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Source-Free Wave Equations in Homogeneous Medium

1 ∇ ·EEE = 0,

2 ∇ ·HHH = 0

3 ∇×EEE =−µ
∂HHH

∂ t
,

4 ∇×HHH = ε
∂EEE

∂ t
,

Those equations give the wave equations for the electric and magnetic
fields,

∇
2EEE − 1

u2
∂ 2EEE

∂ t2
= 0

∇
2HHH − 1

u2
∂ 2HHH

∂ t2
= 0
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Time-Harmonic Electromagnetics
Instantaneous fields of a time harmonic dependence can be written as,

EEE (x ,y ,z , t) = ℜ
{
E(x ,y ,z)e jωt

}
Other fields and sources quantities can be written similarly.

1 ∇ ·D = ρf , (Gauss law),
2 ∇ ·B = 0
3 ∇×E =−jωB, (Faraday’s Law)
4 ∇×H = Jf + jωD, (Modified Ampere’s Law)

where

D = ε0E+P, H =
B

µ0
−M

For linear isotropic materials,

P = ε0χeE, and M = χmH

D = εE and H =
1

µ
B

where ε = ε0 (1 + χe), and µ = µ0 (1 + χm).



Potential Functions for Time-Harmonic Fields

∇
2A+k2A =−µJ

Gives the solution,

A =
µ

4π

∫
V ′

Je−jkR

R
dv ′

where u = 1/
√

µε is the velocity of light.
Similarly,

∇
2V +k2V =−ρ/ε

Gives the solution,

V (r, t) =
1

4πε

∫
V ′

ρe−jkR

R
dv ′
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Source-Free Fields in Simple Media

1 ∇ ·E = 0,

2 ∇ ·B = 0

3 ∇×E =−jωµH,

4 ∇×H = jωεE,

The electrics and magnetic fields satisfy the homogeneous Helmholtz
equations,

∇
2E+k2E = 0

∇
2H+k2H = 0

Example

Show that if (E, H) are solutions of the source-free Maxwell’s equations in
a simple medium characterized with ε and µ, then so also are (E′, H′),
where E′ = ηH, and H′ =−E/η , and the intrinsic impedance η =

√
µ/ε.
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Plane Wave in Lossless Media

In free space, source free, the Helmholtz equation,(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂z2
+k20

)
E = 0

For 1 dimensional problem, i.e. dependence on z , we can write,

∂ 2E

∂z2
+k20E = 0

Consider E = Ex (z)ax ,
∂ 2Ex

∂z2
+k20Ex = 0

Ex (z) = E+
0 e−jkz +E−0 e jkz

Examining only the solution, with E−0 = 0 and E+
0 real,

Ex (z , t) = ℜ

{
E+
0 e−jkze jωt

}
= E+

0 cos(ωt−kz)



Plane Wave in Lossless Media

Ex (z , t) = ℜ

{
E+
0 e−jkze jωt

}
= E+

0 cos(ωt−kz)

Free space wavenumber k0,

k0 =
2π

λ0

λ0is the free space wavelength.

Magnetic field HHH ,

HHH (z , t) = ay
E+
0

η0
cos(ωt−k0z)

η0 =

√
µ0

ε0
= 120π Ω, is the intrinsic impedance of free space.



Transverse Electromagnetic Waves

E(x ,y ,z) = E0e
−jkxx−jkyy−jkzz

Helmholtz equation gives,

k2x +k2y +k2z = k20 = ω
2
µε

Wavenumber vector k,

k = kxax +kyay +kzaz = kan

The radius vector R,

R = xax + yay + zaz

E(R) = E0e
−jk·R

an ·R= Length OP (a constant)



Transverse Electromagnetic Waves

E(x ,y ,z) = E0e
−jkxx−jkyy−jkzz

∇ ·E = 0, gives,

k ·E0 = 0 −→ E⊥ an

∇×E =−jωµH, =⇒
−jk×E =−jωµH,

H =
1

η
an×E =

1

η
an×E0e

−jk·R

H = H0e
−jk·R



Polarization of Plane Waves

Definition

Polarization of a wave is the direction of the electric field E.

E(z) = (E01ax +E02ay )e−jkz

If E01 and E02 are in phase, we have linear polarization.

Figure: Linearly Polarized Wave



Polarization of Plane Waves

E(z) = (E10ax +E20ay )e−jkz

If |E10|= |E20|= E0 and phase shift is 90◦, we
have circular polarization:

E(z) = E0 (ax − jay )e−jkz , Right-Hand, or positive
polarized wave.
E(z) = E0 (ax + jay )e−jkz , Left-Hand, or negative
polarized wave.

