Potentials and Fields

Topic 2

Tamer Abuelfadl
Electronics and Electrical Communications Department
Faculty of Engineering
Cairo University
Email: telfadl@ieee.org

Maxwell's Equations

(1) $\nabla \cdot \mathbf{E}=\frac{1}{\varepsilon_{0}} \rho, \quad$ (Gauss law),
(2) $\nabla \cdot \mathrm{B}=0$
(3) $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad$ (Faraday's Law)
(1) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}, \quad$ (Modified Ampere's Law)

- We are seeking solution for $\mathbf{E}(\mathbf{r}, t)$, and $\mathbf{B}(\mathbf{r}, t)$.
- This would be achieved by representing those fields in terms of potentials.

Potential Functions

- $\nabla \cdot \mathbf{B}=0, \quad \Longrightarrow \quad \mathbf{B}=\nabla \times \mathbf{A}$
- $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad$ (Faraday's Law) $\quad \Longrightarrow \nabla \times \mathbf{E}=-\frac{\partial}{\partial t}(\nabla \times \mathbf{A})$

$$
\begin{aligned}
& \nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=\mathbf{0}, \quad \Longrightarrow \quad \mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla V \\
& \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}
\end{aligned}
$$

- $\nabla \times \mathbf{B}=\mu \mathbf{J}+\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t}, \quad$ (Modified Ampere's Law) (Assuming homogeneous media)

$$
\nabla \times \nabla \times \mathbf{A}=\mu \mathbf{J}+\mu \varepsilon \frac{\partial}{\partial t}\left(-\nabla V-\frac{\partial \mathbf{A}}{\partial t}\right)
$$

Using the vector identity, $\nabla \times \nabla \times \mathbf{A}=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$

$$
\nabla^{2} \mathbf{A}-\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}+\nabla\left(\nabla \cdot \mathbf{A}+\mu \varepsilon \frac{\partial V}{\partial t}\right)
$$

Potential Functions (Continued)

$$
\nabla^{2} \mathbf{A}-\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}+\nabla\left(\nabla \cdot \mathbf{A}+\mu \varepsilon \frac{\partial V}{\partial t}\right)
$$

We can arbitrarily choose $\nabla \cdot A$. We let,

$$
\nabla \cdot \mathbf{A}+\mu \varepsilon \frac{\partial V}{\partial t}=0
$$

(Lorentz Gauge)
Hence,

$$
\nabla^{2} \mathbf{A}-\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}
$$

- $\nabla \cdot \mathbf{E}=\rho / \varepsilon \quad$ (Gauss's Law) (Assuming homogeneous media)

$$
\nabla \cdot\left(-\nabla V-\frac{\partial \mathbf{A}}{\partial t}\right)=\rho / \varepsilon
$$

Using Lorentz Gauge,

$$
\nabla^{2} V-\mu \varepsilon \frac{\partial^{2} V}{\partial t^{2}}=-\rho / \varepsilon
$$

Retarded Potentials

The solutions to the two equations,

$$
\begin{aligned}
& \nabla^{2} V-\mu \varepsilon \frac{\partial^{2} V}{\partial t^{2}}=-\rho / \varepsilon \\
& \nabla^{2} \mathbf{A}-\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}
\end{aligned}
$$

are given by,

$$
V(\mathbf{r}, t)=\frac{1}{4 \pi \varepsilon} \int_{V} \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{2} d \tau^{\prime}, \quad \mathbf{A}(\mathbf{r}, t)=\frac{\mu}{4 \pi} \int_{V} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t_{r}\right)}{2} d \tau^{\prime}
$$

where t_{r} is the retarded time defined as,

$$
t_{r} \equiv t-z / c
$$

Example

Example

An infinite straight wire carries the current

$$
I(t)= \begin{cases}0 & \text { for } t \leq 0 \\ l_{0} & \text { for } t>0\end{cases}
$$

That is, a constant current I_{0} is turned on abruptly at $t=0$. Find the resulting electric and magnetic fields.
Hint:

$$
\int \frac{d z}{\sqrt{z^{2}+s^{2}}}=\ln \left(\sqrt{z^{2}+s^{2}}+z\right)
$$

