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Lec. Topic Source
1 Introduction and Fourier Transforms Chapter 5, Proakis DSP
book
2 DFT: Chapter 5, Proakis DSP
e Sampling in the frequency domain book
e Time-Domain aliasing
3 DFT: Chapter 5, Proakis DSP
e Properties book
e Circular convolution and linear convolution using circular convolution
4 DFT: Chapter 5, Proakis DSP
e Frequency resolution and windowing book
Wireline Channel
e Properties Lecture notes
e Interference sources
5 Fading: Chapter 4Rappaport
e Origin of fading
e Doppler frequency
e Classification of fading channels
6 Fading: Chapter 4 Rappaport
e Fast and slow channels
e Flat and frequency selective channels
7 Fading: Chapter 4 Rappaport

e Delay spread and coherence bandwidth
e Doppler spread and coherence bandwidth




8 Multichannel Modulation (MCM): Haykin, section 6.12
e Advantages and how MCM combats ISl
e Block diagram of MCM transceiver
e Basis functions

9 MCM: Haykin, section 6.12
e The water-filling algorithm

10 (Discrete Multi-tone DMT: Haykin, section 6.12,
e Using DFT symmetry properties to generate real baseband MCM signal |and Cioffi’s tutorial
e DSL basics

11 |OFDM:; Prasad’s OFDM book
e Properties of the wireless channel and introduction to multipath fading,

and the delay spread

e Advantages and disadvantages of OFDM systems in wireless channels
e Guard time and cyclic extension

12 |OFDM: Prasad’s OFDM book

e Block diagram of a “digital” OFDM transceiver
e Choice of OFDM parameters




Wireless Communications




History of Wireless

The Birth of Radio
1897 — “The Birth of Radio” - Marconi awarded patent for wireless telegraph

e 1897 — First “Marconi station” established on Needles island to communicate
with English coast

e 1898 — Marconi awarded English patent no. 7777 for tuned communication

e« 1898 — Wireless telegraphic connection between England and France
established

Transoceanic Communication

e 1901 — Marconi successfully transmits radio signal across Atlantic Ocean from
(first wireless communication across the ocean) Cornwall to Newfoundland

e 1902 — First bidirectional communication across Atlantic
1909 — Marconi awarded Nobel prize for physics

http://wireless.ece.ufl.edu/jshea/wireless_history.html



History of Wireless (2)

Voice over Radio

1914 — First voice over radio transmission

1920s — Mobile receivers installed in police cars in Detroit

1930s — Mobile transmitters developed; radio equipment occupied most of police car trunk
1935 — Frequency modulation (FM) demonstrated by Armstrong

1940s — Majority of police systems converted to FM

Birth of Mobile Telephony

1946 — First interconnection of mobile users to public switched telephone network (PSTN)
1949 — FCC recognizes mobile radio as new class of service

1940s — Number of mobile users > 50K

1950s — Number of mobile users > 500K

1960s — Number of mobile users > 1.4M

1960s — Improved Mobile Telephone Service (IMTS) introduced; supports full-duplex, auto
dial, auto trunking

1976 — Bell Mobile Phone has 543 pay customers using 12 channels in the New York City
area; waiting list is 3700 people; service is poor due to blocking



History of Wireless (3)

Cellular Mobile Telephony
* 1979 — NTT/Japan deploys first cellular communication system

1983 — Advanced Mobile Phone System (AMPS) deployed in US in 900 MHz band: supports 666
duplex channels

* 1989 — Groupe Special Mobile defines European digital cellular standard, GSM

* 1991 — US Digital Cellular phone system introduced

* 1993 — IS-95 code-division multiple-access (CDMA) spread- spectrum digital cellular system
deployed in US

* 1994 — GSM system deployed in US, relabeled Global System for Mobile Communications"

Wireless Local Area Networks

* 1990 — Formation of IEEE 802.11 Working Group to define standards for Wireless Local Area
Networks (WLANSs)

* 1997-2003 — Releases of IEEE 802.11 WLAN protocol, supporting 1-54 Mbit/s data rates in the
2.4/5 GHz ISM bands based on Orthogonal Frequency Division Multiplexing (OFDM)

e 2009 — Release of IEEE 802.11n WLAN protocol, supporting up to 150 Mbit/s data rates in both the
2.4 GHz and 5 GHz ISM bands.



