Sheet 4

Question (1)

Consider a two-port network consisting of a junction of two transmission lines with characteristics impedances Z_{01} and Z_{02} , as shown in the below. Find the generalized scattering parameters of this network.

Question (2)

Use the ABCD matrices to find the voltage V_L across the load resistor in the circuit shown below.

Question (3)

The four-port 90° hybrid coupler has the following scattering matrix,

If ports 2 and 3 are terminated with equal adjustable loads Z_L as shown in the figure.

- (a) Find the scattering matrix for the resulting two-port network (between port 1 and 4).
- (b) Show that the resulting 2-port network represents an attenuator, and plot the attenuation as a function of Z_L/Z_0 , for $0 \le Z_L/Z_0 \le 10$ (Let Z_L be real).

Faculty of Engineering Cairo University Electronics and Electrical Engineering Dept.

Question (4)

Consider the T-junction of three lines with characteristic impedances Z_1 , Z_2 , and Z_3 , as shown below. Demonstrate the it is impossible for all three lines to be matched, when looking toward the junction.

Question (5)

Two identical 90° coupler with C=8.34 dB are connected as shown below. Find the resulting phase and amplitudes at ports 2' and 3', relative to port 1.

Question (6)

Consider the T and Π resistive attenuator circuits shown below. If the input and the output are matched to Z_0 , and the ratio of output voltage to input voltage is α , derive the design equations for R_1 and R_2 for each circuit. If $Z_0 = 50 \Omega$, compute R_1 and R_2 for 3 dB, 10 dB, and 20 dB attenuators of each type.

Question (7)

Design a three-port resistive divider for an equal power split and a 100 Ω system impedance. If port 3 is matched, calculate the change in the output power at port 3 (in dB) when port 2 is connected first to a matched load, and then to a load having mismatch of $\Gamma = 0.3$.

Faculty of Engineering Cairo University Electronics and Electrical Engineering Dept.

Question (8)

Consider the general branch-line coupler shown below, having shunt arm characteristic impedances Z_a , and series arm impedance Z_b . Using an even-odd mode analysis, derive design equations for a quadrature hybrid coupler with arbitrary power division ration $\alpha = P_2/P_3$, and with the input port (port 1) matched. Assume all arms are $\lambda/4$ long. Is port 4 isolated in general.

