CHAPTER 9
VELOCITY MODULATION AND KLYSTRON BUNCHING

By D. R. HamirTon

9-1. Introduction.—It is pointed out in Chap. 1 that the conventional
multielectrode tube encounters serious limitations at microwave fre-
quencies, and that some of these limitations may be minimized by new
techniques of vacuum-tube construction. Regardless of circuit improve-
ments thus made possible, however, there remains the basic electronic
necessity for transit of the electrons through the control (i.e., cathode-
grid) region in a time considerably smaller than a cycle of the micro-
wave oscillation in question. Since it is an essential feature of such tubes
that the electron velocity in the cathode-grid region never exceeds a
value corresponding to a small fraction of the plate voltage, the require-
ment of short transit time becomes a very stringent requirement on
interelectrode spacing.

The basic electronic problem in these tubes and in any oscillator or
amplifier is, in general, the problem of utilizing an r-f voltage (derived
from feedback or input) to produce at some other point a conduction
current with an r-f component—that is, it is the problem of producing
an electronic transfer admittance, or transadmittance.

The klystron! is the product of an approach to the transadmittance
problem that differs radically from previously described (and historically
antecedent) approaches, and was stimulated by the difficulties encoun-
tered in the latter. Electronically there are two marked innovaticns
in the klystron. The most important of these is the combined process of
velocity modulation and bunching, by which the finite transit time of
clectrons becomes the basic means of producing (rather than a limitation
upon) the transadmittance. This process of velocity modulation and
bunching is the element common to all klystrons, and it is therefore dis-
cussed in some detail in this chapter before the various types of klystron
are described.

The second radical departure in the klystron is made possible by the
first and is not discussed further in itself—it is the application of the
velocity-modulating r-f control voltages to the electrons after, rather
than before, the acceleration of the electrons by the full applied plate
voltage. Although the electrons must preferably have a transit time

L R. H. Varian and 8. ¥. Varian, Jour. App, Phys., 10, 321 (1939).
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through the control region of less than one cycle, the electron velocity
is much higher for a given plate voltage and the geometrical limitations
on the control region are therefore greatly relaxed.

The present chapter is intended to be a reference compendium of the
basie information about veloeity modulation and bunching that will be
required for subsequent discussion of the various forms of klystrons.
Thus, the choice of material has been governed primarily by the topies
covered in the later chapters rather than by any desire to summarize
completely all the features of bunching that would be necessary to form a
complete discussion of this very interesting field. For the same reason,
all discussion of the way in which klystron behavior is affected by the
details of the bunching process is left for the later chapters. It is there-~
fore suggested that the reader may profitably confine a first reading to
Section 9-2 of the present chapter, returning to the other sections as they
are referred to in later chapters.

9-2. Simple Velocity Modulation and Bunching.—The schematic
diagram in Fig. 9-1 represents, in an idealized form, that part of a klystron

in which the processes of velocity
4 1B c : modulation and bunching take place.

Region | | : This region corresponds to the input
of dc 1 L g 0t or cathode-grid space of a triode, i
accelera-) i  Drift space uapu AtHodesrle sbace of a riode, in
don 1 | i B3P the sense that from this region there
I

I<——Input gap : emerges an intensity-modulated con-
Cathode G, G, duction current that serves to drive
Fi1G. 9-1.—Schematic representation the output cavity resonator. The
of velocity modulation and bunching mature of microwave cavity resonators
region in klystron. and the way in which they are driven
by an r-f component of the conduction current is discussed in Chaps. 3
and -t; this chapter is concerned only with the genesis of the electronic
transadmittance to which this r-f conduction eurrent corresponds.

The space shown in Fig. 91 comprises three separate regions. The
processes that oceur in these regions are first qualitatively summarized,
temporarily making simplifications in order to emphasize the fundamental
points.

In region A—the space between the cathode K and the grid G,—
there exists only a d-¢ field that corresponds to the application of full
beam voltage between K and ¢;. The influence of the d-¢ field results
in the injection into region B, through G, of a stream of electrons all
having the same velocity vo (given by me}/2 = eV,) and with current
density constant in time.

