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Equations of Motion

Non-relativistic

m
du

dt
= q (E+u×B)

Relativistic
d (γmu)

dt
= q (E+u×B)
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Equations of Motion
Energy Equation

The equation of motion for a relativistic particle can be written as,

d

dt
(γmu) = q (E+u×B) , =⇒ d

dt
(γβββ ) =

q

m

(
1

c
E+βββ ×B

)
The particle kinetic energy equation can be derived through multiplication
with βββ = u/c ,

βββ · d
dt

(γβββ ) =
q

mc
βββ ·E

β
2 dγ

dt
+

γ

2

dβ 2

dt
=

q

mc
βββ ·E

β
2 dγ

dt
+

1

γ2

dγ

dt
=

q

mc
βββ ·E

dγ

dt
=

q

mc
βββ ·E



Energy conservation in static �eld

Non-relativistic (u� c) Relativistic

m
du

dt
=−eE d (γmu)

dt
=−eE, where γ =

1√
1−u2/c2

The �eld E, is given in terms of the potential V , E =−∇V .

The energy equation m
du

dt
=− e

mc
βββ ·E

d
(
γmc2

)
dt

= eu ·∇V = e
d

dt
V =⇒ d

dt

(
γmc2− eV

)
= 0

For non-relativistic equation of motion,

d

dt

(
1

2
mu2− eV

)
= 0, =⇒ m

2

(
u2−u20

)
= e (V −V0)

For an electron with zero initial velocity and zero initial potential, the
velocity at a position with potential V is given by,

1

2
mu2− eV = 0, =⇒ u =

√
2eV

m
=
√
2ηV



Universal Beam Spread Curve

The electron motion in Region 3 can be
described by,

d2r

dt2
=−ηEr , where η =

e

m

The electric �eld, Er , produced by the
electron charge in a beam is given by,∮

S
E ·ds =−Q

ε0
=−πr2`ρ

ε0
, =⇒ Er =− rρ

2ε0

The charge density

ρ =
I

πb2u0
, Er (r = b) =− I

2πbu0
.

Hence, the beam envelope equation,

d2b

dt2
=

η I

2πε0u0b



Universal Beam Spread Curve

d2b

dt2
=

η I

2πε0u0b

Writing the equation i terms of z ,

db

dt
=

db

dz

dz

dt
,

d2b

dt2
=

d

dt

(
db

dz

)
dz

dt
+

db

dz

d2z

dt2
=

d2b

dz2

(
dz

dt

)2

+
db

dz

d2z

dt2
.

As dz/dt = u0 and d2z/dt2 = 0,

d2b

dz2
=

η I

2πε0u30b

De�ne

A=

√
η I

πε0u30
=

√
η I

πε0 (2ηV )3/2
=

√
P√

2πε0
√
2η

= 174
√
P, where P =

I

V 3/2



Universal Beam Spread Curve

d2b

dz2
=

η I

2πε0u30b

De�ne

A=

√
η I

πε0u30
=

√
η I

πε0 (2ηV )3/2
=

√
P√

πε0
√
2η

= 174
√
P, where P =

I

V 3/2

d2b

dz2
− A2

2b
= 0, =⇒

d2

(
b

b0

)
d

(
A
z

b0

)2
− b0

2b
= 0

d2B

dZ 2
− 1

2B
= 0, where Z =A

z

b0
, and B =

b

b0



Universal Beam Spread Curve

d2B

dZ 2
− 1

2B
= 0,(

dB

dZ

)2

= lnB +C

As B = 1 at Z = 0, the constant C is given as (dB0/dZ )2(
dB

dZ

)2

= lnB +

(
dB0

dZ

)2

B = e(dB/dZ)2−(dB0/dZ)2

The beam radius reaches minimum, bm, when dB/dZ = 0, which gives,

Bm = e−(dB0/dZ)2 .



Universal Beam Spread Curve

(
dB

dZ

)2

= lnB +

(
dB0

dZ

)2

dZ =
dB(

lnB +
(
dB0
dZ

)2)1/2
, =⇒ Z =

∫ B

1

dB(
lnB +

(
dB0
dZ

)2)1/2

Changing the variable of integration from B to

u =
dB

dZ
=

(
lnB +

(
dB0

dZ

)2
)1/2

,

B = eu
2−(dB0/dZ)2 , dB = 2ueu

2−(dB0/dZ)2du

Z = 2e−(dB0/dZ)2
∫ dB/dZ

dB0/dZ
eu

2

du



Universal Beam Spread Curve

Plots of B as a function of Z can be generated for various values of
dB0/dZ by selecting values of dB/dZ and then calculating corresponding
values of B and Z .

