Topic 6

 Receiving Antennas

 Receiving Antennas}

Tamer Abuelfadl

Electronics and Electrical Communications Department
Faculty of Engineering
Cairo University

Receiving Antennas

(1) Reciprocity Theorem in Electromagetics
(2) Vector Effective Length
(3) Antenna Equivalent Areas
(4) Friis Transmission Formula

Outline

(1) Reciprocity Theorem in Electromagetics
(2) Vector Effective Length
(3) Antenna Equivalent Areas
(4) Friis Transmission Formula

Lorentz Reciprocity Theorem

Let $\mathbf{E}_{1}, \mathbf{H}_{1}, \mathbf{J}_{1}$ and $\mathbf{E}_{2}, \mathbf{H}_{2}, \mathbf{J}_{2}$ be two sets of solutions to Maxwell's equations.

$$
\begin{array}{cc}
\nabla \times \mathbf{E}_{1}=-j \omega \mu \mathbf{H}_{1} & \nabla \times \mathbf{E}_{2}=-j \omega \mu \mathbf{H}_{2} \\
\nabla \times \mathbf{H}_{1}=j \omega \varepsilon \mathbf{E}_{1}+\mathbf{J}_{1} & \nabla \times \mathbf{H}_{2}=j \omega \varepsilon \mathbf{E}_{2}+\mathbf{J}_{2} \\
\begin{aligned}
& \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{H}_{2}-\mathbf{E}_{2} \times \mathbf{H}_{1}\right)= \nabla \times \mathbf{E}_{1} \cdot \mathbf{H}_{2}-\mathbf{E}_{1} \cdot \nabla \times \mathbf{H}_{2} \\
&-\nabla \times \mathbf{E}_{2} \cdot \mathbf{H}_{1}+\mathbf{E}_{2} \cdot \nabla \times \mathbf{H}_{1} \\
&= \mathbf{J}_{1} \cdot \mathbf{E}_{2}-\mathbf{J}_{2} \cdot \mathbf{E}_{1} \\
& \oint_{S}\left(\mathbf{E}_{1} \times \mathbf{H}_{2}-\mathbf{E}_{2} \times \mathbf{H}_{1}\right) \cdot d \mathbf{s}=\int_{V}\left(\mathbf{J}_{1} \cdot \mathbf{E}_{2}-\mathbf{J}_{2} \cdot \mathbf{E}_{1}\right) d v
\end{aligned}
\end{array}
$$

The reciprocity theorem can be used to provide important concepts such as the antenna vector effective length and antenna effective area.

Outline

(1) Reciprocity Theorem in Electromagetics

(2) Vector Effective Length

(3) Antenna Equivalent Areas

(4) Friis Transmission Formula

Vector Effective Length

The radiation electric field \mathbf{E} can be written in terms of the input current as,

$$
\mathbf{E}_{a}=j \eta \frac{k l_{i n} e^{-j k r}}{4 \pi r} \ell_{e}
$$

where $\boldsymbol{\ell}_{e}$ is the vector effective length, $\quad \ell_{e}=\ell_{\theta} \hat{\mathbf{a}}_{\theta}+\ell_{\phi} \hat{\mathbf{a}}_{\phi}$. The open-circuit voltage $V_{o c}$ of the receiving antenna,

$$
V_{o c}=\mathbf{E}_{i} \cdot \boldsymbol{\ell}_{e}
$$

Polarization Mismatch

$$
V_{o c}=\mathbf{E}_{i} \cdot \ell_{e}
$$

The open circuit voltage $V_{o c}$ is maximized when the dot product is maximized.

Definition

Polarization efficiency (Polarization mismatch factor): the ratio of the power received by an antenna from a given plane wave of arbitrary polarization to the power that would be received by the same antenna from a plane wave of the same power flux density and direction of propagation, whose state of polarization has been adjusted for a maximum received power.

Polarization Mismatch

$$
\text { Polarization efficiency (Polarization Loss Factor PLF) } \quad p=\frac{\left|\mathbf{E}_{i} \cdot \ell_{e}\right|^{2}}{\left|\mathbf{E}_{i}\right|^{2}\left|\ell_{e}\right|^{2}}
$$

Assuming the electric field of the incoming wave is $\mathbf{E}_{i}=\hat{\boldsymbol{\rho}}_{w} E_{i}$, and the polarization of the electric field of the receiving antenna $\mathbf{E}_{a}=\hat{\boldsymbol{\rho}}_{a} E_{a}$, the Polarization efficiency (Polarization Loss Factor LPF) p,

$$
\text { Polarization efficiency (Polarization Loss Factor PLF) } \quad p=\left|\hat{\boldsymbol{\rho}}_{w} \cdot \hat{\boldsymbol{\rho}}_{a}\right|^{2}
$$

Outline

(1) Reciprocity Theorem in Electromagetics

(2) Vector Effective Length
(3) Antenna Equivalent Areas

(4) Friis Transmission Formula

Antenna Equivalent Areas

Definition

Effective area (aperture) is the ratio of the available power at the terminals of a receiving antenna to the power flux density of a plane wave incident on the antenna from that direction, the wave being polarization matched to the antenna.

