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@ Source-Free Wave Equations



Source-Free Wave Equations in Homogeneous Medium

Q@ V- £&£=0,
Q@ V.- #=0
0
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Those equations give the wave equations for the electric and magnetic
fields,
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© Time Harmonic Fields



Time-Harmonic Electromagnetics

Instantaneous fields of a time harmonic dependence can be written as,
g(x7yaz7 t) = g{{E(X,y’z)ej(Dt}

Other fields and sources quantities can be written similarly.
Q@ V-D=py, (Gauss law),
Q@ V.-B=0
©@ VXE=—joB, (Faraday's Law)
Q@ VxH=Js+jwD, (Modified Ampere's Law)
where
B
D=¢gE+P, H=—-M
Ho
For linear isotropic materials,

P=¢xE, and M=y,H
D=¢E and Hle
u

where € =&y (1+%.), and u = g (1+xm).



Potential Functions for Time-Harmonic Fields

V2A+ kA =—pul

Gives the solution,

u JeJkR

= av'
4 Jv R v

where u=1/,/l€ is the velocity of light.
Similarly,

V2V 4+ k2 =—p/e

Gives the solution,

1 pefij

- dv’
4re Jvv R v

V(r,t)




© Source-Free Fields in Simple Media



Source-Free Fields in Simple Media

Q V-E=0,
Q@ V-B=0
© VXE=—jouH,
Q@ VxH=jweE,
The electrics and magnetic fields satisfy the homogeneous Helmholtz

equations,
V?E+K*E=0

V’H+ k°H=0

Show that if (E, H) are solutions of the source-free Maxwell’s equations in
a simple medium characterized with € and p, then so also are (E’, H’),
where E' =nH, and H' = —E/n, and the intrinsic impedance 1 = /lt/¢.




@ Plane Wave Waves in Lossless Media



Plane Wave in Lossless Media

In free space, source free, the Helmholtz equation,

02 92 92
—+— ki |E=
<8x2+8y2+82+ 0) 0
For 1 dimensional problem, i.e. dependence on z, we can write,
d2E 2
ﬁ + kO E=0
Consider E = E, (z)ay,
0%E,
¥ + ko E.=0

Ec(z) = Ef e /% 1 Ej &

Examining only the solution, with £, =0 and EJreaI,

Ei(z,t) = ER{EJe‘jkzejwt} = E4 cos(wt — kz)



Plane Wave in Lossless Media

Ex(z,t) = %{EJe*jkzejm} = E4 cos(wt — kz)

E}@ @ Free space wavenumber ko,
r 3

R . 2:/ko—-1 ko = Z

Aois the free space wavelength.

Eg

0 e Magnetic field 2,
E+
H(z,t) = ayn—0 cos(wt — koz)
0
Mo = Ko _ 1207 ©, is the intrinsic impedance of free space.

&



Transverse Electromagnetic Waves

E(x,y,2) = Ege Jox oyl

Helmholtz equation gives,

K2+ ko + k2 =k = 0’ue

@ Wavenumber vector k,
k = kcax + kya, + kza, = ka,
The radius vector R,

R = xax+ya, +za,

E(R) = Ege /*R
Plane of constant L
phase (phase front) a,-R=Length OP (a constant)



Transverse Electromagnetic Waves

E(X7y7z) = Eoe_jkxX—jkyy—jkzz
e V-E=0, gives,
k‘ EO = O — E i a,

o VXE=—jouH, ==
—jkxE=—jouH,

1 1 ;
H=-a,xE= -a, xEpe /xR

Plane of constant .
phase (phase front) H =H, e JkR



Polarization of Plane Waves

Definition

Polarization of a wave is the direction of the electric field E.

E(Z) = (E01aX + E02ay) eijkz

o If Eg; and Epy are in phase, we have linear polarization.

4
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Polarization of Plane Waves

E (Z) = (Eloax + Ezoay) e_jkz

o If |E1o| = |Exo| = Eo and phase shift is 90°, we ”
have circular polarization:
o E(z) = Ey(ax—ja,) e /¥, Right-Hand, or positive EO,)
polarized wave. 2 o
o E(z) = Eo(ax+ja,) e /¥, Left-Hand, or negative
polarized wave.

