DFT

Course Information

Instructors: Mohamed Khairy & Yasmine Fahmy TAs: Ahmed AbdelKarim & Hazem Soliman Lectures: Sundays and Wednesdays Grading: Midterm 22%, Projects: 8%, Final 70%

Lec.	Торіс	Source
1	Introduction and Fourier Transforms	Chapter 5, Proakis DSP
		book
2	DFT:	Chapter 5, Proakis DSP
	• Sampling in the frequency domain	book
	Time-Domain aliasing	
3	DFT:	Chapter 5, Proakis DSP
	• Properties	book
	• Circular convolution and linear convolution using circular convolution	
4	DFT:	Chapter 5, Proakis DSP
	Frequency resolution and windowing	book
	Wireline Channel	
	• Properties	Lecture notes
	Interference sources	
5	Fading:	Chapter 4Rappaport
	Origin of fading	
	Doppler frequency	
	Classification of fading channels	
6	Fading:	Chapter 4 Rappaport
	• Fast and slow channels	
	Flat and frequency selective channels	
7	Fading:	Chapter 4 Rappaport
	Delay spread and coherence bandwidth	
	Doppler spread and coherence bandwidth	

8	Multichannel Modulation (MCM):	Haykin, section 6.12
	Advantages and how MCM combats ISI	
	Block diagram of MCM transceiver	
	Basis functions	
9	MCM:	Haykin, section 6.12
	• The water-filling algorithm	
10	Discrete Multi-tone DMT:	Haykin, section 6.12,
	• Using DFT symmetry properties to generate real baseband MCM signal	and Cioffi's tutorial
	DSL basics	
11	OFDM:	Prasad's OFDM book
	• Properties of the wireless channel and introduction to multipath fading,	
	and the delay spread	
	• Advantages and disadvantages of OFDM systems in wireless channels	
	Guard time and cyclic extension	
12	OFDM:	Prasad's OFDM book
	Block diagram of a "digital" OFDM transceiver	
	Choice of OFDM parameters	

Wireless Communications

History of Wireless

The Birth of Radio

- 1897 "The Birth of Radio" Marconi awarded patent for wireless telegraph
- 1897 First "Marconi station" established on Needles island to communicate with English coast
- 1898 Marconi awarded English patent no. 7777 for tuned communication
- 1898 Wireless telegraphic connection between England and France established

Transoceanic Communication

- 1901 Marconi successfully transmits radio signal across Atlantic Ocean from (first wireless communication across the ocean) Cornwall to Newfoundland
- 1902 First bidirectional communication across Atlantic
- 1909 Marconi awarded Nobel prize for physics

http://wireless.ece.ufl.edu/jshea/wireless_history.html

History of Wireless (2)

Voice over Radio

- 1914 First voice over radio transmission
- 1920s Mobile receivers installed in police cars in Detroit
- 1930s Mobile transmitters developed; radio equipment occupied most of police car trunk
- 1935 Frequency modulation (FM) demonstrated by Armstrong
- 1940s Majority of police systems converted to FM

Birth of Mobile Telephony

- 1946 First interconnection of mobile users to public switched telephone network (PSTN)
- 1949 FCC recognizes mobile radio as new class of service
- 1940s Number of mobile users > 50K
- 1950s Number of mobile users > 500K
- 1960s Number of mobile users > 1.4M
- 1960s Improved Mobile Telephone Service (IMTS) introduced; supports full-duplex, auto dial, auto trunking
- 1976 Bell Mobile Phone has 543 pay customers using 12 channels in the New York City area; waiting list is 3700 people; service is poor due to blocking

History of Wireless (3)

Cellular Mobile Telephony

- 1979 NTT/Japan deploys first cellular communication system
- 1983 Advanced Mobile Phone System (AMPS) deployed in US in 900 MHz band: supports 666 duplex channels
- 1989 Groupe Spècial Mobile defines European digital cellular standard, GSM
- 1991 US Digital Cellular phone system introduced
- 1993 IS-95 code-division multiple-access (CDMA) spread- spectrum digital cellular system deployed in US
- 1994 GSM system deployed in US, relabeled ``Global System for Mobile Communications''

Wireless Local Area Networks

- 1990 Formation of IEEE 802.11 Working Group to define standards for Wireless Local Area Networks (WLANs)
- 1997-2003 Releases of IEEE 802.11 WLAN protocol, supporting 1-54 Mbit/s data rates in the 2.4/5 GHz ISM bands based on Orthogonal Frequency Division Multiplexing (OFDM)
- 2009 Release of IEEE 802.11n WLAN protocol, supporting up to 150 Mbit/s data rates in both the 2.4 GHz and 5 GHz ISM bands.

