Omega=\iint_{(\theta, \phi)} \sin \theta d \theta d \phi \quad(\mathrm{sr})
\end{gathered}
$$

Radiation Patterns

Solid Angle (Steradian)

For a sphere of radius r, find the solid angle Ω_{A} (in square radians or steradians) of a spherical cap on the surface of the sphere over the north-pole region defined by a spherical angle of $0 \leq \theta \leq 30^{\circ}, 0 \leq \phi \leq 360^{\circ}$.

Solution

Radiation Patterns

Solid Angle (Steradian)

For a sphere of radius r, find the solid angle Ω_{A} (in square radians or steradians) of a spherical cap on the surface of the sphere over the north-pole region defined by a spherical angle of $0 \leq \theta \leq 30^{\circ}, 0 \leq \phi \leq 360^{\circ}$.

Solution

$$
\begin{aligned}
\Omega_{A} & =\int_{0}^{2 \pi} \int_{0}^{\pi / 6} d \Omega=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \sin \theta d \theta d \phi=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 6} \sin \theta d \theta \\
& =2 \pi[-\cos \theta]_{0}^{\pi / 6}=2 \pi\left[-\frac{\sqrt{3}}{2}+1\right]=0.83566 \quad \text { (sr) }
\end{aligned}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency

8. Antenna Gain

Radiation Power Density

Instantaneous Poynting Vector

$$
\mathscr{W} \text { or } S=\mathscr{E} \times \mathscr{H}
$$

\mathscr{W} or $S=$ instantaneous Poynting vector $\left(\mathrm{W} / \mathrm{m}^{2}\right)$.
$\mathscr{E}=$ instantaneous electric-field intensity (V/m). $\mathscr{H}=$ instantaneous magnetic-field intensity (A/m).

$$
\mathscr{P}=\oiint_{S} \mathscr{W} \cdot d \mathbf{s}=\oiint_{S} \mathscr{W} \cdot \hat{\mathbf{a}}_{n} d a
$$

$\mathscr{P}=$ instantaneous total power (W)

Radiation Power Density

$$
\begin{gathered}
\mathscr{E}(x, y, z ; t)=\mathfrak{R}\left[\mathbf{E}(x, y, z) e^{j \omega t}\right]=\frac{1}{2}\left[\mathbf{E} e^{j \omega t}+\mathbf{E}^{*} e^{-j \omega t}\right] \\
\mathscr{H}(x, y, z ; t)=\mathfrak{R}\left[\mathbf{H}(x, y, z) e^{j \omega t}\right]=\frac{1}{2}\left[\mathbf{H} e^{j \omega t}+\mathbf{H}^{*} e^{-j \omega t}\right] \\
\mathscr{W} \text { or } \boldsymbol{S}=\mathscr{E} \times \mathscr{H}=\frac{1}{2} \Re\left[\mathbf{E} \times \mathbf{H}^{*}\right]+\frac{1}{2} \Re\left[\mathbf{E} \times \mathbf{H} e^{j 2 \omega t}\right]
\end{gathered}
$$

Average Poynting Vector

$$
\mathbf{W}_{\mathrm{av}}(x, y, z) \text { or } \mathbf{S}_{\mathrm{av}}(x, y, z)=\frac{1}{2} \mathfrak{R}\left[\mathbf{E} \times \mathbf{H}^{*}\right]
$$

$$
\begin{aligned}
P_{\mathrm{rad}} & =\oiint_{S} \mathbf{W}_{\mathrm{rad}} \cdot d \mathbf{s}=\oiint_{S} \mathbf{W}_{\mathrm{av}} \cdot \hat{\mathrm{n} d a} \\
& =\oiint_{S} \frac{1}{2} \Re\left[\mathbf{E} \times \mathbf{H}^{*}\right] \cdot d \mathbf{s}
\end{aligned}
$$

where P_{rad} is the average radiated power.

Radiation Power Density

Example 2.2

The radial component of the radiated power density (Poynting vector radial component) of an antenna is given by,

$$
\mathrm{W}_{\mathrm{rad}}=\hat{\mathbf{a}}_{r} W_{r}=\hat{\mathbf{a}}_{r} A_{0} \frac{\sin \theta}{r^{2}} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right)
$$

Determine the total radiated power.

Radiation Power Density

Example 2.2

The radial component of the radiated power density（Poynting vector radial component）of an antenna is given by，

$$
\mathrm{W}_{\mathrm{rad}}=\hat{\mathbf{a}}_{r} W_{r}=\hat{\mathbf{a}}_{r} A_{0} \frac{\sin \theta}{r^{2}} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right)
$$

Determine the total radiated power．
Solution：

$$
\begin{align*}
P_{\mathrm{rad}} & =\oiint_{S} \mathbf{W}_{\mathrm{rad}} \cdot \hat{\mathbf{n}} d a \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\hat{\mathbf{a}}_{r} A_{0} \frac{\sin \theta}{r^{2}}\right) \cdot\left(\hat{\mathbf{a}}_{r} r^{2} \sin \theta d \theta d \phi\right)=\pi^{2} A_{0} \tag{W}
\end{align*}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6. Ream Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Radiation Intensity

