Lecture 5 High Power Microwave Sources EEC746

Tamer Abuelfadl

Electronics and Electrical Communications Department Faculty of Engineering Cairo University

Tamer Abuelfadl (EEC, Cairo University)

EEC746

1 / 15

Induced Current

- Total Current, Continuity of Total Current
- Schockley-Ramo Theorem

Induced Current

• Total Current, Continuity of Total Current

• Schockley-Ramo Theorem

Definition of Total Current

$$\nabla \times \mathbf{H} = \mathbf{J}_c + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mathbf{J}_c + \mathbf{J}_d$$

- J_c is the convection current (due to motion of charges).
- J_d is the displacement current (due to time variation of the electric field).

Definition

Total current density J_t is defined as,

$$\mathbf{J}_t \equiv \mathbf{J}_c + \mathbf{J}_d$$

Continuity of total current

$$\nabla \cdot \mathbf{J}_t = \mathbf{0}$$

Tamer Abuelfadl (EEC, Cairo University)

EEC746

5 / 15

• Total Current, Continuity of Total Current

• Schockley-Ramo Theorem

Schockley-Ramo Theorem

Green's Theorem for the two cases potential functions V_1 and V_2 ,

$$\int_{V} \left(V_{1} \nabla^{2} V_{2} - V_{2} \nabla^{2} V_{1} \right) d\tau = \oint_{S} \left(V_{1} \nabla V_{2} - V_{2} \nabla V_{1} \right) \cdot \mathbf{n} da$$

$$\nabla^{2} V_{1} = -\frac{q}{\varepsilon_{0}} \delta^{3} \left(\mathbf{r} - \mathbf{r}_{q} \right), \qquad \nabla^{2} V_{2} = 0$$

$$q V_{2q}^{(n)} = Q_{1}^{(n)} V_{0} - Q_{2}^{(n)} V_{0}$$

$$Q_{ind}^{(n)} = Q_{2}^{(n)} - Q_{1}^{(n)} = -q \frac{V_{2q}^{(n)}}{V_{0}}$$

Schockley-Ramo Theorem

For a group of charges,

$$I_{ind}^{(n)} = \frac{1}{V_0} \sum_{q} q \mathbf{v}_q \cdot \mathbf{E}_q = \frac{1}{V_0} \int_{V} \mathbf{J}_c \cdot \mathbf{E} d\tau$$
$$\boxed{I_{ind}^{(n)} = \frac{1}{V_0} \int_{V} \mathbf{J}_c \cdot \mathbf{E} d\tau}$$

Gridded (Planar) Gaps Electron Bunch with Uniform Velocity

Gridded (Planar) Gaps Change in Velocity is Considered

EEC746 10 / 15

Current Induced in Cavity Circuit

Impedance Presented to the Beam as a Function of Frequency

Voltage Induced with Resistive Loading

 $I_i = I_{\max} \sin \omega t, \qquad V = -I_i R = -I_{\max} R \sin \omega t$

• The induced voltage slightly decelerates the electron bunches.

• A new signal is generated in the beam which is 90° with the current I_i .

Voltage Induced with Inductive Loading

The induced voltage decelerates the electrons in and near the leading edge and accelerates those in and near the trailing edge, hence enhances the beam bunching. Tamer Abuelfadl (EEC, Cairo University) Lecture 5 ______ EEC746 _____ 14 / 15

Voltage Induced with Capacitive Loading

The induced voltage accelerates electrons away from the leading and trailing edges of a bunch, which tends to destroy the bunch (debunching).

Tamer Abuelfadl (EEC, Cairo University)

Lecture 5

EEC746 15 / 15