In region B—the control region (or “input gap’) between grids
G, and Gy—there is an externally impressed alternating r-f voltage the
instantaneous value of which is written as V sin wf. This instantaneous
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voltage is the real part of the complex voltage Vie“!; the complex voltage
amplitude V, is thus given by

V,= —iV. (1)

Throughout the present section it is assumed, for simplicity, that
V/2V, K 1, and that the time of transit through region B is very small
compared with one cycle of the r-f oscillation. (This transit-time condi-
tion is easier to meet here than in the analogous cathode-grid region of a
triode because the electrons have already received full d-¢ acceleration
in region A.) No electrons are turned back between @; and @, and the
current density of the stream of electrons leaving G; is closely constant
in time, just as it was at (1. Individual electrons are speeded up or
slowed down in passage through the input gap, depending on the phase
of the r-f field at the time of the electron’s transit. Adopting the con-
vention that the r-f voltage is positive when electrons are accelerated,
it follows that each electron in passage from G, to Gy has gained an
energy eMV sin wi. Here M i1s the beam-coupling coefficient discussed
in Chap. 3; M = 1. Hence when the electron passes through G, it has a
velocity » given by the relation mv?/2 = e¢Vy + eMV sin wf. Since
mvi/2 = eV, it follows that

MVN . M .
”27’0.\/1+(VO)SlnwizUn[l—F(%)smwt-!- R ], (2)

to a good degree of approximation when MV /2V, << 1.

It is this periodic variation of electron velocity that is expressed by
saying that the beam is velocity-modulated! as it leaves the input gap
between G; and G.; the quantity V/V, is known as the ‘“‘depth of
modulation.”

Region C—which extends from @ to the first grid G5 of the output gap
—is called the “drift space.” It is assumed, again for simplicity, that
in region C there are no d-c fields and no r-f fields, and that any space-
charge effects are negligible. The only effects are kinematic; the elec-
trons that were speeded up in B begin to catch up with the slower
electrons that are ahead of them, and eventually result in a breaking up of
the beam into groups or bunches. This process, known as “bunching,’’?
is llustrated in Fig. 9:2; here the relation between distance and time is

1 Tt should be noted that ‘““modulation,’” as used here, does not have the common
connotation of superposition of further time variation on an already sinusoidally
varying quantity; rather, the time variation is superimposed on a previously time-
constant quantity, the electron velocity. These two senses of ‘‘modulation’ make
possible somewhat awkward expressions such as ‘‘the frequency modulation of velocity-
modulation tubes.” The nomenclature is, however, well established by usage.

2 D, L. Webster, Jour. App. Phys., 10, 501 (1939).
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shown for each of a series of typical electrons in what is known as an
““ Applegate diagram.” The velocity modulation appears as a periodic
change in the slope of the electron trajectories at the input gap; bunching
corresponds to the convergence and eventual crossing of these trajectories.
It may be noted that at G; the current is not uniform in time; instead,
it has r-f components. It may be noted also that the larger V /¥,
is, the less drift length is required to produce a given degree of bunching,
and that with an excessive amount of r-f voltage or of drift length the

Distance in drift tube

Acceleration voltage 4 Input gap
* voltage

Voltage

Time
Fig. 9-2.—Applegate diagram of electron trajectories in velocity modulation and bunching.
trajectories diverge from their crossover points and the r-f component of
current diminishes.

The main point is that the low-velocity cathode-grid contral region
of the triode is replaced in the klystron by a composite region in which
external r-f control is exerted only on high-velocity electrons, and in
which differences of finite electron transit times have been used to
produce an intensity-modulated conduction current.

The simplifications assumed in the preceding description of velocity
modulation and bunching are continued in the following quantitative
discussion.

In considering the relation between time of departure from the input
gap, £, and time of arrival at the output gap, f;, the time of transit
through the gaps is ignored. Then, by Eq. (2),

wl wl\ M ,
wtg = wh + *v’ = wt1 + B“';/ 1 — 2V0 Sin wtl .
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The quantity wl/» is the d-c transit time through the drift space, meas-
ured in radians of the input frequency; it is represented by 6,:

_ Wl
b = = (3a)
It 1s also convenient to define
_ MV,
X, = 2—Vo’ (3b)

X as given here is a particular example of a dimensionless quantity known
as the ““bunching parameter’’; the definition of the bunching parameter
is generalized in succeeding sections. In terms of the transit angle &, and
the bunching parameter X,, the above transit-time relation becomes

wﬁz = wtl + 00 — Xo Sill (.dtj_. (36)

Many of the more general situations discussed later in this chapter
are described by a transit-time relation given in the above form, but
with a more general definition of bunching parameter than that given in
Eq. (3b). In order to emphasize this fact, and in order to put the results
of the discussion that now follows into a form that will be readily appli-
cable later, the subscript is omitted
from the bunching parameter in the
discussion of the consequences of
Eq. (3¢).