Radiation Intensity

The power radiated from an antenna per unit solid angle,

$$
U=r^{2} W_{\mathrm{rad}} \quad(\mathrm{~W} / \text { unit solid angle })
$$

$$
\begin{aligned}
U(\theta, \phi)=\frac{r^{2}}{2 \eta}|\mathbf{E}(r, \theta, \phi)|^{2} & =\frac{r^{2}}{2 \eta}\left[\left|E_{\theta}(r, \theta, \phi)\right|^{2}+\left|E_{\phi}(r, \theta, \phi)\right|^{2}\right] \\
& =\frac{1}{2 \eta}\left[\left|E_{\theta}^{\circ}(\theta, \phi)\right|^{2}+\left|E_{\phi}^{\circ}(\theta, \phi)\right|^{2}\right]
\end{aligned}
$$

where far-zone electric field of the antenna,

$$
\mathbf{E}(r, \theta, \phi)=\left[E_{\theta}^{\circ}(\theta, \phi) \hat{\mathbf{a}}_{\theta}+E_{\phi}^{\circ}(\theta, \phi) \hat{\mathbf{a}}_{\phi}\right] \frac{e^{-j k r}}{r}
$$

Radiation Intensity

Radiation Intensity

The power radiated from an antenna per unit solid angle,

$$
\begin{gathered}
U=r^{2} W_{\mathrm{rad}} \quad \text { (W/unit solid angle) } \\
P_{\mathrm{rad}}=\oiint_{\Omega} U d \Omega=\int_{0}^{2 \pi} \int_{0}^{\pi} U \sin \theta d \theta d \phi
\end{gathered}
$$

Radiation from an isotropic source

$$
\begin{aligned}
P_{\mathrm{rad}}=\oiint_{\Omega} U_{0} d \Omega & =U_{0} \oiint_{\Omega} d \Omega=4 \pi U_{0} \\
U_{0} & =\frac{P_{\mathrm{rad}}}{4 \pi}
\end{aligned}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth

5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)

7 Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Beamwidth

- HPBW (Half Power Beam Width)
- FNBW (First-Null Beam Width)

Beamwidth

Example 2.4

The normalized radiation intensity of an antenna is represented by,

$$
U(\theta)=\cos ^{2}(\theta) \cos ^{2}(3 \theta), \quad\left(0 \leq \theta \leq 90^{\circ}, \quad 0 \leq \phi \leq 360^{\circ}\right)
$$

(1) Find the HPBW
(2) Find the FNBW
(1) $U\left(\theta_{h}\right)=\cos ^{2}\left(\theta_{h}\right) \cos ^{2}\left(3 \theta_{h}\right)=0.5 \Longrightarrow \cos \left(\theta_{h}\right) \cos \left(3 \theta_{h}\right)=0.707$ $\theta_{h}=\cos ^{-1}\left(\frac{0.707}{\cos 3 \theta_{h}}\right)$, iteratively gives $\quad \theta_{h} \approx 0.251 \mathrm{rad}=14.3725$ $\mathrm{HPBW}=2 \theta_{h} \approx 0.502 \mathrm{rad}=28.745^{\circ}$
(3) $U\left(\theta_{n}\right)=\cos ^{2}\left(\theta_{n}\right) \cos ^{2}\left(3 \theta_{n}\right)=0$
$\theta_{n}=\frac{\pi}{6} \mathrm{rad}=30^{\circ}$

Beamwidth

Example 2.4

The normalized radiation intensity of an antenna is represented by,

$$
U(\theta)=\cos ^{2}(\theta) \cos ^{2}(3 \theta), \quad\left(0 \leq \theta \leq 90^{\circ}, \quad 0 \leq \phi \leq 360^{\circ}\right)
$$

(1) Find the HPBW
(2) Find the FNBW
(1) $U\left(\theta_{h}\right)=\cos ^{2}\left(\theta_{h}\right) \cos ^{2}\left(3 \theta_{h}\right)=0.5 \Longrightarrow \cos \left(\theta_{h}\right) \cos \left(3 \theta_{h}\right)=0.707$ $\theta_{h}=\cos ^{-1}\left(\frac{0.707}{\cos 3 \theta_{h}}\right), \quad$ iteratively gives $\quad \theta_{h} \approx 0.251 \mathrm{rad}=14.3725^{\circ}$ $\mathrm{HPBW}=2 \theta_{h} \approx 0.502 \mathrm{rad}=28.745^{\circ}$
(2) $U\left(\theta_{n}\right)=\cos ^{2}\left(\theta_{n}\right) \cos ^{2}\left(3 \theta_{n}\right)=0$

$$
\theta_{n}=\frac{\pi}{6} \mathrm{rad}=30^{\circ}
$$

$\mathrm{FNBW}=2 \theta_{n}=\frac{\pi}{3} \mathrm{rad}=60^{\circ}$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity

4 Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Directivity

Directivity

The ratio of the radiation intensity in a given direction to the radiation intensity averaged over all directions.

