
Multichannel modulation



Motivation

• For a twisted pair, the channel introduces ISI 
which is proportional to the data rate.

• Multichannel modulation uses the principle of 
divide & conquer.

• Divide the wideband channel with severe ISI 
into smaller channels that can be considered 
AWGN channels.



Approach

• Data Tx over difficult channel is transformed 
through the use of advanced DSP techniques  
into parallel Tx of the given data stream over a 
large number of subchannels which can be 
considered AWGN.



Fading Channel 



Dividing the channel



MC system 

• Data Tx over each subchannel can be 
independently & individually optimized.

• The need for complicated equalization of a 
wideband channel is replaced by the need of 
multiplexing & demultiplexing the Tx of the 
incoming data stream over a large number of 
narrow band channels.

• The complexity of multicarrier system is high 
but FFT made it possible.





MC system

• The incoming binary data stream is first applied 
to a demux, thereby producing a set of N sub-
streams. 

• Each sub-stream represents a sequence of 2-
elemnt sub-symbol which, for the symbol interval 
0<t<T, is denoted by (an,bn),   n=1,2,3…,N

• The carrier frequency fn of the nth modulator is an 
integer multiple of the symbol rate 1/T, fn=n/T  



Loading of MC systems 
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• For each n, the two quadrature-modulated 
sinc functions form an orthogonal pair



Properties of basis functions
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•Recognize that
•We may completely redefine the passband basis function 
in the complex form 

•Hence, the passband basis functions form an orthnormal set 
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Properties 

• The set of channel-output functions h(t)*(t) 
remains orthogonal for a linear channel with 
arbitrary impulse response h(t), * denotes 
convolution

• The channel is thus partitioned into a set of 
independent subchannels operating in 
continuous time



Capacity of AWGN channels

• C=B log2(1+SNR) bps

• C=1/2 log2(1+SNR) bits/symbols

• C can only be reached with extremely complex 
coding technique for implementable systems.



Attainable rate R

• R = 1/2 log2(1+SNR/г) bits/ symbol

• Г=SNR gap

• For a SNR=255(24dB)→C=4 bits/symbol 

• However, the rate that will achieve the required 
BER, using the implemented system, is only 
2bits/symbol

• 2 = 1/2 log2(1+255/г)

• (1+255/г)=16

• Г=17



Loading of MC Trans. system

• Define

• Total rate that can be Tx on all channels

• The noise variance        is           for all n.

• We want to maximize R through the proper 
allocation of the total Tx power among various 
channels for a constant total transmit power.
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Optimization problem

• Maximize the bit rate for the entire MC 
transmission system through an optimal 
sharing of the total transmit power P between 
the N subchannels, subject to the constraint 
that P is maintained constant 



Lagrange Multiplier 
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Optimum Allocation 

• The sum of the transmit power and the noise 
variance scaled by           must be maintained 
constant for each subchannel.

• The process of allocating P to the individual 
subcahnnel so as to maximize the bit rate of 
the entire multichannel transmission system is 
called loading 
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Water-Filling Interpretation 
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Assuming constant  and n note the 
following:
-The sum of Pn and the scaled noise power 
satisfies (*) for 4 subchannel for a given P
-The sum of the 4 subchannels consumes P
-The remaining 2 subchannels have been 
eliminated because they would require negative 
power to satisfy (*)  for K, which is unacceptable 

(*) 

Subchannel index n 



Water-filling algorithm 

• The above solution is referred to as the water-
filling solution. 

• The terminology follows from the analogy 
with a fixed amount of water (P) being poured 
into a container with a number of connected 
regions each having different depth (noise).

• The water distributes itself in such a way that 
a constant water level is attained across the 
whole container. 



Equation Form 
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Example

Consider a linear channel whose squared 
magnitude response  |H(f)|2 has the piecewise 
linear form shown. Assume =1 and 2=1. 
Calculate the optimum power allocation.
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Example

• P1+P2=P

• P1-K=-1

• P2-K=-1/L

• P=10, L=0.1
1

10

2

ng



Subchannel index n 



Example

• K=10.5

• P1=9.5

• P2=0.5
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