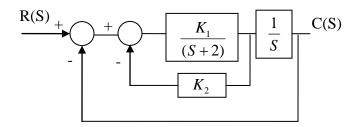
CAIRO UNIVERSITY ELECTRONICS & COMMUNICATIONS DEP. CONTROL ENGINEERING

FACULTY OF ENGINEERING 3rd YEAR, 2010/2011

SHEET 3

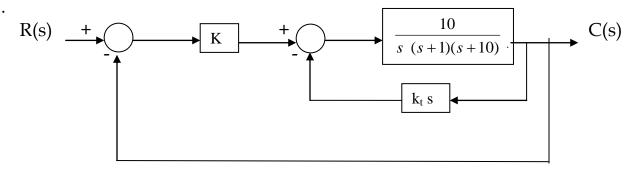
Transient Response

[1] Referring to the system shown in figure, determine the values of K_1 and K_2 such that the system has a maximum overshoot in unit step response is 25% and the peak time is 2 sec.



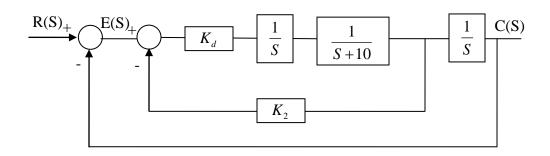
[2] The block diagram of a DC motor control system with tachometer feedback is shown in figure 4. Find the values of K and K_t so that the following specifications are satisfied:

- k_v =1
- Dominant characteristic equation roots corresponding to a damping ratio of approximately 0.707



[3] (Quiz 2005) the automatic control of an airplane is one example that requires multiple-variable feedback methods. A simplified model where the rolling motion can be considered independent of other motions is shown in figure. The step response desired has an overshoot less than or equal 10% and a rise time less than or equal 4 second.

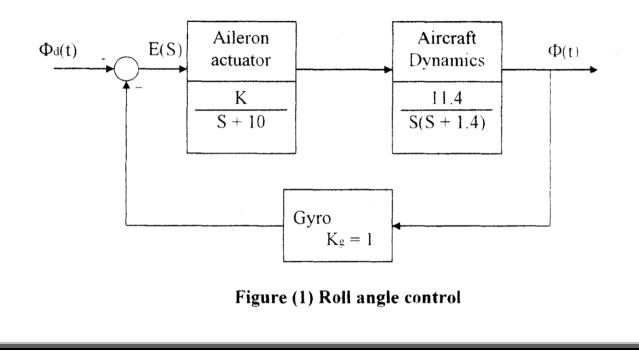
- a) Select the parameters Kd and K2 that achieve the desired response. (8 points)
- b) Find the minimum steady state error that can be obtained by varying the values of Kd and K2, for a unit ramp input. (2 points)



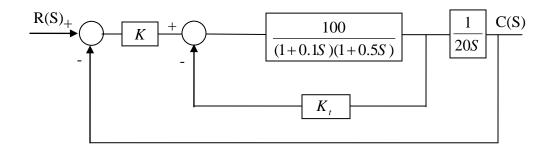
[4](Quiz 2004) The roll control autopilot of a jet fighter is shown in figure 1 .the goal is to select a suitable K so that the response to a unit step command $\Phi_d(t)$ will provide a response $\Phi(t)$ that is a fast response and has an overshoot of less than or equal 9.5%:

a) Using the concept of dominant poles, find a suitable value of K that will achieve the desired transient response. Predict the transient response of the system (i.e. get $t_r t_p$ and t_s).

b) Find the static error coefficients of the system. Evaluate the value of K that gives minimum steady state error for a unit ramp input.



[5](Final 2204) For the control system shown in the figure, determine the values of K and K_t such that the output has a maximum overshoot 4.3% and the rise time is approximately 2 sec. with the values of K and K_t obtained, find the steady state error when the input is a unit ramp function.



• <u>Summary:</u>

[1] For the second order continuous time system we have:

• Open loop T.F = G(S)H(S) =
$$\frac{\omega_n^2}{S(S+2\zeta\omega_n)}$$

• Closed loop T.F =
$$\frac{G(S)}{1+G(S)H(S)} = \frac{\omega_n^2}{(S^2 + 2\zeta\omega_n S + \omega_n^2)}$$

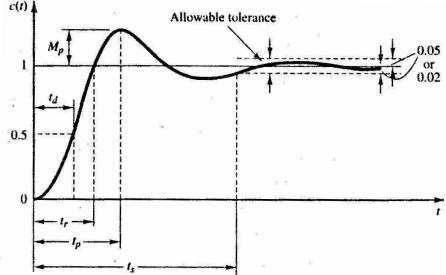
• Damping ratio
$$\equiv \zeta$$
 where $0 < \zeta < 1$

 $\zeta < 0.4 \Rightarrow$ excessive oscillations will occur. $0.4 < \zeta < 0.8 \Rightarrow$ sufficiently damping & sufficiently fast. $\zeta > 0.8 \Rightarrow$ sluggish system.

•
$$\zeta$$
 (in terms of M_p) = $\frac{-(\ln M_p)}{\sqrt{(\ln M_p)^2 + \pi^2}}$.
• Natural frequency = undamped frequency = ω_n
• Damped frequency = $\omega = \omega_n \sqrt{1 - \zeta^2}$
• Time constant = $\tau = \frac{1}{\zeta \omega_n}$
• $S_{1,2} = -\zeta \omega_n \pm j \omega = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$

• Rise time
$$\equiv t_r = \frac{\pi - \cos^{-1}\zeta}{\omega} = \frac{\pi - \cos^{-1}\zeta}{\omega_n \sqrt{1 - \zeta^2}}$$

• Peak time $\equiv t_p = \frac{\pi}{\omega} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
• Settling time $\equiv t_s = \frac{4}{\zeta \omega_n}$
• Maximum relative overshoot $\equiv M_p = e^{\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}}$



[2] For 3rd order system:

- Characteristic equation is: $(S + \alpha)(S^2 + 2\zeta \omega_n S + \omega_n^2)$.
- The dominant poles are: $(S^2 + 2\zeta \omega_n S + \omega_n^2)$, and the insignificant pole is: $(S + \alpha)$.
- The equation has <u>*three*</u> unknown : α , ζ , and ω_n .
- For design:
 - 1. If we have <u>*three*</u> information on the time response, we will directly get the three unknowns: $\alpha, \zeta, and \omega_n$.
 - 2. If we have only <u>*two*</u> information on the time response, we need one assumption to get the three unknowns: α , ζ , and ω_n , this assumption is: $\alpha = 5\zeta \omega_n$.