History of Wireless (4)

Wireless Metropolitan Area Networks

- 1999 Formation of IEEE 802.16 Working Group to define standards for Wireless Metropolitan Area Networks (WLANs)
- 2004 release of 802.16d (fixed WiMAX standard) (OFDM)
- 2005 release of 802.16e (Mobile WiMAX standard)
- 2009 Cairo University hosted the WIMAX standard meeting to discuss development of WiMAX release 2
- 2012 WiMAX release 2 commercially available

History of Wireless (5)

3G networks and beyond

- 2001 UMTS deployment based on WCDMA and CDMA2000
- 2007 HSPA often referred to as 3.5G supporting 14Mbps on the downlink
- 2008 HSPA+ often referred to as 3.75G supporting 42Mbps on the downlink
- 2010 Number of cellular phones surpassed 4 billion worldwide and 65 million in Egypt.
- 2009 first LTE (long term evolution) system deployment is Sweden supporting 100Mbps on the downlink. LTE is based on OFDM

	Freq domain	Time domain
Fourier transform		
Fourier series		
Discrete time Fourier transform		

	Freq domain	Time domain
Fourier transform	Cont/aperiodic	Aperiodic/cont
Fourier series		
Discrete time Fourier transform		

	Freq domain	Time domain
Fourier transform	Cont/aperiodic	Aperiodic/cont
Fourier series	Disc/aperiodic	Periodic/cont
Discrete time Fourier transform		

	Freq domain	Time domain
Fourier transform	Cont/aperiodic	Aperiodic/cont
Fourier series	Disc/aperiodic	Periodic/cont
Discrete time Fourier transform	cont/periodic	Aperiodic/disc

Fourier Series

$$C_{n} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j2\pi f_{n}t} dt$$

$$f_n = n / T$$

DTFT

Discrete Fourier Transform (DFT)

Motivation

- We need a transform that is discrete in both domains, to be able to manipulate signals on processors.
- For example, given a discrete time signal, we need a DISCRETE frequency domain representation, unlike the DTFT which is continuous in the frequency domain.

Approach

 Analogous to sampling in the time domain, we will consider sampling the DTFT. Remember that sampling in the TD causes repetition of the spectrum in the FD.

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

Take

$$\omega_k = \frac{2\pi}{N}$$

k

Sampling in the Freq Domain

Sampling in the Freq Domain (2)

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\frac{2\pi k_n}{N}}$$

Sampling in the Freq Domain (3)

$$X(\frac{2\pi k}{N}) = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x(n) e^{-j2\pi kn/N}$$
$$= \sum_{n=0}^{N-1} \sum_{l=-\infty}^{\infty} x(n-lN) e^{-j2\pi kn/N}$$

We define a new signal $x_p(n) = \sum_{l=-\infty} x(n-lN)$

$$X(\frac{2\pi k}{N}) = \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi kn/N}$$
$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi k}{N}) e^{j2\pi kn/N}$$

Fourier Transform pair The DFT

 $x_p(n)$

Time Domain Aliasing

$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n-lN)$$

Find the DFT, X(k), of

$$x(n) = \begin{cases} 1 & 0 \le n \le L-1 \\ 0 & \text{otherwise} \end{cases}$$

n

DTFT, N=L, N=2L, 4L

Time Domain Sampling

Time Domain Reconstruction

Frequency domain sampling

time

Analogy

 $x(n) = a^n u(n) \qquad 0 < a < 1$

Determine the reconstructed spectrum

$$X(k) = \frac{1}{1 - ae^{-j2\pi k/N}} \quad \text{Take IDFT to get} \qquad x$$

 $x_p(n) = \frac{a^n}{1 - a^N} \qquad 0 \le n \le N-1$

If *N* is taken large enough, $x_p(n)$ will approach x(n)

To reconstruct the frequency domain, calculate

$$X(\omega) = \sum_{n=0}^{N-1} x_p(n) e^{-j\omega n} = \frac{1}{1 - a^N} \frac{1 - a^N e^{-j\omega N}}{1 - a e^{-j\omega}}$$

If N is large, a^N will decrease and the error will decrease

DFT Properties

Symmetry Properties of DFT

- If x(n) is real, then $X(k) = X^*(N-k)$
- More properties can be obtained for even, odd, imaginary,... signals

Parseval's Theorem

Linearity and Shift

$$ax(n) + by(n) \stackrel{DFT}{\underset{N}{\leftrightarrow}} aX(k) + bY(k)$$

The N-point DFT of a finite duration sequence, x(n) of length L<N is equivalent to the N-point DFT of a periodic sequence $x_p(n)$ of period N

Any shift by m units, will be applied to $x_p(n)$ such that

$$x_p(n-m) = \sum_{l=-\infty}^{\infty} x(n-m-lN)$$

Circular Shift

Multiplication of 2 DFTs

In analog systems, using Fourier transform If Y(f) = H(f)x(f)

If
$$Y(k) = X(k)H(k)$$

Circular convolution

$$y(m) = \sum_{n=0}^{N-1} x(n)h((m-n))_{N}$$

Note that both signals must have the same size N

Perform circular convolution between the following 2 sequences:

$$x = \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} h = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$
$$y(m) = \sum_{n=0}^{4-1} x(n)h((m-n))_4$$