History of Wireless (4)

Wireless Metropolitan Area Networks

e 1999 — Formation of IEEE 802.16 Working Group to
define standards for Wireless Metropolitan Area
Networks (WLANS)

e 2004 — release of 802.16d (fixed WiMAX standard)
(OFDM)

e 2005 —release of 802.16e (Mobile WiMAX standard)

e 2009 —Cairo University hosted the WIMAX standard
meeting to discuss development of WiMAX release 2

e 2012 — WiMAX release 2 commercially available



History of Wireless (5)

3G networks and beyond

e 2001 — UMTS deployment based on WCDMA and
CDMA2000

e 2007 — HSPA often referred to as 3.5G supporting
14Mbps on the downlink

e 2008 — HSPA+ often referred to as 3.75G supporting
42Mbps on the downlink

e 2010 — Number of cellular phones surpassed 4 billion
worldwide and 65 million in Egypt.

e 2009 — first LTE (long term evolution) system
deployment is Sweden supporting 100Mbps on the
downlink. LTE is based on OFDM



Fourier transforms
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Fourier transform
Fourier series

Discrete time Fourier
transform
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Fourier transforms
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Fourier transforms
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Fourier transforms
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Fourier Transform

x(f)= T x(t)e 1 dt

X(t) = j x(f)et 17 df



Fourier Series

T/2
1

C == j x(t)e 12 dt
T -T/2

X(t)= > C,e'*"

N=—00

f =n/T



DTFT

o0

X(w) = Z x(n)e "

N=—0o0

x(n) = — j X (w)e" ' "dw



Discrete Fourier Transform
(DFT)



Motivation

e We need a transform that is discrete in both

domains, to be able to manipulate signals on
pProcessors.

* For example, given a discrete time signal, we
need a DISCRETE frequency domain
representation, unlike the DTFT which is
continuous in the frequency domain.



Approach

* Analogous to sampling in the time domain, we
will consider sampling the DTFT. Remember
that sampling in the TD causes repetition of
the spectrum in the FD.

Xiew) = Z x(n)g-Jwn



Sampling in the Freqg Domain
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Sampling in the Freq Domain (2)
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Sampling in the Freq Domain (3)

IN +

X=X .Y

n=IN

N_lx(n)e—jZﬂkn/N

. N-1~ o —j2zkn/N
=m0 2, X(n=IN)e

We define a new signal  X,(N) =

0

Y x(n-IN)
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Time Domain Aliasing

x (=Y x(n-IN)

« N<L




Example

Find the DFT, X(k), of

1 0<n<L-]
x(n) = .
0 otherwise

llllllllll
5555555555

L Gin(el2)
X _ w(n)e jon _ e Jo(L-1)/2
() =2 X(n) sin(@/ 2)

Sln(ﬂ'kL/ N) — jak(L-1)/N
sin(zk / N)

X (27zk I N) =



X(w)
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Example (cntd.)
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Time Domain Sampling
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Time Domain Reconstruction

LPF
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Frequency domain sampling

10

LN

B

4l

[ e

00 200 400 600 800 1000 1200
Window 0...N-1 freq

| | | ‘ | | |
0 S 10 15 20 25 30
time

31



X()

sampling

sampling

Analogy

x[nf

filter

X7k] X(w)
filter
1 0<n<N-1
h(n) ={
0 0.W.
_sin(wN /2)

H@) sin(w/ 2)
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Example
x(n)=a"u(n) O<ax<l

Determine the reconstructed spectrum
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Example (cntd.)

1 n

a
1— ae_jzﬂk/N Take IDFT to get Xp (n) = 1 aN

X (K) =

If N is taken large enough, x,(n) will approach x(n)

To reconstruct the frequency domain, calculate

1 1-a“e ™™
1-a" 1-ae’ @

X () = fxp (n)e " =

If N is large, aN will decrease and the error will decrease

0<n<N-1



[X(w)]

Reconstructed
spectrum

Example (cntd.)
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DFT Properties

x(n) <> X (k)
X(K) = XMW"

() = 31 X (W,

WN :e—jsz
X(N+ N) = x(n)
X(k+N)=X(k)



Symmetry Properties of DFT

* If x(n) is real, then X (k) = X" (N —k)
* More properties can be obtained for even,
odd, imaginary,... signals
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Linearity and Shift

ax(n) + by (n) 3; ax (k) +bY (K)

The N-point DFT of a finite duration sequence, x(n) of length L<N
is equivalent to the N-point DFT of a periodic sequence X,(n)

of period N

Any shift by m units, will be applied to x,(n) such that

x,(n-m)="3 x(n-m—IN)

| =—0o0
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Circular Shift
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Multiplication of 2 DFTs

In analog systems, using Fourier transform
If Y(f)=H(f)x(f)

Then  y(t)= [ h(r)x(t—7)dz
Using the DFT™

Circular convolution

If  Y(k)=X(K)H(K)

y(m) =2 x(nh((m-n)),

n=0

Note that both signals must
have the same size N



Example

Perform circular convolution between the
following 2 sequences:

=[212171h=[1234]
y(m) = > x(mh((m-n)),

x(1)

x(2) o x(0)

x(3)



Example

Perform circular convolution between the
following 2 sequences:

x=[2121]h=[123 4]
h(l)

41
y(m) => x(n)h((m-n)),
"0 h2) h0)
x(1)
h(3)
X2 X(0)

x(3)



Example

Perform circular convolution between the
following 2 sequences: x=[2 1 2 1 | A=[1 2 3 4]

4-1
y(m)=>_x(n)h((m-n)), "
n=0
x(1) h(2) h(0)
h(3)
x(2) x(0)

x(3)



Example (cntd.)

y(0) = Zx(ﬂ)h(( n)), =14

x(1)
(- ()

x(3)



Example (cntd.)

y(1) =3 x(Mh(@-n)), =16

x(1)

x(3)



Example (cntd.)

