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Electron Dynamics

@ Equations of Motion
@ Energy Equation

© Universal Beam Spread Curve

© Motion in Cylindrical Coordinates
@ Motion in Axially Symmetric Fields (Busch’s Theory)
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Equations of Motion

@ Non-relativistic

m%:q(E—i—uxB)

@ Relativistic
d(ymu)

dt

=q(E4+uxB)



@ Equations of Motion
@ Energy Equation
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Equations of Motion

Energy Equation

The equation of motion for a relativistic particle can be written as,
d d qg /[l
Gom)—aEruxe).  —  S0B-1(leipxe)

The particle kinetic energy equation can be derived through multiplication
with B =u/c,
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Energy conservation in static field

| Non-relativistic (u < c) | Relativistic ‘

du d(}/mu) —eE, where y= !

Mt dt V1—u?/c?

The field E, is given in terms of the potential V, E=—-VV.

d
The energy equation md—l: = —iﬁ -E
d (ymc? d d
(YC;ZC):eu‘VV:edtV == a(}/mc2—eV):0

For non-relativistic equation of motion,

d (1 m
mu —eV ) =0, = — (\’— 1) =e(V— V)
dt 2
@ For an electron with zero initial velocity and zero initial potential, the
velocity at a position with potential V is given by,

2eV

1
Emu2—eV:0, == =12



Universal Beam Spread Curve

The electron motion in Region 3 can be

described by,

d?r

e
ﬁ = —nEr, where n= ;

The electric field, E, , produced by the
electron charge in a beam is given by,

2
]{E'dS:—Q:—n’rgp’ — Er:_i
S & & 2&

The charge density

p= TL-b2U0’

Hence, the beam envelope equation,

b _ nl
dt2 2mweyUgb



Universal Beam Spread Curve

b _ nl

dt? - 2mwegUgb

Writing the equation i terms of z,

db_dbdz  d’b_d (db\dz dbd’z d’b(dz\* dbd’z
dt  dzdt’ dt2  dt \dz ) dt = dz dt2  dz? \ dt dz dt?’

As dz/dt = uy and d?z/dt?> =0,

d’b nl

@ - 27‘[80U8b

Define

A= UL VP 174VP, where P— -
ey Uy neo (20 V)% 21egy/2N v3/




Universal Beam Spread Curve
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Universal Beam Spread Curve

2 .
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As B=1 at Z =0, the constant C is given as (dBy/dZ)?

dB\? dBy \ 2
B— e(dB/dZ)Q—(dBo/de

The beam radius reaches minimum, b,,, when dB/dZ = 0, which gives,
B, = e—(dBo/dZ)?



Universal Beam Spread Curve
dB\? _ dBo\*
(&) —ne+(2)

dB B dB

dZ = — /= 172
(ln3+(dso) )

<|nB+ ("50)2>1/27

Changing the variable of integration from B to
1/2
dB dBy
u=-—> <|nB+(dZ>> :

B— euzf(dBo/dZ)zj dB = oye’—(dBo/dZ)? 4,

dB/dZ
Z = 2e_("’B°/dZ)2 / e’ du
dBo/dZ



Universal Beam Spread Curve

Plots of B as a function of Z can be generated for various values of
dBy/dZ by selecting values of dB/dZ and then calculating corresponding
values of B and Z.
B— e(dB/dZ)Q—(dBo/de
7 = 2e~(dBo/dz)? Wl e’ du
dBo/dZ
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Beam envelope equation only
depends on the initial radius, slope
and beam perveance P.
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Universal Beam Spread Curve
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Motion in Cylindrical Coordinates

Transforming from Cartesian to Cylindrical coordinates

Fr = Fxcos®+ F,sin0
Fo = —Fxsin@+ F,cos6
x=rcos0, y=rsin0
Xx=rcos®—rOsinb, y =rFsin@+r6cosB

X= (F— réz) cos 0 — (2i9+ré> sinf, y= (F— r92) sin 0+ (2i9+ré) cos 6

F,zm(?—r92>, F9:m(2i9+ré>
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© Motion in Cylindrical Coordinates
@ Motion in Axially Symmetric Fields (Busch’s Theory)
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Busch's Theorem

Consider the surface described by rotating an electron trajectory about the
z-axis.

Ring of
Electrons.