This relation embodied in Eq.
(3¢) is shown in Fig. 9-3 for X =
0.5, 1, 1.84, and 3.83. The quan-
titative relations in the bunching
process are more clearly indicated
nere than in Fig. 9-2, and the illus-
tration suggests a simple means of
finding the actual waveform of the
bunched current by application of Time of departure et,
the principle of conservation of Fig. 9-3.—Relation between time of

. eparture from input gap, {1, and time of
charge. ThUS, the electrons arriv- arrival at output gap, fi, for several values
ing at the output gap in the time ©f bunching parameter X.
interval Af, are made up of one or more groups of electrons (three for the
case indicated in Fig. 9-3) that have left the input gap during intervals
Aty = |dt,/dts| Ate.  If the d-c beam current is I, the total charge carried
by the electrons arriving in Af; is

IoZAtl = IUAth

t1(t2) 1e(ta)

Time of arrival wi;6,

dt:|
dt."
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when the summation encompasses all times of departure ¢, that cor-
respond to the same time of arrival {». The total charge is also 7 Al
where 7 is the instantaneous current through the output gap; hence

it) = Io z |g—ZI- | (4)

t11t2)

This equation simply states that the output gap current at any
instant f, is obtained from Fig. 9-3 by adding the absolute values of all
the inverse derivatives dt,/df, corresponding to the given time of arrival
t2.  This process has been carried out in obtaining Fig. 9-4, which there-
fore shows the dependence on time of the instantaneous output-gap
current for the four previously used values of the bunching parameter,
X = 0.5, 1, 1.84, and 3.83.

The infinite-current peaks are a striking feature of Fig. 9-4 and arise
in an obvious manner. For X < 1, the electrons that arrive at the output

gap at any given instant are those

T that left the input gap at a single

2 3 previous instant; for X > 1, on the

e I R WO \ other hand, it has already been
B 2 noted that for a portion of a cycle
T - Iq, - i the electrons that left the input gap
:j‘,".‘ §§ I at several different times arrive

> B 3\ simultaneously at the output gap.

\WANN AW Asindicated in Fig. 9-3, this portion

_‘%—-’/—{’ — ) = of the cycle begins and ends at the
I 0 e o +;,;. values of {, for which di./dt, = 0;
(wt,~8,) diz/dty = 0 means that electrons

Fie. 9-4.—Dependence of relative cur-
rent at output gap 1{f2)/fo on time {2 for

leaving the input gap in an incre-
ment of time d¢; arrive at the output

various values of bunching parameter X, . R . )
gap in an infinitely shorter incre-

ment of time df; and therefore constitute an instantaneously infinite cur-
rent, carrying only a finite charge.

The component of the waveforms of Fig. 94 at the fundamental
frequency depends not so much on the presence of infinite peaks as on
the general concentration of current in one particular half eycle. It is
obvious from Fig. 9-4 that this concentration increases as X initially
increases. As X increases past unity the two infinite-current peaks,
which contain a considerable concentration of current, become more
and more separated in time. At X = 1.84 the concentration of current
is still rather high; as may be seen shortly, this value of X corresponds
approximately to the maximum value of the fundamental component.
At X = 3.83, however, the peaks are somewhat more than a half cycle
apart and in their effect (for example, in driving a circuit) they oppose



Sec. 9-2] SIMPLE VELOCITY MODULATION AND BUNCHING 207

each other in phase; although the current is hardly constant in time, the
fundamental component is exactly zero at this value of X.

For high harmonics the infinite-current peaks become very important
because any one of such peaks provides an appreciable concentration of
current in a half cyecle of a high harmonic. Since infinite peaks occur
only for X = 1, not much harmonic content should be expected for
X <1. Whenever the two peaks that are present when X > 1 are
separated by an integral number of half cycles of the harmonic in ques-
tion, their resulting opposition in phase brings the content of this har-
monic nearly to zero. The amplitude of higher harmonics is thus
expected to be a maximum near X = 1, and to oscillate about zero as X
increases past this point.

The above description is an intuitive Fourier analysis of the bunched
beam current; for more exact information an exact Fourier analysis is
needed and this will now be made.

