Formula Sheet

Free space parameters

- $\epsilon_{0}=\frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / \mathrm{m}$
- $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
- $\eta_{0}=120 \pi \Omega$

Plane Wave in Lossy Media, $\gamma=\alpha+j \beta$,

$$
\alpha=\omega \sqrt{\frac{\mu \epsilon}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}-1\right]^{1 / 2} \mathrm{~Np} / \mathrm{m}, \quad \beta=\omega \sqrt{\frac{\mu \epsilon}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}+1\right]^{1 / 2} \mathrm{rad} / \mathrm{m}
$$

Low-Loss Dielectrics,

$$
\alpha=\frac{\omega \epsilon^{\prime \prime}}{2} \sqrt{\frac{\mu}{\epsilon^{\prime}}} \mathrm{Np} / \mathrm{m}, \quad \beta=\omega \sqrt{\mu \epsilon^{\prime}}\left[1+\frac{1}{8}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right] \operatorname{rad} / \mathrm{m}, \quad \eta_{c} \cong \sqrt{\frac{\mu}{\epsilon^{\prime}}}\left(1+j \frac{\epsilon^{\prime \prime}}{2 \epsilon^{\prime}}\right) \Omega
$$

Good Conductors,

$$
\alpha=\beta=\sqrt{\pi f \mu \sigma}, \quad \eta_{c}=(1+j) \frac{\alpha}{\sigma}, \quad \delta_{s}=\frac{1}{\alpha}
$$

Product Rules

1. $\nabla(f g)=f \nabla g+g \nabla f$,
2. $\quad \nabla(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}$,
3. $\quad \nabla \cdot(f \mathbf{A})=f(\nabla \cdot \mathbf{A})+\mathbf{A} \cdot(\nabla f)$,
4. $\quad \nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B})$
5. $\quad \nabla \times(f \mathbf{A})=f(\nabla \times \mathbf{A})-\mathbf{A} \times \nabla f$
6. $\quad \nabla \times(\mathbf{A} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})$

The Three-Dimensional Delta Function

$$
\begin{gathered}
\delta^{3}(\mathbf{r})=\delta(x) \delta(y) \delta(z) \\
\nabla \cdot\left(\frac{\hat{\mathbf{r}}}{r^{2}}\right)=4 \pi \delta^{3}(\mathbf{r})
\end{gathered}
$$

Curvilinear Coordinates

- Gradient: $\quad \nabla T=\frac{1}{h_{1}} \frac{\partial T}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial T}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial T}{\partial u_{3}} \hat{\mathbf{u}}_{3}$
- Divergence:

$$
\nabla \cdot \mathbf{v}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} v_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{1} h_{3} v_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} v_{3}\right)\right]
$$

- Curl: $\quad \nabla \times \mathbf{v}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}h_{1} \hat{\mathbf{u}}_{1} & h_{2} \hat{\mathbf{u}}_{2} & h_{3} \hat{\mathbf{u}}_{3} \\ \partial / \partial u_{1} & \partial / \partial u_{2} & \partial / \partial u_{3} \\ h_{1} v_{1} & h_{2} v_{2} & h_{3} v_{3}\end{array}\right|$
h_{1}, h_{2} and h_{3} are the metrics along the curvilinear coordinates u_{1}, u_{2}, and u_{3}, respectively.

Cartesian:	$u_{1}=x, u_{2}=y$, and $u_{3}=z$	$h_{1}=h_{2}=h_{3}=1$
Spherical Polar:	$u_{1}=r, u_{2}=\theta$, and $u_{3}=\phi$	$h_{1}=1, h_{2}=r, h_{3}=r \sin \theta$
Cylindrical:	$u_{1}=\rho, u_{2}=\phi$, and $u_{3}=z$	$h_{1}=1, h_{2}=\rho, h_{3}=1$

- The infinitesimal displacement $\quad d \mathbf{l}=h_{1} d u_{1} \hat{\mathbf{u}}_{1}+h_{2} d u_{2} \hat{\mathbf{u}}_{2}+h_{3} d u_{3} \hat{\mathbf{u}}_{3}$
- Element of area $d \mathbf{a}=h_{2} h_{3} \hat{\mathbf{u}}_{1}+h_{1} h_{3} \hat{\mathbf{u}}_{2}+h_{1} h_{2} \hat{\mathbf{u}}_{3}$
- Element of volume $d \tau=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3}$

Potentials

- Curl-less (or "irrotational") fields. The following conditions are equivalent (that is, F satisfies one if and only if it satisfies all the others):
$\nabla \times \mathbf{F}=\mathbf{0}$ everywhere.

1. $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}$ is independent of path, for any given end points.
2. $\oint \mathbf{F} \cdot d \mathbf{l}=0$ for any closed loop.
3. \mathbf{F} is the gradient of some scalar, $\mathbf{F}=-\nabla V$.

- Divergence-less (or "solenoidal") fields. The following conditions are equivalent:
$\nabla \cdot \mathbf{F}=\mathbf{0} \quad$ everywhere.

1. $\int_{S} \mathbf{F} \cdot d \mathbf{a}$ is independent of surface, for any given boundary line.
2. $\oint \mathbf{F} \cdot d \mathbf{a}=0$ for any closed surface.
3. \mathbf{F} is the curl of some vector, $\mathbf{F}=\nabla \times \mathbf{A}$.

- Any vector \mathbf{F} can be written as

$$
\mathbf{F}=-\nabla V+\nabla \times \mathbf{A}
$$