The magnetic flux V inside this path at a given value of z,
r
V(r,z)= / B, (r',z)2mr'dr’
0

r /
dv = a—wdm—a—dz— B,2xrdr + / M%rr’dr’ dz
ar dz 0 dz
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Busch's Theorem

10 dB,
Using the property V-B =0, = ——(rB)+ =0.
ror 0z
rdB,(r,z) rad
/(; T27tr/dr/:—/0 W(IJB,«) 277:dr,:—3r27l'r

As,

r /
dV = aidr+ aiwdz = B,2wrdr + / MQﬂr'dr' dz
or dz 0 0z

| dV = B,2rrdr — B,27rdz |
The force directed in the O-direction

m <2ié + ré) = e(iB, — 2B,)

m% <r2é> =e(riB,—rzB,)

d (ﬁé) =1 (rdrB, — rdzB,)
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Busch's Theorem

d <r2é) =n(rdrB, — rdzB,),  and dV = B,2mrdr — B,2mrdz

r20 — l\U = Constant of motion
2n

oM
6= 5 (V-

where Wy is the flux linked to the path at 8 = 0 (at the cathode). In most
applications of interest in linear-beam tubes, changes slowly

with r, so W = r?B,.
6 ~ g (Bz - rgBZo)
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Thermionic Cathodes

@ Thermionic Cathodes
© Child-Langmuir law

@ Pierce Gun
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Thermionic Cathodes

@ Two cathode emission mechanisms are used in conventional tubes:

e Thermionic emission;
e Secondary emission.

@ In cathodes for linear-beam tubes, only thermionic emission is used.
@ Secondary emission cathodes are used in crossed-field tubes.

@ J. R. Pierce listed the primary characteristics that an ideal cathode
should have:

© Emits electrons freely, without any form of persuasion such as heating
or bombardment (electrons would leak off from it into vacuum as easily
as they pass from one metal to another);

© Emits copiously, supplying an unlimited current density;

© Lasts forever, its electron emission continuing unimpaired as long as it
is needed;

© Emits electrons uniformly, traveling at practically zero velocity.
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Space Charge Limitation

The effect of the negative charge of an electron is to reduce the potential
that is present in the absence of the electron. Near an emitting cathode
where many electrons are present, the reduction in potential can be

appreciable.
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Space Charge Limitation

(c)
Equilibrium @)

Field=0

Potential

(b)

f Distance
Cathode

@ (a) the electric field at the cathode surface causes all emitted electrons
to leave the cathode, thereby depressing the potential near the surface.

o (b) the electric field at the cathode surface forces electrons back to
the cathode surface and increases the potential.

@ (c) the potential adjacent to the cathode surface is zero, that is, when
the electric field at the cathode surface is zero.



Child-Langmuir law

Poisson’s equation,
— d?v P A
€ & dx? g | Electron
The charge is given from the current density =
Cathode
J=pu, p=2 S
u
From the conservation of energy,
J
u nv, P T%
d?v Yy
dx2  &/21
1/dvV\> 24V dv J
2\ dx £+/21 dx £4+/21
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Child-Langmuir law

d
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Llectron
e L
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i Anode

Cathode (V)
(V=)

dVv J 3 J 4 Vv3/2
vi/4 €+/21 o 2 80\/2nx J 9% 2N x2
At x = d we have V =V,

A
— -6 3/2 _ pys3/2
1=233x107° 5 Vg = PV

P=233x 10*6% (arv*?)



Beam Perveance

The beam current voltage relation is quite general for any gun geometry.

Electron Gun |-V characteristic

| = PV3/2

where P is geometrical constant called gun perveance.
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Laplace Equation and Analytic Functions

An analytic function has a derivative independent on direction in the
complex plane. If f(z) = f,(x,y)+ ifi(x,y) is an analytic function, then

of _9f, . .of of  9f I

ax ox ax ay T oy Tay

ofr _ofi  0f __Of
ox dy’ dy  Ix

From these equations we can show that

V2f,=V2f;=0  (Laplace equation)

The real and imaginary parts of any complex analytic function satisfy
Laplace equation in the two-dimensional plane x —y.
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Pierce Gun

@ In region y > 0, no electrons exist and
the potential function V/(x,y) has to

¥

- satisfy Laplace equation
z Electron Beam |
‘—'/‘llllhll R
Cathode Beam E):tendsmoa Vt V(X’y) = 0
in + z Directions

@ In region y <0, it is assumed a one dimensional electron
Child-Langmuir space charge limiting current is assumed with potential

3 ; 4/3
Vi(x,y) = (21 /80 2n> X3 = o3

@ The continuity of potential has to be satisfied at
y =0, V(x,0) = Vp(x,0)
@ An analytic continuation of the function Cx
analytic continuation is,
flx.y) = Clxt i)' = filxy) +ifi(x.y)

Both f,(x,y) and fi(x,y) satisfy Laplace equation.

4/3 which is the only



|
Electron Beam / ||I I|I
- II |I

z
Beam Extends to «
in + z Directions

F(x,y) = C(x+iy)*® = f(x,y) +ifi(x,y)

@ At y=0, f =f, = Cx*/3. So we choose the solution V/(x,y) as
V(x,y) =fr(x,y) = R{f(x,y)}

@ In Cylindrical coordinates,
V(r,8) = Cr*3cos <39>

@ The zero potential line in x — y plane, is at angle,
3n
6 = —rad =67.5°



Pierce Gun

Transverse Pesition

Edge of Beam
~— Surface of Cathode.

Axial Position
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