Figure: Right-Hand
or Positive Circularly
Polarized Wave

@ Otherwise the wave is elliptically polarized.

Sense of polarization
Rotation of the field is from the leading to the lagging component.




© Phase Velocity



Phase Velocity

The instantaneous field of any of the components can be written as,

Ec(z,t) =R {E;e—szefwf} — E cos(wt — kz+ o) = Ey cos (¢ (z, 1)),

where ¢ (z,t) = ot — kz + ¢p.

Definition

Phase velocity is the speed of a point moving such that it sees a constant

phase of the wave, i.e.

do (z,t) = odt — kdz =0,

—

dz(t) _
dt

@
k




© Plane Wave in Lossy Media



Conductive Medium

Simple conducting medium will have J = 6E. Therefore,

VxH:ja)eEJrJ:ja)(eJr.G)E
jo

Define complex permittivity ,

_ G_ -G_ PN/}
Ec=E+—=€E—J—=E€ —JE
jo (0]

c
g=¢ ==
0}
The loss tangent tand is defined as,
e o
tand = — = —
g we

(o)
@ Good conductor — >1
wWE

. (o)
@ Good insulator — <« 1
wWE



Plane Waves in Conductive Media

VZE+k?E=0

k? = 0 ue.

Definition

Propagation constant ¥ is defined by,

Y=o+ jB = jkc = jo/nec

E(z) = Ege 7? = Ege %%e /7,

y2 = —(DZIJEC



Low-Loss Dielectrics

@ Propagation constant
. ) ) &'
y=0+jB=jovie =jo/ue\[1-j 5
e 1 /¢ 2

Y=o+jB = jo\/ue |1— J2s’+8< )

8/

1/¢&" 2
@ Intrinsic impedance

O L e (9

n
(x:w; Mng/m, B =w\/ ue




Good Conductors

@ Propagation constant
. . o . O
Y=o+ =jovie = jovie [~

Y=0a+jB = \/jyouG = (1+))\/nfuc
o=p=+/nfuc

@ Intrinsic impedance



Good Conductors

Definition

Skin depth or penetration depth &,
1

1
a \/rfuoc

Skin Depths, 5 in (mm), of Various Materials

)

Material o (S/m) f =60(Hz) 1 (MHz) 1(GHz)
Silver 6.17 x 107 8.27 (mm) 0.064 (mm) 0.0020 (mm)
Copper 5.80 x 107 8.53 0.066 0.0021
Gold 4.10 x 107 10.14 0.079 0.0025
Aluminum 3.54 x 107 10.92 0.084 0.0027
Iron (g, = 10%) 1.00 x 107 0.65 0.005 0.00016

| seawater 4 32 (m) 0.25 (m) !

t The e of seawater is approximately 72¢,. At f = 1 (GHz), o/we = 1 (not > 1). Under these conditions,
seawater is not a good conductor, and Eq. (8—57) is no longer applicable.



(Cheng Example 8-4) The electric field intensity of a linearly polarized
plane wave propagating in the +z-direction in seawater is

& =a,100cos (107wt) (V/m) at z=0. The constitutive parameters of
seawater are & =72, U, =1, and 6 =4 (S/m).

© Determine the attenuation constant, phase constant, intrinsic
impedance, phase velocity, wavelength, and skin depth.

@ Find the distance at which the amplitude of E is 1% of its value at
z=0.

© Write the expressions for E(z,t) and H(z,t) at z=0.8 m as a
function of t.