Perform circular convolution between the following 2 sequences:

$$x = [2 \ 1 \ 2 \ 1 \] \ h = [1 \ 2 \ 3 \ 4]$$
$$y(m) = \sum_{n=0}^{4-1} x(n)h((m-n))_4$$

Perform circular convolution between the following 2 sequences: $x = [2 \ 1 \ 2 \ 1 \] h = [1 \ 2 \ 3 \ 4]$ $y(m) = \sum_{n=1}^{\infty} x(n)h((m-n))_4$ h(1) n=0h(n)h(2)x(l)x(n)h(3)h((-n)) *x(2)* $2 \neq x(0)$ 3 x(3)

$$y(2) = \sum_{n=0}^{4-1} x(n)h((2-n))_4 = 14$$

y(*n*)=[14 16 14 16]

$$Y(k) = X(k)H(k)$$

$$y(m) = \sum_{n=0}^{N-1} x(n)h((m-n))_{N}$$

•To perform circular convolution, *x* and *h* must be of the same size, N, and *y* is also of size N.

y is NOT equal to the linear convolution of *x* and *h*How can we FORCE the circular convolution to calculate the linear convolution?

- Assume *x* is of length L and *h* is of length M
- The linear convolution output will be of length N=L+M-1
- In the case of linear convolution,

$$Y(\omega) = X(\omega)H(\omega)$$

$$y(m) = \sum_{n=0}^{L-1} x(n)h(m-n)$$

 The sequence y(n) can be uniquely represented in the frequency domain by N=M+L-1 samples of its spectrum Y(ω)

$$Y(k) = Y(\omega) \Big|_{\omega = 2\pi k/N} \qquad k = 0, 1, ..., N - 1$$

= $X(\omega) H(\omega) \Big|_{\omega = 2\pi k/N} \qquad k = 0, 1, ..., N - 1$
= $X(k) H(k) \Big|_{\omega = 2\pi k/N} \qquad k = 0, 1, ..., N - 1$

• Where *X*(*k*) and *H*(*k*) are the N-point DFTs of *x*(*n*) and *h*(*n*)

- We PAD *x*(*n*) and *h*(*n*) with zeros to increase their duration to N
- Padding does not change the spectra X(ω) and H(ω)
- By increasing the lengths of x[n] and h[n] to N and then circularly convolving the resulting sequences, we obtain the same result we would obtain with linear convolution

- Perform Linear convolution using Circular convolution for x(n)=[1 2 2 1], h(n)=[1 2 3]
- L=3, M=4, use N=4+3-1=6

Do circular convolution between $x(n)=[1 \ 2 \ 2 \ 1 \ 0 \ 0 \], h(n)=[1 \ 2 \ 3 \ 0 \ 0 \ 0]$ You can also get the DFT(x) and DFT(h) with N=6, Calculate Y(k)=X(k)H(K), N=6 Then y(n)=IDFT(Y)

- To compute the spectrum, the signal values for all time are required, which is non-practical.
- What are the implications of using a finite data record in frequency analysis using the DFT?
- Assume a band-limited, analog signal with BW=B, sampling rate F_s=1/T>2B, and L total samples.

Assume x(n) is the signal to be analyzed, limiting the number of samples to L is equivalent to multiplying x(n) by a rectangular window w(n) of length L

$$\tilde{x}(n) = x(n)w(n)$$

$$w(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{o.w.} \end{cases}$$
$$\sin(\omega L/2) = i\omega(L-1)$$

$$W(\omega) = \frac{\sin(\omega L/2)}{\sin(\omega/2)} e^{-j\omega(L-1)/2}$$

W

• Assume that the input signal, $x(n) = \cos(w_o n)$ $\tilde{X}(\omega) = 1/2 [W(\omega - \omega_o) + W(\omega + \omega_o)]$

- To compute X
 _{X(ω)} we use the DFT, by padding
 X
 _{X(n)} with N-L zeros to compute the N-point
 DFT of the L point sequence
- Notice that the windowed spectrum is not localized to a single frequency but the power "leaked out" into the entire frequency range
- Leakage not only distort the spectrum but decreases resolution as well

60

L=200,N=1000

Frequency Resolution of DFT

- The spectrum of the rectangular window sequence has its first zero at $\omega = 2\pi/L$
- If $|\omega_1 \omega_2| < 2\pi/L$ the 2 window functions $W(\omega \omega_1)$ and $W(\omega \omega_2)$ overlap and thus the 2 spectral lines are not distinguishable
- $2\pi/L$ defines the frequency resolution of the DFT
- Increasing N increase the visibility of the spectrum already defined by L

 $t \ge 0 \quad \begin{array}{l} \mbox{sec, and a block of length 100 samples per} \\ t \le 0 \quad \mbox{used to estimate the spectrum. Compare} \\ t < 0 \quad \mbox{the spectrum of the truncated discrete} \\ \mbox{signal to the spectrum of the analog signal.} \end{array}$

 We would like to use L samples only of the discrete signal to compute the spectrum of the signal

