ELC 406A Advanced Digital Communication

Lecture 1
Introduction

Course Information

- Instructors:
 - Dr. Mohamed Khairy
 - Dr. Yasmine Fahmy

2/3

1/3

Office Hour: Wed 12:00 to 2:00

Course Information

- Assessment System:
 - Mid-Term Exam
 - Matlab Project
 - Final Exam

20%

10%

70%

Course Information

Reference:

"Communication Systems", S. Haykin, 4th Edition, John Wiley & Sons (2001).

Describe the concepts, features and applications of advanced digital communication systems

(DSL, OFDM, Spread Spectrum, CDMA)

- Know the transmitter and receiver block diagrams of advanced communication systems
- Analyze and compare the parameters of advanced communication systems.

- Understand the anti-jamming abilities of Spread Spectrum
- Understand the use of Spread Spectrum in ranging.
- Compare different multiple access techniques (FDMA, TDMA, CDMA).

- Know the channel parameters.
- Know the effect of the channel parameter on the transmitted signal.
- Compare the channel based on parameters and performance

- Use of MATLAB in handling problems related to advanced digital communication systems.
- Perform experiments in the Lab to demonstrate concepts of advanced digital communication systems.
- Ability to cumulative knowledge.
- Develop skills related to creative thinking, problem solving, oral and written communication.
- Work effectively in team.
- Interactive learning and class participation.

Course Contents (Part 2)

- Direct Sequence Spread Spectrum (DSSS)
- Frequency Hopping Spread Spectrum (FHSS)
- PN sequence generators
- Immunity to jamming
- Multiple Access Techniques (FDMA, TDMA, CDMA)
- Use of SS in ranging
- Synchronization of SS

Merits of Spread Spectrum

- Security: low probability of detection
- Privacy: low probability of comprehend
- Jamming: Anti-jamming immunity
- Multiple Access (Suppress MAI)
- Multipath diversity
- Radar and Navigation

What Is Spread Spectrum?

- Data is spreaded at the transmitter to occupy a larger Bandwidth than the minimum Bandwidth required through the use of a code that is independent of the data sequence.
- At the receiver, the received signal is de-spreaded using the same code to recover the original signal.

Dr. Yasmine Fahmy ELC 406A

Spread Spectrum Types

- Direct Sequence Spread Spectrum
 - DS-SS
- Frequency Hopping Spread Spectrum
 - Slow (SFH-SS)
 - Fast (FFH-SS)

Revision: a simple system

Transmitter

Revision: a simple system

Transmitted signal (Time)

2PSK: Equations

•
$$s_1(t) = \sqrt{2P}\cos(\omega_c t + 2\pi \cdot \theta_1)$$

 $s_0(t) = \sqrt{2P}\cos(\omega_c t + 2\pi \cdot \theta_0)$

$$\theta_1 = 0$$

$$\theta_0 = \frac{1}{2}$$

•
$$s_1(t) = \sqrt{2P}\cos(\omega_c t)$$

 $s_0(t) = \sqrt{2P}\cos(\omega_c t + \pi) = -\sqrt{2P}\cos(\omega_c t)$

2PSK: Power Spectral Density

Dr. Yasmine Fahmy ELC 406A

PSK: Transmission Bandwidth

$$BW = A + BW = BW = BW = BW$$

2PSK: Demodulator

$$x_i(t) = \pm \sqrt{2P}\cos(\omega_c t)$$

$$r_i(t) = \pm \sqrt{2P}\cos(\omega_c t) + n(t)$$

BandPass AWGN

BandPass AWGN

Quadrature Representation

$$n(t) = n_c(t) \cos(\omega_c t) - n_s(t) \sin(\omega_c t)$$

$$x_i(t) = \pm \sqrt{2P}\cos(\omega_c t)$$

$$r_i(t) = \pm \sqrt{2P}\cos(\omega_c t) + n(t)$$

$$r_i(t) = \pm \sqrt{2P}\cos(\omega_c t) + \overline{n_c(t).\cos(\omega_c t) - n_s(t).\sin(\omega_c t)}$$

$$r_{i}(t).\sqrt{2}\cos(\omega_{c}t) = \pm 2\sqrt{P}\cos^{2}(\omega_{c}t)$$

$$+\sqrt{2}n_{c}(t).\cos^{2}(\omega_{c}t) - \sqrt{2}n_{s}(t).\sin(\omega_{c}t).\cos(\omega_{c}t)$$

$$\begin{split} d_i &= \frac{\sqrt{2}}{T} \int r_i(t) . \cos(\omega_c t) . dt \\ &= \frac{\pm 2\sqrt{P}}{T} \int \cos^2(\omega_c t) . dt \\ &+ \frac{\sqrt{2}}{T} \int n_c(t) . \cos^2(\omega_c t) . dt \\ &- \frac{\sqrt{2}}{T} \int n_s(t) . \sin(\omega_c t) . \cos(\omega_c t) . dt \end{split}$$

$$d_i = \frac{\sqrt{2}}{T} \int r_i(t) \cdot \cos(\omega_c t) \cdot dt$$
$$= \pm \sqrt{P} + \frac{1}{\sqrt{2} \cdot T} \int n_c(t) \cdot dt + \text{zero}$$

2PSK: Demodulator

•
$$r_i(t) = \pm \sqrt{2P}\cos(\omega_c t) + n(t)$$

$$SNR_i = \frac{P.T_b}{2.N_o}$$

•
$$d_i = \pm \sqrt{P} + \frac{1}{\sqrt{2} \cdot T} \int n_c(t) \cdot dt$$

$$SNR_o = \frac{P.T_b}{N_o}$$

2PSK: Demodulator

$$SNR_{i} = \frac{E_{b}}{2.N_{o}} \sqrt{\frac{E_{b}}{2\cos\omega_{c}t}}$$

$$SNR_{o} = \frac{E_{b}}{N_{o}}$$

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_o}} \right) = Q \left(\sqrt{\frac{2E_b}{N_o}} \right)$$

Activities for next lecture

- Think about:
 - -4 PSK
 - DS-SS

