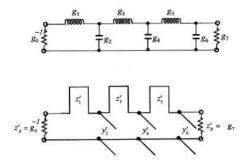
Microwave Engineering Microwave Filters

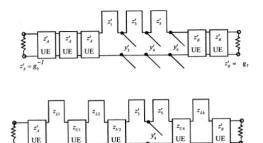
Tamer Abuelfadl

Electronics and Electrical Communications Department Faculty of Engineering Cairo University


- Richard Transformation.
- Kuroda's Identities.
- Low Pass Filter Design using Stubs.

Low Pass Filter Design Using Stubs

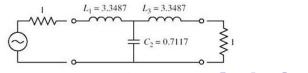
Prototype Implementation with Parallel and Series Stubs

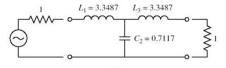

• $\Omega = 1 \quad \Rightarrow \quad {
m stub \ lengths} \ \ell = \lambda_g/8.$

• A unity filter impedance is assumed.

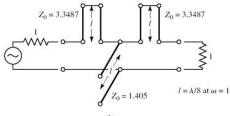
Low Pass Filter Design Using Stubs

Converting Series Stubs into Parallel Stubs Using Kuroda's Identities

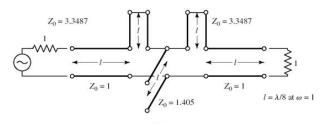

- Odd number of UE's are added before the series stub, while even number of UE's are added before parallel stub.
- Total Number of UE's used on both sides is N-1, where N is the number of stubs used in the circuit.
- Finally we end up with parallel open circuits cascaded alternatively with UE's.


Example 8.5 (Pozar)

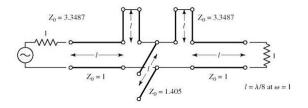
Design a low-pass filter for fabrication using microstrip lines. The specification are; cutoff frequency of 4 GHz, third order, impedance of 50 Ω , and a 3 dB equal-ripple characteristic.

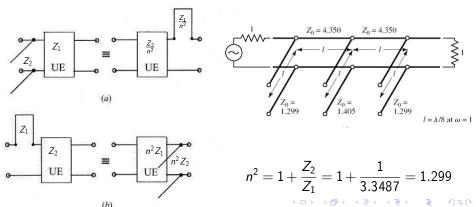

3.0 dB Ripple											
N	g_1	g ₂	83	<i>8</i> 4	85	86	87	g8	g 9	g ₁₀	<i>g</i> ₁₁
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

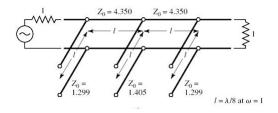
Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.



(a)

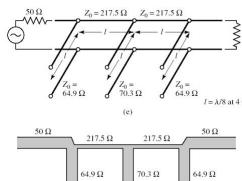

(b)


(c)

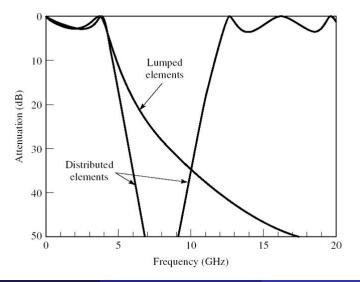

<ロ> (四) (四) (日) (日) (日)

æ

To convert series stubs into parallel stubs we use the first two Kuroda's identities, where $n^2 = 1 + Z_2/Z_1$.



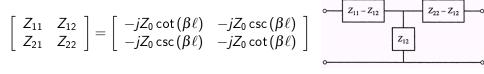
• Making Impedance scaling with $Z_0 = 50 \Omega$ (figure (e)).


.

• Figure (f) show the realization using microstrip transmission lines.

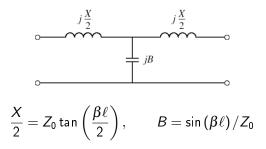
(fĒ) < ∃ >

Amplitude responses of lumped-element and distributed-element low-pas filter of Example 8.5.