Y(2)= > x(mh((2-n), =14

i @
X(2) o x(0)

x(3)



Example (cntd.)

y3)= 3 x(mh((a-n)), =16

x(1)
x(2) x(0)

x(3)

y(n)=[14 16 14 16]



Linear Filtering Based on DFT
Y (k) = X (k)H (k)

y(m) = Y x(mh((m-n),

*To perform circular convolution, x and /# must be of the
same size, N, and y 1s also of size N.

*y 1s NOT equal to the linear convolution of x and /

How can we FORCE the circular convolution to calculate
the linear convolution?



Linear Filtering Based on DFT

* Assume x 1s of length L and 7 1s of length M

* The linear convolution output will be of length
N=L+M-1

* In the case of linear convolution,
Y (o) = X (0)H (w)

L1

y(m)= 2 x(n)h(m-n)

n=0



Linear Filtering Based on DFT

* The sequence y(n) can be uniquely
represented in the frequency domain by
N=M-+L-1 samples of its spectrum Y(w)

Y(k):Y(a))‘w:Mk/N k=0,1..,N-1
:X(a))H(a))‘wzzﬁk/N k=0,1..,N-1
:X(k)H(k)‘ k=0,1.. N-1

w=27K/IN

* Where X(k) and H(k) are the N-point DFTs of
x(n) and h(n)



Linear Filtering Based on DFT

* We PAD x(n) and h(n) with zeros to increase
their duration to N

* Padding does not change the spectra X(w)
and H(w)

* Byincreasing the lengths of x/n/ and A/n/ to
N and then circularly convolving the resulting
sequences, we obtain the same result we
would obtain with linear convolution



Example

* Perform Linear convolution using Circular
convolution for x(n)=[12 2 1], h(n)=[12 3 ]

e =3, M=4, use N=4+3-1=6

Do circular convolution between

x(m)=[122100], h(n)=[123000]

You can also get the DFT(x) and DFT(/4) with N=6,

Calculate Y(k)=X(k)H(K), N=6

Then y(n)=IDFT(Y)



Frequency Analysis Using DFT

* To compute the spectrum, the signal values for
all time are required, which is non-practical.

 What are the implications of using a finite data
record in frequency analysis using the DFT?

* Assume a band-limited, analog signal with
BW=B, sampling rate F.=1/T>2B, and L total
samples.



Frequency Analysis Using DFT

Assume x(n) is the signal to be analyzed, limiting the number
of samples to L is equivalent to multiplying x(n) by a
rectangular window w(n) of length L

X(n) = x(n)w(n)

1 0<n<N-1
w(n) =
0 0.W.

_ Sln(C()L/Z) e_jw(L_l)/z

W(@) sin(w/ 2)
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Frequency Analysis Using DFT
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Frequency Analysis Using DFT

* Assume that the input signal, x(n)=cos(w_n)
X (0)=1/2[W(0-a,) +W (0 + @,)]

20
X
o X (@)|
O FOAVAVA T BV AVAVAVAVAVAVAYA bl W

0 w, 2pi-w,



Frequency Analysis Using DFT

* To compute X (@) we use the DFT, by padding

X(n) with N-L zeros to compute the N-point
DFT of the L point sequence

* Notice that the windowed spectrum is not
localized to a single frequency but the power
“leaked out” into the entire frequency range

* Leakage not only distort the spectrum but
decreases resolution as well




Example

X(n) = cos(a,n) + cos(ew,n)+ cos(w,n)
w,=0.27,0,=0.227,0, =0.67
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Example (cntd.)
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Frequency Resolution of DFT

The spectrum of the rectangular window
sequence has its first zeroat w=2xz/L

If |w,—a,|<27/L the 2 window functions

W(w—-ao) and W(w-w,) overlap and thus the 2
spectral lines are not distinguishable

271t/L defines the frequency resolution of the
DFT

Increasing N increase the visibility of the
spectrum already defined by L



Example

Is sampled at the rate Fs=20 samples per

(e—t t >0 se< and a block of length 100 samples is
X (t) — 2 ’ ~  used to estimate the spectrum. Compare
A 0 t<( thespectrum of the truncated discrete
- signal to the spectrum of the analog signal.




Example (cntd.)
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Example (cntd.)
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Example (cntd.)

* We would like to use L samples only of the
discrete signal to compute the spectrum of
the signal
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