@ Group Velocity



Group Velocity

For a wave packet consisting of two traveling waves of equal amplitudes
and slightly shifted in frequencies at @y — A® and @y + Ao (Ao < ay),

&(z,t) = Egcos[(mp+Aw)t — (Bo+AB)Z]
+ Eycos[(@y — Aw)t — (Bo— AB) 2]
& (z,t) =2Eycos(Awt— ABz)cos(wot — Poz)

E@z, 1
4

Velocity of the envelope is called the group velocity v, and is obtained by,

Awt— ABz = const.
V = dﬁ
g — dB



lonized Gases

At height 50 km - 500 km above the earth see level solar radiation causes
ionization and a layer of ionized gases with equal electron and ion densities
called plasma is formed.

d?x

E= = —mo? ==
—ee = mP = —mm~X, — X = mw2
2
. —e

dipole moment p=-—-ex= 5

N 2

Polarization vector P=Np=- ° >

mao

Ne? w?

D:soE—l—P:eo(l— ° >E:go<1—g)E:epE

m2ey [0)

€p is the permittivity of the plasma, and @) is the plasma oscillation

Ne2
frequency @, = ¢/ % =2nf,, and f, =9V N Hz, where N is the
0

number density in m~3.



lonized Gases

®2
B = o\/log, = - ;Z

@ No propagation at frequencies ® < wp

@ Phase velocity v,

0] c -
Vp=—>=——=>c¢
"B

2
_%
2

;dﬁ

/KSIOPC ?, =Up




© Flow of Electromagnetic Power and The Poynting Vector



Flow of Electromagnetic Power and The Poynting Vector

o Time Dependent (Instantaneous) Maxwell's curl equations
0B
ot’
Q@ VxH=_¢+ %—?,

@ Using the vector identity

Q Vx&=-

V(EXxH)=(VE)-H—E - (VxH)

v.(é’xx):—af.%ﬂ—g.af—g-/
0 /€
V-(é’x&f):—§<§£2+%%ﬂ2) & g

ds— 2 [ (Ep2 B 02 g, — .
ﬁ_(é"x.%”) ds — at/v(zéa + o) dv /Vg Fdv
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Flow of Electromagnetic Power and The Poynting Vector

_ 9 €0 H 0
j!s(gx‘}f)-ds_fa/v<§é" +§jf)dvf/vé"-/dv

Definition

Poynting vector (instantaneous), ‘9 =& (r,t) x H(r,t) ‘

Poynting Theorem (Instantaneous Form)

fﬁ”-ds:—a/ (We+Wm)dV—/ psdv
S ot Jv %4

where,

1 1
We = 5852 = Esé”-g = Electric energy density,

1 1
W, = Euc%d = E,ujf-jf = Magpnetic energy density,
/2
o

pe = 0&2% = = 0& - & = Ohmic power loss density,




Example
Find the Poynting vector on the surface of a long, straight conducting wire
(of radius b and conductivity o) that carries a direct /. Verify Poynting's
theorem.




Instantaneous and Average Power Densities

] Instantaneous Average
Poynting P =& (r,t) x H(r,t) P, =
vector IR{E(r,t) x H*(r, 1)}
1 I 1 1
Electric We=—€2=2¢-& We avz—elEF:fsE-E*
2 2 ’ 4 4
Energy
Density
1 1
Magnetic szau%2: Wm,aV:ZMH]z:
Energy 1 1 i
Density 5“%'% Z”H H
2 p)
c J
Ohmic | po=062 =2 =066 pcaVZf!Elzzuz
o ' 2 20
Power GE E
Density P




Complex Poynting Theorem

@ Phasor Maxwell’s curl equations

Q@ VXE=—jouH,
Q@ VxH=J+jweE,

@ Using the vector identity
V. (ExH")=(VXE)-H —E-(VxH)

V- (ExH*)=—jouH -H*+joeE -E* —E- J*
1 o i (€2 Hig2 9 g2
SV-(ExHY) =20 (L |EP— L |HP) = 2 |E|

1
Ef(EXH*)-dS:@'(O/ (We,av_Wm7av)dV_/ podv
S 14 14




Example
The far field of a short vertical current element /d¢ located at the origin of

a spherical coordinate system in free space is

607rld€_
E(R,0)=agEy(R,0) =agj——— T i

Id?
and  H(R,0) =agHy (R,6) = agj e %,

where A = 27 /k is the free space wavelength.

© Write the expression for the instantaneous Poynting vector.
© Find the total average power radiated by the current element.
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