Stepped Impedance LPF

Approximate Equivalent Circuits for short circuits Transmission line section

The ABCD matrix for a TL with length ℓ ,


$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos(\beta\ell) & jZ_0 \sin(\beta\ell) \\ j\sin(\beta\ell)/Z_0 & \cos(\beta\ell) \end{bmatrix}$$

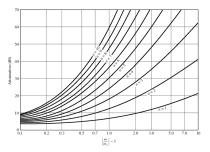
Transforming into Z matrix,

Series elemnets of the
$$Z_{11} - Z_{12} = -jZ_0 \left[\frac{\cos{(\beta \ell)} - 1}{\sin{(\beta \ell)}} \right] = jZ_0 \tan{\left(\frac{\beta \ell}{2} \right)}$$

• If $\beta \ell < \pi/2$ the series arms act as inductors, while shunt arm Z_{12} acts as capacitor.

• For short line length $(eta \ell < \pi/4)$ and large characteristic impedance,

• For short line length $(eta \ell < \pi/4)$ and small characteristic impedance,

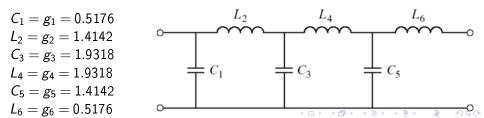


- To realize series inductance, a high impedance line Z_h is used.
- To realize shunt capacitance , a low impedance line Z_ℓ is used.
- Z_h/Z_ℓ should be as high as possible. Z_h and Z_ℓ are usually set the highest and lowest characteristic impedance that can be fabricated.
- After impedance scaling with reference impedance R_0 , the electrical lengths at the desired cutoff frequency ω_c ,

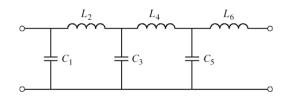
$$eta \ell = rac{LR_0}{Z_h}$$
 (inductor)
 $eta \ell = rac{CZ_\ell}{R_0}$ (capacitor)

(Example 8.6 Pozar) Stepped-Impedance Filter Design

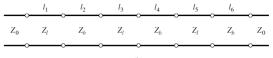
Design a stepped-impedance low-pass filter having a maximally flat response and a cutoff frequency of 2.5 GHz. It is necessary to have more than 20 dB insertion loss at 4 GHz. The filter Impedance is 50 Ω ; the highest practical line impedance is 120 Ω , and the lowest is 20 Ω .

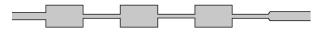


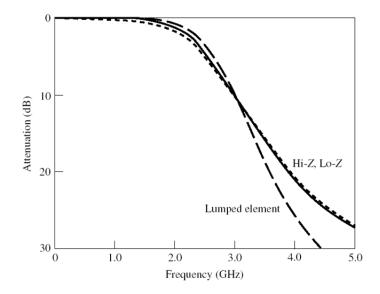
 $\frac{\omega}{\omega_c} - 1 = \frac{4}{2.5} - 1 = 0.6 \quad \Rightarrow \quad N = 6 \text{ gives the required attenuation at 4 GHz}.$


TABLE 8.3	Element	Values	for	Maximally	Flat	Low-Pass	Filter	Prototypes	$(g_0 =$	1,
$\omega_c = 1, N =$	1 to 10)									

N	g_1	g2	g ₃	<i>g</i> ₄	g 5	86	g_7	g8	g_9	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000


Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.


 $\begin{array}{l} C_1 = g_1 = 0.5176 \\ L_2 = g_2 = 1.4142 \\ C_3 = g_3 = 1.9318 \\ L_4 = g_4 = 1.9318 \\ C_5 = g_5 = 1.4142 \\ L_6 = g_6 = 0.5176 \end{array}$


section	$Z_i = Z_\ell$, or Z_h	$\beta \ell_i$	section	$Z_i = Z_\ell$, or Z_h	$\beta \ell_i$
1	20 Ω	11.8°	4	120 Ω	46.1°
2	120 Ω	33.8°	5	20 Ω	32.4°
3	20 Ω	44.3°	6	120 Ω	12.3°

(b)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Amplitude response of the stepped-impedance low-pass filter of Example 8.6, with (dotted line) and without (solid line) losses. The response of the corresponding lumped-element filter is also shown.