SHEET 1

Error Analysis

1. A unity feedback system has a forward transfer function of:

$$
G(s)=\frac{12(s+4)}{s(s+1)(s+3)\left(s^{2}+2 s+10\right)}
$$

a) Determine the static error coefficients for this system.
b) Determine the steady state error and the steady state output for a reference input $r(t)=16+2 t$ and for $r(t)=5 t^{2}$.
c) Is the closed loop system stable?
2. A unity feedback control system has the forward transfer function:

$$
G(s)=\frac{k_{v}}{s(4 s+1)(s+1)}
$$

a) The steady state value of the error is desired to be less than or equal to 0.1 for a reference input $\mathrm{r}(\mathrm{t})=1+\mathrm{t}$. Determine the minimum value of k_{v} that satisfies this requirement.
b) Check the stability of the system for the value k_{v} of obtained in part (a) and comment on your result.
3. The block diagram of a control system is shown the following figure. Find the step, ramp and parabolic error constants. The error signal is defined to be e (t). find the steady state errors of the system in terms of k and k_{t}, when the following inputs are applied:
a) $r(t)=6+8 t$
b) $r(t)=2 t+7 t^{2}$

What constraint must be made on the values of k and k_{t}, so that the answers are valid? Determine the minimum steady state error that can be achieved with a unit ramp input.

4. The block diagram of a feedback control system is shown in the figure. The error signal is defined to be e (t).
a) Find the steady state error of the system in terms of k and k_{t} when the input is a unit ramp function. Give the constraints on the values of k and k_{t} so that the answer is valid. Let $\mathrm{n}(\mathrm{t})=0$ for this part.
b) Find the steady state value of $c(t)$ when $n(t)$ is a unit step function. Let $r(t)=0$

5. (Final 98) The following Figure shows a block diagram of a cascade control system designed to counteract disturbance D.
(a) Initially consider the situation with no cascade loop, i.e. link AB open.

- State the type of the system and find the static error coefficients in terms of loop gains.
- Determine the limiting value of the gain $\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)$ in order to maintain stable operation.
- Let $K_{2}=50$, Find the value of K_{1} that gives steady state output due a unit step disturbance equal (0.1).
Link $A B$ is closed to implement the cascade loop and K_{1}, K_{2} are fixed at the values obtained in part (a). Find the steady state change in output due to a unit step disturbance.

6. A control system with unity feedback has the forward transfer function:

$$
G(s) \frac{k}{(s+1)^{2}(s+4)}
$$

a) Evaluate the error series when the input $r(t)=6+3 t$ is applied, hence find the value of the steady state error at $t=2$ sec. in terms of k.
b) Find the minimum value of the steady state error that can be achieved by varying the value of k for a unit step input.
7. (Final 2001) A control system with unity feedback has the transfer function:

$$
G(S)=\frac{K}{(S+1)\left(S^{2}+2 S+2\right)}
$$

(a) Evaluate the error series when the input $\mathrm{r}(\mathrm{t})=10+6 \mathrm{t}+\mathrm{e}^{-5 \mathrm{t}}$ is applied.
(b)Find the value of the error (in terms of K) at $\mathrm{t}=3 \mathrm{sec}$.
(c) Find the minimum value of steady state error that can be achieved by varying the value of K for a unit step input.

- Summary:

A. For the continuous time system:

- $E(S)=\frac{R(S)}{1+G(S) H(S)}$
- $E(S) \square$ exact expression of the error

- $e_{s s}=\lim _{s \rightarrow 0} S E(S)=\lim _{t \rightarrow \infty} e(t)$ or you can easily get it from the following table:

	$\mathrm{R}(\mathrm{S})$	e_{ss}	Error const. value
e_{ss} due to step input	$\frac{M}{S}$	$\frac{M}{1+K_{p}}$	$K_{p}=\lim _{s \rightarrow 0} G(S) H(S) \equiv$ position error constant
e_{ss} due to ramp input	$\frac{M}{S^{2}}$	$\frac{M}{K_{v}}$	$K_{v}=\lim _{s \rightarrow 0} S G(S) H(S) \equiv$ velocity error constant
e_{ss} due to parab input	$\frac{M}{S^{3}}$	$\frac{M}{K_{a}}$	$K_{a}=\lim _{s \rightarrow 0} S^{2} G(S) H(S) \equiv$ acceleration error constant

- $\quad Y_{s s}(S)=\lim _{s \rightarrow 0} S Y(S)=R_{s s}(S)-e_{s s}$

B. For a continuous time system with a disturbance:

- $\left.\quad Y(S)\right|_{\text {duet od disutamence DS })}=\frac{G_{p}(S)}{1+G_{p}(S) G_{c}(S) H(S)} D(S)$
- $\left.e_{s s}\right|_{\text {due to dist. }}=-\left.\lim _{s \rightarrow 0} S Y(S)\right|_{\text {due to disturbance } \mathrm{D}(\mathrm{S})}$
- $\left.\quad Y(S)\right|_{\text {duet ot input R(S) }}=\frac{G_{p}(S) G_{c}(S)}{1+G_{p}(S) G_{c}(S) H(S)} R(S)$
- $\left.\quad Y(S)\right|_{\text {Toal }}=\frac{G_{p}(S) G_{c}(S)}{1+G_{p}(S) G_{c}(S) H(S)} R(S)+\frac{G_{p}(S)}{1+G_{p}(S) G_{c}(S) H(S)} D(S)$

C. Error series:

$e_{s}(t)=C_{0} r(t)+C_{1} r \stackrel{o}{r}(t)+C_{2} \frac{\stackrel{o o}{r(t)}}{2}$
where:
$C_{0}=\lim _{s \rightarrow 0} F(S), C_{1}=\lim _{s \rightarrow 0} \frac{d F(S)}{d S}, C_{2}=\lim _{s \rightarrow 0} \frac{d^{2} F(S)}{d S^{2}}$
and $F(S)=\frac{E(S)}{R(S)}=\frac{1}{1+G(S) H(S)}$