Antenna Equivalent Areas

$$
A_{e}=\frac{P_{T}}{W_{i}}=\frac{\left|I_{T}\right|^{2} R_{T} / 2}{W_{i}}=\frac{\left|V_{T}\right|^{2}}{2 W_{i}}\left[\frac{R_{T}}{\left(R_{r}+R_{L}+R_{T}\right)^{2}+\left(X_{A}+X_{T}\right)^{2}}\right]
$$

P_{T} is maximized to the available power P_{A} under conjugate matching: $R_{T}=R_{r}+R_{L}, \quad X_{T}=-X_{A}$.

$$
A_{e m}=\frac{\left|V_{T}\right|^{2}}{8 W_{i}}\left[\frac{1}{R_{r}+R_{L}}\right]
$$

Antenna Equivalent Areas

- The scattering area: is the equivalent area when multiplied by the incident power density is equal to the scattered or reradiated power,

$$
A_{s}=\frac{\left|V_{T}\right|^{2}}{8 W_{i}}\left[\frac{R_{r}}{\left(R_{r}+R_{L}\right)^{2}}\right]
$$

- The loss area: is the equivalent area when multiplied by the incident power density is equal to the power dissipated as heat,

$$
A_{L}=\frac{\left|V_{T}\right|^{2}}{8 W_{i}}\left[\frac{R_{L}}{\left(R_{r}+R_{L}\right)^{2}}\right]
$$

- The capture area: is the equivalent area when multiplied by the incident power density is equal to the total power captured,

$$
A_{c}=\frac{\left|V_{T}\right|^{2}}{4 W_{i}}\left[\frac{1}{R_{r}+R_{L}}\right]
$$

$$
A_{c}=A_{e m}+A_{s}+A_{L}
$$

The received power is half the captured power.

Maximum gain and maximum effective area

Theorem

The maximum effective area ($A_{e m}$) of any antenna is related to its maximum gain $\left(G_{0}\right)$ by

$$
A_{e m}=\frac{\lambda^{2}}{4 \pi} G_{0}
$$

Received Power from Incident Wave

If the incident power power density is $W_{i}=\frac{\left|\mathbf{E}_{i}\right|^{2}}{2 \eta}$, and the maximum effective area of the receiving antenna is $A_{e m}\left(\theta_{r}, \phi_{r}\right)=\frac{\lambda^{2}}{4 \pi} G_{r}\left(\theta_{r}, \phi_{r}\right)$, then the received power P_{r} from the receiving antenna,

$$
P_{r}=W_{i} A_{e m} p\left(1-\left|\Gamma_{r}\right|^{2}\right),
$$

where p is the polarization mismatch factor and the term $\left(1-\left|\Gamma_{r}\right|^{2}\right)$ is the impedance mismatch of the receiving antenna, and Γ_{r} is given by,

$$
\Gamma_{r}=\frac{Z_{r}-Z_{T}^{*}}{Z_{r}+Z_{T}}
$$

where Z_{r} is the receiving antenna input impedance.

Outline

(1) Reciprocity Theorem in Electromagetics

(2) Vector Effective Length
(3) Antenna Equivalent Areas
(4) Friis Transmission Formula

Friis Transmission Formula

where P_{t} is the available power to the transmitting antenna and P_{r} is the received power in the receiving antenna.
p : polarization mismatch.
$\left(1-\left|\Gamma_{t}\right|^{2}\right)$: transmitting antenna impedance mismatch.
$\left(1-\left|\Gamma_{r}\right|^{2}\right)$: receiving antenna impedance mismatch.

Examples on Polarization Loss Factor

Sense of rotation

The sense of rotation is always determined by rotating the phase-leading component towards the phase lagging component and observing the field rotation as the wave is viewed as it travels away from the observer.

$$
\text { Right-Hand } \equiv \text { Clockwise (CW) }
$$

Left-Hand \equiv Counterclockwise (CCW)

A CW circularly polarized uniform plane wave is traveling in the $+z$ direction.
Find the polarization loss factor PLF (dimensionless and in dB) assuming the receiving antenna (in its transmitting mode) is:
(1) CW circularly polarized
(2) CCW circularly polarized

Examples on Polarization Loss Factor

A linearly polarized uniform plane wave traveling in the $+z$ direction, with a power density of 10 milliwatts per square meter, is incident upon a CW circularly polarized antenna whose gain is 10 dB at 10 GHz . Find the
(1) PLF.
(2) power (in watts) that will he delivered to a load attached directly to the terminals of the antenna.