Since the output-gap current i(f;) is periodic with the angular fre-
quency w, this current may be expressed as the sum of a series of har-
monics of w:

1(t2) = Re z Tmeimats, (5)
m=0
The values of 4, are thus the complex current amplitudes at the various

harmonics, just as V', is the complex r-f gap-voltage amplitude. By the
usual theory of Fourier series, the values of 7,, are given by

T = [ ’ 1(ts)emetad{wty). (6)

If the relation for #(t.) given by Eq. (4) is recalled, it is apparent that

Tim = Iof d(wtz)e—imwtzz dtl‘.

t1(te)

(7)

dt,

This expression is made analytically inconvenient by the occurrence of
the absolute value and discrete summation in the integrand. These
features, arising from the multiple-valued dependence of ¢; on ¢ shown
in Fig. 9-4, are necessary only for X > 1. For X £ 1, |dt,/dt;| may be
replaced by dt,/dt,, in which case the above equation becomes

7tim = Ig j. =™t d(wi,).

This equation has sometimes been derived for X < 1 in this manner,
and the results then applied to instances where X > 1. This procedure
has given rise to some confusion, not because the equation is incorrect
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(it is not), but because its validity for X > 1 is not immediately obvious.
The demonstration of this validity may be based explicitly on Eq. (7),
but it may also be demonstrated in a more general manner as follows.

Since 7(¢;) di» 1s an element of charge, Eq. (6) is a summation of the
phase factor e~i@ gver all electrons that pass through the output gap
in one cycle. The order in which the contributions of the various elec-
trons are summed up is immaterial; for example, a summation index not
necessarily assigned in the order of arrival of electrons at the output gap
may be associated with each individual electron. In this case,

. w .
tm = — € gmImatin
m n

where ¢ is the charge on the electron. Here {,, is the arrival time for the
nth electron, and the summation is over all electrons passing through
the output gap in one cycle. As a particular illustration, since I3 is a
single-valued function of ¢, » may be identified with the time of departure
t1; since the electrons in the element of charge I, d¢; arrive (to first order)
at the same time ¢;({;), the summation may be written as an integral
giving
in= 11, f et g (wty).

w {z= —rx

Here the specific limits of integration indicate that the integral is extended
only over those values of ¢, that, although they may not in themselves
lie within a single period, correspond to arrival times ¢ lying within
one period. But since {; — ¢; is a periodic function of ¢z, the limits of
integration may be further changed to correspond to an arbitrary addi-
tion or subtraction of an integral number of periods to the ¢, correspond-
ing to any di,. In particular, this arbitrary change can be carried out
in such a way as to make the integration over ¢, correspond to integration
over a single consecutive period of ;. This process is easily visualized
with the aid of an extension of Fig. 9-3 to cover several periods of ¢; and
ts. Thus finally

i, = I / e~imetid{wiy). (8)
By Eq. (3), Eq. (8) may be written
'im = {9 e—J'mou f e—.?'m(wh—x i””“)d(wt]_).
1r -

Using the Bessel function expansion of the integrand,

f e I—Xuw D) g7 = 2xJ (mX),

-
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the equation for 7, becomes
tm = 2070 J, (mX). (9)

In Fig. 95 are shown, for the fundamental and several harmonics,
the absolute values of the current components divided by beam current,
liml/To = 2Jm(mX). These curves show in more detail the dependence
of current component on bunching parameter that has already been
qualitatively discussed.

Since the leading term in Jn(mX), and hence the predominant term
for X « 1, is proportional to X™, only the fundamental component is
linear in X for small bunching volt-

ages. The maximum value of |2:|/]o, :0'6 m|=1

1.16, occurs for X = 1.84 and, as the < 0 m=3 X m=10
harmonic order increases, the value of . NS

X for maximum harmonic content ~0.6

approaches unity. For m > 1 the 0 10 20 30

. Bunching parameter X
maximum value of J..(mX) approaches ER _
Fia. 9-5.—Dependence of harmonie

the value 0-65/m}é; this remarkably components i, of bunched beam cur-

slow diminution of harmonie ampli- rent on bunching parameter X for sev-
. . . eral values of harmonic order.

tude with harmonic order is a charac-

teristic feature of klystron bunching arising from the infinite peak of Fig.

9-4, as has already been noted qualitatively.

9.3. Debunching in a Klystron.—The preceding section has dealt
with bunching as a process involving simply the kinematics of electrons
in a field-free drift space. It is clear, however, that with sufficiently
high current density, space-charge forces may influence the electron
motion more than the electrode or gap voltages. If this is true, it might
be better to begin by considering bunching as a phenomenon involving
waves in a traveling space charge.! The present discussion is concerned
only with those effects of space charge that are easily considered as
modifications of bunching, or as ‘““debunching.”’? This distinction is not
a sharp one and lies primarily in the degree of approximation.

Space-charge Spreading of an Unneutralized D-¢c Beam.—As an intro-
duction to debunching, the orders of magnitude involved in space-charge
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