If the direction is not specified the direction of the maximum radiation intensity is implied.

$$
\begin{gathered}
D=\frac{U}{U_{0}}=\frac{4 \pi U}{P_{\mathrm{rad}}} \\
D_{\max }=D_{0}=\frac{U_{\mathrm{max}}}{U_{0}}=\frac{4 \pi U_{\max }}{P_{\mathrm{rad}}}
\end{gathered}
$$

- Partial Directivities D_{θ} and D_{ϕ},

$$
\begin{gathered}
D_{\theta}=\frac{4 \pi U_{\theta}}{\left(P_{\mathrm{rad}}\right)_{\theta}+\left(P_{\mathrm{rad}}\right)_{\phi}}, \quad D_{\phi}=\frac{4 \pi U_{\phi}}{\left(P_{\mathrm{rad}}\right)_{\theta}+\left(P_{\mathrm{rad}}\right)_{\phi}} \\
D=D_{\theta}+D_{\phi}
\end{gathered}
$$

Directivity

Example 2.6

The radial component of the radiated power density of an infinitesimal linear dipole of length $I \ll \lambda$ is given by,

$$
\mathrm{W}_{\mathrm{av}}=\hat{\mathbf{a}}_{r} W_{r}=\hat{\mathbf{a}}_{r} A_{0} \frac{\sin ^{2} \theta}{r^{2}}
$$

Determine the maximum directivity of the antenna and express the directivity as a function of θ and ϕ.

Directivity

Example 2.6

The radial component of the radiated power density of an infinitesimal linear dipole of length $I \ll \lambda$ is given by，

$$
\mathbf{W}_{\mathrm{av}}=\hat{\mathbf{a}}_{r} W_{r}=\hat{\mathbf{a}}_{r} A_{0} \frac{\sin ^{2} \theta}{r^{2}}
$$

Determine the maximum directivity of the antenna and express the directivity as a function of θ and ϕ ．

Solution：

$$
\begin{gathered}
U=r^{2} W_{r}=A_{0} \sin ^{2} \theta \\
P_{\mathrm{rad}}=\int_{0}^{2 \pi} \int_{0}^{\pi} A_{0} \sin ^{2} \theta \sin \theta d \theta d \phi=A_{0}\left(\frac{8 \pi}{3}\right) \\
D=\frac{4 \pi U}{P_{\mathrm{rad}}}=1.5 \sin ^{2} \theta \\
D_{\max }=1.5 \quad \text { at } \theta=90^{\circ}
\end{gathered}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Beam Solid Angle Ω_{A} (Beam Area)

Beam Solid Angle Ω_{A} (Beam Area)

The solid angle through which all the power of the antenna would flow if its radiation is constant (and equal to the maximum value of U) for all angles within Ω_{A}.

$$
\Omega_{A}=\frac{P_{\mathrm{rad}}}{U_{\max }}=\frac{\oiint_{\Omega} U d \Omega}{U_{\max }}=\oiint_{\Omega} \frac{U}{U_{\max }} d \Omega=\frac{4 \pi}{D_{\max }}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Antenna Input Impedance and Radiation Efficiency

- $R_{r}=$ radiation resistance of the antenna
- $R_{L}=$ loss resistance of the antenna
- $X_{A}=$ antenna reactance
- $Z_{g}=R_{g}+j X_{g}$ generator impedance
Antenna Input Impedance Z_{A}

$$
Z_{A}=R_{A}+j X_{A}, \quad R_{A}=R_{r}+R_{L}
$$

Radiation Efficiency η

The ratio of the total power radiated by an antenna to the net power accepted by the antenna from the connected transmitter.

$$
\eta=\frac{P_{\mathrm{rad}}}{P_{\mathrm{Acc}}}=\frac{P_{\mathrm{rad}}}{P_{\mathrm{rad}}+P_{\text {losses }}}=\frac{R_{r}}{R_{A}}=\frac{R_{r}}{R_{r}+R_{L}}
$$

Outline

(1) Radiation Pattern

- Radiation Pattern Lobes
- Isotropic, Directional, and Omnidirectional Pattern
- Principal Patterns
- Field Regions
- Solid Angle
(2) Radiation Power Density
(3) Radiation Intensity
(4) Beamwidth
(5) Directivity
(6) Beam Solid Angle Ω_{A} (Beam Area)
(7) Antenna Input Impedance and Radiation Efficiency
(8) Antenna Gain

Antenna Gain

gain (in a given direction)

The ratio of the radiation intensity, in a given direction, to the radiation intensity that would be obtained if the power accepted by the antenna were radiated isotropically.

- Gain does not include losses arising from impedance and polarization mismatches.
- If the direction is not specified, the direction of maximum radiation intensity is implied.

$$
G=\frac{4 \pi U}{P_{\text {Acc }}}=\eta D
$$

- Partial gains in θ and ϕ polarization:

$$
\begin{gathered}
G_{\theta}=\frac{4 \pi U_{\theta}}{P_{\mathrm{Acc}}}, \quad G_{\phi}=\frac{4 \pi U_{\phi}}{P_{\mathrm{Acc}}} \\
G=G_{\theta}+G_{\phi}
\end{gathered}
$$