Figure: Right-Hand
or Positive Circularly
Polarized Wave

Otherwise the wave is elliptically polarized.

Sense of polarization

Rotation of the field is from the leading to the lagging component.
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Phase Velocity

The instantaneous field of any of the components can be written as,

Ex (z , t) = ℜ

{
E+
0 e−jkze jωt

}
= E+

0 cos(ωt−kz + φ0) = E+
0 cos(φ (z , t)) ,

where φ (z , t) = ωt−kz + φ0.

Definition

Phase velocity is the speed of a point moving such that it sees a constant
phase of the wave, i.e.

dφ (z , t) = ωdt−kdz = 0, −→ dz (t)

dt
=

ω

k

vp =
ω

k
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Conductive Medium
Simple conducting medium will have J = σE. Therefore,

∇×H = jωεE+J = jω

(
ε +

σ

jω

)
E

Define complex permittivity ,

εc = ε +
σ

jω
= ε− j

σ

ω
= ε

′− jε ′′

ε
′ = ε, ε

′′ =
σ

ω

The loss tangent tanδ is defined as,

tanδ =
ε ′′

ε ′
=

σ

ωε

Good conductor
σ

ωε
� 1

Good insulator
σ

ωε
� 1



Plane Waves in Conductive Media

∇
2E+k2cE = 0

k2c = ω
2
µεc

Definition

Propagation constant γ is defined by,

γ = α + jβ = jkc = jω
√

µεc

E(z) = E0e
−γz = E0e

−αze−jβz ,

γ
2 =−ω

2
µεc



Low-Loss Dielectrics

Propagation constant

γ = α + jβ = jω
√

µεc = jω
√

µε ′

√
1− j

ε ′′

ε ′

γ = α + jβ ∼= jω
√

µε ′

[
1− j

ε ′′

2ε ′
+

1

8

(
ε ′′

ε ′

)2
]

α =
ωε ′′

2

√
µ

ε ′
Np/m, β = ω

√
µε ′

[
1 +

1

8

(
ε ′′

ε ′

)2
]

rad/m

Intrinsic impedance

ηc =

√
µ

εc
=

√
µ

ε ′

(
1− j

ε ′′

ε ′

)−1/2
∼=
√

µ

ε ′

(
1 + j

ε ′′

2ε ′

)



Good Conductors

Propagation constant

γ = α + jβ = jω
√

µεc
∼= jω

√
µε

√
−j σ

ωε

γ = α + jβ ∼=
√

j
√

ωµσ = (1 + j)
√

πf µσ

α = β =
√

πf µσ

Intrinsic impedance

ηc =

√
µ

εc
=

√
µ

ε

(
1− j

σ

ωε

)−1/2 ∼=√µ

ε

√
j
ωε

σ

∼= (1 + j)

√
πf µ

σ

ηc = (1 + j)
α

σ



Good Conductors

Definition

Skin depth or penetration depth δ ,

δ ≡ 1

α
=

1√
πf µσ



Example

Example

(Cheng Example 8-4) The electric field intensity of a linearly polarized
plane wave propagating in the +z-direction in seawater is
EEE = ax100cos

(
107πt

)
(V/m) at z = 0. The constitutive parameters of

seawater are εr = 72, µr = 1, and σ = 4 (S/m).

1 Determine the attenuation constant, phase constant, intrinsic
impedance, phase velocity, wavelength, and skin depth.

2 Find the distance at which the amplitude of E is 1% of its value at
z = 0.

3 Write the expressions for E(z , t) and H(z , t) at z = 0.8 m as a
function of t.
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Group Velocity
For a wave packet consisting of two traveling waves of equal amplitudes
and slightly shifted in frequencies at ω0−∆ω and ω0 + ∆ω (∆ω � ω0),

E (z , t) = E0 cos [(ω0 + ∆ω) t− (β0 + ∆β )z ]

+E0 cos [(ω0−∆ω) t− (β0−∆β )z ]

E (z , t) = 2E0 cos(∆ωt−∆βz)cos(ω0t−β0z)

Velocity of the envelope is called the group velocity vg and is obtained by,

∆ωt−∆βz = const.

vg ≡
dω

dβ



Ionized Gases
At height 50 km - 500 km above the earth see level solar radiation causes
ionization and a layer of ionized gases with equal electron and ion densities
called plasma is formed.