B = e(dB/dZ)2−(dB0/dZ)2

Z = 2e−(dB0/dZ)2
∫ dB/dZ

dB0/dZ
eu

2

du

Beam envelope equation only
depends on the initial radius, slope
and beam perveance P .



Universal Beam Spread Curve

Z = 2e−(dB0/dZ)2
∫ dB/dZ

dB0/dZ
eu

2

du

Distance for minimum beam radius Zmin,

Zmin = 2e−(dB0/dZ)2
∫ 0

dB0/dZ
eu

2

du



Motion in Cylindrical Coordinates

Transforming from Cartesian to Cylindrical coordinates

Fr = Fx cosθ +Fy sinθ

Fθ =−Fx sinθ +Fy cosθ

x = r cosθ , y = r sinθ

ẋ = ṙ cosθ − r θ̇ sinθ , ẏ = ṙ sinθ + r θ̇ cosθ

ẍ =
(
r̈ − r θ̇

2
)
cosθ−

(
2ṙ θ̇ + r θ̈

)
sinθ , ÿ =

(
r̈ − r θ̇

2
)
sinθ +

(
2ṙ θ̇ + r θ̈

)
cosθ

Fr = m
(
r̈ − r θ̇

2
)
, Fθ = m

(
2ṙ θ̇ + r θ̈

)

Tamer Abuelfadl (EEC, Cairo University) Topic 2 EEC746 14 / 29



Outline

1 Equations of Motion
Energy Equation

2 Universal Beam Spread Curve

3 Motion in Cylindrical Coordinates
Motion in Axially Symmetric Fields (Busch's Theory)

Tamer Abuelfadl (EEC, Cairo University) Topic 2 EEC746 15 / 29



Busch's Theorem

Consider the surface described by rotating an electron trajectory about the
z-axis.

The magnetic �ux Ψ inside this path at a given value of z,

Ψ(r ,z) =
∫ r

0
Bz

(
r ′,z

)
2πr ′dr ′

dΨ =
∂ Ψ

∂ r
dr +

∂ Ψ

∂z
dz = Bz2πrdr +

[∫ r

0

∂Bz (r ′,z)

∂z
2πr ′dr ′

]
dz
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Busch's Theorem

Using the property ∇ ·B = 0, =⇒ 1

r

∂

∂ r
(rBr ) +

∂Bz

∂z
= 0.∫ r

0

∂Bz (r ′,z)

∂z
2πr ′dr ′ =−

∫ r

0

∂

∂ r ′
(
r ′Br

)
2πdr ′ =−Br2πr

As,

dΨ =
∂ Ψ

∂ r
dr +

∂ Ψ

∂z
dz = Bz2πrdr +

[∫ r

0

∂Bz (r ′,z)

∂z
2πr ′dr ′

]
dz

dΨ = Bz2πrdr −Br2πrdz

The force directed in the θ -direction

m
(
2ṙ θ̇ + r θ̈

)
= e (ṙBz − żBr )

m
d

dt

(
r2θ̇

)
= e (r ṙBz − r żBr )

d
(
r2θ̇

)
= η (rdrBz − rdzBr )

Tamer Abuelfadl (EEC, Cairo University) Topic 2 EEC746 17 / 29



Busch's Theorem

d
(
r2θ̇

)
= η (rdrBz − rdzBr ) , and dΨ = Bz2πrdr −Br2πrdz

r2θ̇ − η

2π
Ψ = Constant of motion

θ̇ =
η

2πr2
(Ψ−Ψ0)

where Ψ0 is the �ux linked to the path at θ̇ = 0 (at the cathode). In most
applications of interest in linear-beam tubes, changes slowly
with r , so Ψ = πr2Bz .

θ̇ u
η

2

(
Bz −

r20
r2
Bz0

)
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Thermionic Cathodes

Two cathode emission mechanisms are used in conventional tubes:

Thermionic emission;
Secondary emission.

