Sheet 4

Question (1)
Consider a two-port network consisting of a junction of two transmission lines with characteristics impedances Z_{01} and Z_{02}, as shown in the below. Find the generalized scattering parameters of this network.

Terminal plane
for both ports

Question (2)
Use the ABCD matrices to find the voltage V_{L} across the load resistor in the circuit shown below.

Question (3)
The four-port 90° hybrid coupler has the following scattering matrix,

$$
[S]=\frac{-1}{\sqrt{2}}\left[\begin{array}{llll}
0 & j & 1 & 0 \\
j & 0 & 0 & 1 \\
1 & 0 & 0 & j \\
0 & 1 & j & 0
\end{array}\right] . \quad \text { Out } \leftarrow \overline{\text { Port } 1} \quad \begin{gathered}
90^{\circ} \\
\text { Hybrid }
\end{gathered}
$$

If ports 2 and 3 are terminated with equal adjustable loads Z_{L} as shown in the figure.
(a) Find the scattering matrix for the resulting two-port network (between port 1 and 4).
(b) Show that the resulting 2-port network represents an attenuator, and plot the attenuation as a function of Z_{L} / Z_{0}, for $0 \leq Z_{L} / Z_{0} \leq 10$ (Let Z_{L} be real).

Question (4)
Consider the T-junction of three lines with characteristic impedances Z_{1}, Z_{2}, and Z_{3}, as shown below. Demonstrate the it is impossible for all three lines to be matched, when looking toward the junction.

Question (5)
Two identical 90° coupler with $C=8.34 \mathrm{~dB}$ are connected as shown below. Find the resulting phase and amplitudes at ports 2 ' and 3 ', relative to port 1 .

Question (6)
Consider the T and Π resistive attenuator circuits shown below. If the input and the output are matched to Z_{0}, and the ratio of output voltage to input voltage is α, derive the design equations for R_{1} and R_{2} for each circuit. If $Z_{0}=50 \Omega$, compute R_{1} and R_{2} for $3 \mathrm{~dB}, 10 \mathrm{~dB}$, and 20 dB attenuators of each type.

Question (7)
Design a three-port resistive divider for an equal power split and a 100Ω system impedance. If port 3 is matched, calculate the change in the output power at port $3(\mathrm{in} \mathrm{dB})$ when port 2 is connected first to a matched load, and then to a load having mismatch of $\Gamma=0.3$.

Question (8)
Consider the general branch-line coupler shown below, having shunt arm characteristic impedances Z_{a}, and series arm impedance Z_{b}. Using an even-odd mode analysis, derive design equations for a quadrature hybrid coupler with arbitrary power division ration $\alpha=P_{2} / P_{3}$, and with the input port (port 1) matched. Assume all arms are $\lambda / 4$ long. Is port 4 isolated in general.

