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Lec. Topic Source

1 Introduction and Fourier Transforms Chapter 5, Proakis DSP 

book

2 DFT: 

 Sampling in the frequency domain

 Time-Domain aliasing

Chapter 5, Proakis DSP 

book

3 DFT:

 Properties

 Circular convolution and linear convolution using circular convolution

Chapter 5, Proakis DSP 

book

4 DFT:

 Frequency resolution and windowing

Wireline Channel 

 Properties

 Interference sources

Chapter 5, Proakis DSP 

book

Lecture notes 

5 Fading: 

 Origin of fading

 Doppler frequency

 Classification of fading channels 

Chapter 4Rappaport

6 Fading: 

 Fast and slow channels

 Flat and frequency selective channels

Chapter 4 Rappaport

7 Fading:

 Delay spread and coherence bandwidth 

 Doppler spread and coherence bandwidth

Chapter 4 Rappaport
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8 Multichannel Modulation (MCM):

 Advantages and how MCM combats ISI

 Block diagram of MCM transceiver

 Basis functions

Haykin, section 6.12

9 MCM:

 The water-filling algorithm

Haykin, section 6.12

10 Discrete Multi-tone DMT:

 Using DFT symmetry properties to generate real baseband MCM signal 

 DSL basics 

Haykin, section 6.12, 

and Cioffi’s tutorial

11 OFDM:

 Properties of the wireless channel and introduction to multipath fading, 

and the delay spread

 Advantages and disadvantages of OFDM systems in wireless channels

 Guard time and cyclic extension

Prasad’s OFDM book

12 OFDM:

 Block diagram of a “digital” OFDM transceiver

 Choice of OFDM parameters 

Prasad’s OFDM book
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Wireless Communications 
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History of Wireless
The Birth of Radio

• 1897 — “The Birth of Radio” - Marconi awarded patent for wireless telegraph

• 1897 — First “Marconi station” established on Needles island to communicate 
with English coast

• 1898 — Marconi awarded English patent no. 7777 for tuned communication

• 1898 — Wireless telegraphic connection between England and France 
established

Transoceanic Communication

• 1901 — Marconi successfully transmits radio signal across Atlantic Ocean from 
(first wireless communication across the ocean)  Cornwall to Newfoundland

• 1902 — First bidirectional communication across Atlantic

• 1909 — Marconi awarded Nobel prize for physics

http://wireless.ece.ufl.edu/jshea/wireless_history.html
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History of Wireless (2)

Voice over Radio

• 1914 — First voice over radio transmission

• 1920s — Mobile receivers installed in police cars in Detroit

• 1930s — Mobile transmitters developed; radio equipment occupied most of police car trunk

• 1935 — Frequency modulation (FM) demonstrated by Armstrong

• 1940s — Majority of police systems converted to FM

Birth of Mobile Telephony

• 1946 — First interconnection of mobile users to public switched telephone network (PSTN)

• 1949 — FCC recognizes mobile radio as new class of service

• 1940s — Number of mobile users > 50K

• 1950s — Number of mobile users > 500K

• 1960s — Number of mobile users > 1.4M

• 1960s — Improved Mobile Telephone Service (IMTS) introduced; supports full-duplex, auto 
dial, auto trunking

• 1976 — Bell Mobile Phone has 543 pay customers using 12 channels in the New York City 
area; waiting list is 3700 people; service is poor due to blocking
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History of Wireless (3)

Cellular Mobile Telephony

• 1979 — NTT/Japan deploys first cellular communication system

• 1983 — Advanced Mobile Phone System (AMPS) deployed in US in 900 MHz band: supports 666 
duplex channels

• 1989 — Groupe Spècial Mobile defines European digital cellular standard, GSM

• 1991 — US Digital Cellular phone system introduced

• 1993 — IS-95 code-division multiple-access (CDMA) spread- spectrum digital cellular system 
deployed in US

• 1994 — GSM system deployed in US, relabeled ``Global System for Mobile Communications''

Wireless Local Area Networks

• 1990 — Formation of IEEE 802.11 Working Group to define standards for Wireless Local Area 
Networks (WLANs)

• 1997-2003 — Releases of IEEE 802.11 WLAN protocol, supporting 1-54 Mbit/s data rates in the 
2.4/5 GHz ISM bands based on Orthogonal Frequency Division Multiplexing (OFDM)

• 2009 — Release of IEEE 802.11n WLAN protocol, supporting up to 150 Mbit/s data rates in both the 
2.4 GHz and 5 GHz ISM bands.
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History of Wireless (4)

Wireless Metropolitan Area Networks

• 1999 — Formation of IEEE 802.16 Working Group to 
define standards for Wireless Metropolitan Area 
Networks (WLANs)

• 2004 — release of 802.16d (fixed WiMAX standard) 
(OFDM)

• 2005 —release of 802.16e (Mobile WiMAX standard)

• 2009 —Cairo University hosted the WIMAX standard 
meeting to discuss development of WiMAX release 2

• 2012 — WiMAX release 2 commercially available
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History of Wireless (5)

3G networks and beyond
• 2001 — UMTS deployment based on WCDMA and 

CDMA2000
• 2007 — HSPA often referred to as 3.5G supporting 

14Mbps on the downlink
• 2008 — HSPA+ often referred to as 3.75G supporting 

42Mbps on the downlink
• 2010 — Number of cellular phones surpassed 4 billion 

worldwide and 65 million in Egypt.
• 2009 — first LTE (long term evolution) system 

deployment is Sweden supporting 100Mbps on the 
downlink. LTE is based on OFDM 

10



Fourier transforms 

Freq domain Time domain

Fourier transform

Fourier series

Discrete time Fourier 
transform
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Fourier transforms 