In cathodes for linear-beam tubes, only thermionic emission is used.

Secondary emission cathodes are used in crossed-�eld tubes.

J. R. Pierce listed the primary characteristics that an ideal cathode
should have:

1 Emits electrons freely, without any form of persuasion such as heating
or bombardment (electrons would leak o� from it into vacuum as easily
as they pass from one metal to another);

2 Emits copiously, supplying an unlimited current density;
3 Lasts forever, its electron emission continuing unimpaired as long as it

is needed;
4 Emits electrons uniformly, traveling at practically zero velocity.
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Space Charge Limitation

The e�ect of the negative charge of an electron is to reduce the potential
that is present in the absence of the electron. Near an emitting cathode
where many electrons are present, the reduction in potential can be
appreciable.
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Space Charge Limitation

(a) the electric �eld at the cathode surface causes all emitted electrons
to leave the cathode, thereby depressing the potential near the surface.

(b) the electric �eld at the cathode surface forces electrons back to
the cathode surface and increases the potential.

(c) the potential adjacent to the cathode surface is zero, that is, when
the electric �eld at the cathode surface is zero.



Child-Langmuir law

Poisson's equation,

∇
2V =−(−ρ)

ε0
=

ρ

ε0
=⇒ d2V

dx2
=

ρ

ε0

The charge is given from the current density

J = ρu, ρ =
J

u
From the conservation of energy,

u =
√
2ηV , =⇒ ρ =

J√
2ηV

d2V

dx2
=

JV−1/2

ε0
√
2η

1

2

(
dV

dx

)2

=
2JV 1/2

ε0
√
2η

=⇒ dV

dx
= 2

√
J

ε0
√
2η

V 1/4
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Child-Langmuir law

dV

V 1/4
= 2

√
J

ε0
√
2η

dx , =⇒ V 3/4 =
3

2

√
J

ε0
√
2η

x =⇒ J =
4

9
ε0

√
2η

V 3/2

x2

At x = d we have V = V0,

I = 2.33×10−6
A

d2
V

3/2
0 = PV 3/2

P = 2.33×10−6
A

d2

(
A/V3/2

)



Beam Perveance

The beam current voltage relation is quite general for any gun geometry.

Electron Gun I-V characteristic

I = PV 3/2

where P is geometrical constant called gun perveance.
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Laplace Equation and Analytic Functions

An analytic function has a derivative independent on direction in the
complex plane. If f (z) = fr (x ,y) + ifi (x ,y) is an analytic function, then

∂ f

∂x
=

∂ fr
∂x

+ i
∂ fi
∂x

,
∂ f

∂ (iy)
=−i ∂ fr

∂y
+

∂ fi
∂y

∂ fr
∂x

=
∂ fi
∂y

,
∂ fr
∂y

=−∂ fi
∂x

From these equations we can show that

∇
2
t fr = ∇

2
t fi = 0 (Laplace equation)

The real and imaginary parts of any complex analytic function satisfy
Laplace equation in the two-dimensional plane x−y .
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Pierce Gun

In region y > 0, no electrons exist and
the potential function V (x ,y) has to
satisfy Laplace equation

∇
2
tV (x ,y) = 0

In region y < 0, it is assumed a one dimensional electron
Child-Langmuir space charge limiting current is assumed with potential

Vb(x ,y) =

(
3

2

√
J

ε0
√
2η

)4/3

x4/3 = Cx4/3

The continuity of potential has to be satis�ed at
y = 0, V (x ,0) = Vb(x ,0)
An analytic continuation of the function Cx4/3, which is the only

analytic continuation is,

f (x ,y) = C (x + iy)4/3 = fr (x ,y) + ifi (x ,y)

Both fr (x ,y) and fi (x ,y) satisfy Laplace equation.



Pierce Gun

f (x ,y) = C (x + iy)4/3 = fr (x ,y) + ifi (x ,y)

At y = 0, f = fr = Cx4/3. So we choose the solution V (x ,y) as

V (x ,y) = fr (x ,y) = ℜ{f (x ,y)}
In Cylindrical coordinates,

V (r ,θ) = Cr4/3 cos

(
4

3
θ

)
The zero potential line in x−y plane, is at angle,

θ =
3π

8
rad = 67.5◦



Pierce Gun
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