−eE = m
d2x

dt2
=−mω

2x, =⇒ x =
e

mω2
E

dipole moment p =−ex =
−e2

mω2
E

Polarization vector P = Np =− Ne2

mω2
E

D = ε0E+P = ε0

(
1− Ne2

mω2ε0

)
E = ε0

(
1−

ω2
p

ω2

)
E = εpE

εp is the permittivity of the plasma, and ωp is the plasma oscillation

frequency ωp =

√
Ne2

mε0
= 2πfp, and fp = 9

√
N Hz, where N is the

number density in m−3.



Ionized Gases

εp = ε0

(
1−

ω2
p

ω2

)

β = ω
√

µ0εp =
ω

c

√
1−

ω2
p

ω2

No propagation at frequencies ω < ωp

Phase velocity vp,

vp =
ω

β
=

c√
1−

ω2
p

ω2

> c

Group Velocity vg ,

vg =
dω

dβ
= c

√
1−

ω2
p

ω2
< c
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Flow of Electromagnetic Power and The Poynting Vector

Time Dependent (Instantaneous) Maxwell’s curl equations

1 ∇×EEE =−∂BBB

∂ t
,

2 ∇×HHH = JJJ +
∂DDD

∂ t
,

Using the vector identity

∇ · (EEE ×HHH ) = (∇×EEE ) ·HHH −EEE · (∇×HHH )

∇ · (EEE ×HHH ) =−∂BBB

∂ t
·HHH −EEE · ∂DDD

∂ t
−EEE ·JJJ

∇ · (EEE ×HHH ) =− ∂

∂ t

(
ε

2
E 2 +

µ

2
H 2

)
−EEE ·JJJ∮

S
(EEE ×HHH ) ·ds =− ∂

∂ t

∫
V

(
ε

2
E 2 +

µ

2
H 2

)
dv −

∫
V

EEE ·JJJ dv
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Flow of Electromagnetic Power and The Poynting Vector∮
S

(EEE ×HHH ) ·ds =− ∂

∂ t

∫
V

(
ε

2
E 2 +

µ

2
H 2

)
dv −

∫
V

EEE ·JJJ dv

Definition

Poynting vector (instantaneous), PPP = EEE (r, t)×HHH (r, t)

Poynting Theorem (Instantaneous Form)∮
S
PPP ·ds =− ∂

∂ t

∫
V

(we + wm)dv −
∫
V

pσdv

where,

we =
1

2
εE 2 =

1

2
εEEE ·EEE = Electric energy density,

wm =
1

2
µH 2 =

1

2
µHHH ·HHH = Magnetic energy density,

pσ = σE 2 =
J 2

σ
= σEEE ·EEE = Ohmic power loss density,



Example

Find the Poynting vector on the surface of a long, straight conducting wire
(of radius b and conductivity σ) that carries a direct I . Verify Poynting’s
theorem.



Instantaneous and Average Power Densities

Instantaneous Average

Poynting
vector

PPP = EEE (r, t)×HHH (r, t) Pav =
1
2ℜ{E(r, t)×H∗ (r, t)}

Electric
Energy
Density

we =
1

2
εE 2 =

1

2
εEEE ·EEE we,av =

1

4
ε |E |2 =

1

4
εE ·E∗

Magnetic
Energy
Density

wm =
1

2
µH 2 =

1

2
µHHH ·HHH

wm,av =
1

4
µ |H|2 =

1

4
µH ·H∗

Ohmic
Power

Density

pσ = σE 2 =
J 2

σ
= σEEE ·EEE pσ ,av =

σ

2
|E|2 =

|J|2

2σ
=

σ

2
E ·E



Complex Poynting Theorem

Phasor Maxwell’s curl equations

1 ∇×E =−jωµH,
2 ∇×H = J+ jωεE,

Using the vector identity

∇ · (E×H∗) = (∇×E) ·H∗−E · (∇×H∗)

∇ · (E×H∗) =−jωµH ·H∗+ jωεE ·E∗−E ·J∗

1

2
∇ · (E×H∗) = 2jω

(
ε

4
|E |2− µ

4
|H|2

)
− σ

2
|E |2

1

2

∮
S

(E×H∗) ·ds = 2jω
∫
V

(we,av −wm,av )dv −
∫
V
pσdv



Example

The far field of a short vertical current element Id` located at the origin of
a spherical coordinate system in free space is

E(R,θ) = aθEθ (R,θ) = aθ j
60πId`

λR
e−jkR

and H(R,θ) = aφHφ (R,θ) = aφ j
Id`

2λR
e−jkR ,

where λ = 2π/k is the free space wavelength.

1 Write the expression for the instantaneous Poynting vector.

2 Find the total average power radiated by the current element.
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