Freq domain Time domain

Fourier transform Cont/aperiodic Aperiodic/cont

Fourier series

Discrete time Fourier 
transform
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Fourier transforms 

Freq domain Time domain

Fourier transform Cont/aperiodic Aperiodic/cont

Fourier series Disc/aperiodic Periodic/cont

Discrete time Fourier 
transform
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Fourier transforms 

Freq domain Time domain

Fourier transform Cont/aperiodic Aperiodic/cont

Fourier series Disc/aperiodic Periodic/cont

Discrete time Fourier 
transform

cont/periodic Aperiodic/disc
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Fourier Transform
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Fourier Series
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DTFT
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Discrete Fourier Transform 
(DFT)
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Motivation

• We need a transform that  is discrete in both 
domains, to be able to manipulate signals on   
processors.

• For example, given a discrete time signal, we 
need a DISCRETE frequency domain 
representation, unlike the DTFT which is 
continuous in the frequency domain.
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Approach

• Analogous to sampling in the time domain, we 
will consider sampling the DTFT. Remember 
that sampling in the TD causes repetition of 
the spectrum in the FD.

Take 
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Sampling in the Freq Domain

Time domain

Frequency domain
(magnitude)
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Sampling in the Freq Domain (2)
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Sampling in the Freq Domain (3)
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Fourier Transform pair
The DFT
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Time Domain Aliasing 

N<L
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Example 
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Example (cntd.)
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Example (cntd.)

DTFT, N=L, N=2L, 4L
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Time Domain Sampling
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Time Domain Reconstruction
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Frequency domain sampling
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Analogy 
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Example

Determine the reconstructed spectrum

33

( ) ( )     0< <1nx n a u n a

0

1
( )

1

n j n

jn
X a e

ae






 


 




0                                                                         2pi

x(n) |X()|





Example (cntd.)
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Example (cntd.)
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DFT Properties
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Symmetry Properties of DFT

• If x(n) is real, then

• More properties can be obtained for even, 
odd, imaginary,… signals
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Parseval’s Theorem 
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Linearity and Shift
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Shift
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Circular Shift
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Multiplication of 2 DFTs

In analog systems, using Fourier transform

If

Then

Using the DFT

If
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Circular convolution 



Example
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Example
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Example
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Example (cntd.)
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Example (cntd.)
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Example (cntd.)
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Example (cntd.)
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Linear Filtering Based on DFT
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•To perform circular convolution, x and h must be of the 

same size, N, and y is also of size N.

•y is NOT equal to the linear convolution of x and h

•How can we FORCE the circular convolution to calculate 

the linear convolution? 



Linear Filtering Based on DFT

• Assume x is of length L and h is of length M

• The linear convolution output will be of length 

N=L+M-1

• In the case of linear convolution,
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Linear Filtering Based on DFT

• The sequence y(n) can be uniquely 
represented in the frequency domain by 
N=M+L-1 samples of its spectrum Y()

• Where X(k) and H(k) are the N-point DFTs of 
x(n) and h(n)
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Linear Filtering Based on DFT

• We PAD x(n) and h(n) with zeros to increase 
their duration to N

• Padding does not change the spectra X() 

and H()

• By increasing the  lengths of x[n] and h[n] to 
N and then circularly convolving the resulting 
sequences, we obtain the same result we 
would obtain with linear convolution 
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Example

• Perform Linear convolution using Circular 
convolution for x(n)=[1 2 2 1], h(n)=[1 2 3 ]

• L=3, M=4, use N=4+3-1=6

Do circular convolution between  

x(n)=[1 2 2 1 0 0 ], h(n)=[1 2 3 0 0 0]

You can also get the DFT(x) and DFT(h) with N=6, 

Calculate Y(k)=X(k)H(K), N=6

Then y(n)=IDFT(Y)
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Frequency Analysis Using DFT

• To compute the spectrum, the signal values for 
all time are required, which is non-practical.

• What are the implications  of using a finite data 
record in frequency analysis using the DFT? 

• Assume a band-limited, analog signal with 
BW=B, sampling rate Fs=1/T>2B, and L total 
samples.  
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Frequency Analysis Using DFT
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Assume x(n) is the signal to be analyzed, limiting the number 
of samples to L is equivalent to multiplying x(n) by a 
rectangular window w(n) of length L



Frequency Analysis Using DFT
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Frequency Analysis Using DFT

• Assume that the input signal, x(n)=cos(won)
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Frequency Analysis Using DFT
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• To compute            we use the DFT, by padding

with N-L zeros to compute the N-point 
DFT of the L point sequence

• Notice that the windowed spectrum is not 
localized to a single frequency but the power 
“leaked out” into the entire frequency range

• Leakage not only distort the spectrum but 
decreases resolution as well
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Example
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Example (cntd.)
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Frequency Resolution of DFT

• The spectrum of the rectangular window 
sequence has its first zero at

• If                               the 2 window functions

and                 overlap and thus the 2 
spectral lines are not distinguishable 

• 2/L defines the frequency resolution of the 
DFT 

• Increasing N increase the visibility of the 
spectrum already defined by L 
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Example
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Example (cntd.)
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Example (cntd.)
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Example (cntd.)

• We would like to use L samples only of the 
discrete signal to compute the spectrum of 
the signal
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Example (cntd.)
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L=25, N=200


