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1 Markov Process (Continuous Time Markov Chain)

1.1 Transient Analysis of CTMC

Generally, transient analysis is a very challenging task. However, instantaneous state probability
can be driven for a few case especially when the state probabilities at time 0, πi(0), are known.
E.g. usually one knows that the system at time 0 is precisely in a given state k. The objective of
the transient analysis is to �nd how the state probabilities evolve as a function of time p(t)

The transient dynamics of CTMC are mainly de�ned by

d

dt
π(t) = π(t)Q (1)

1.1.1 Pure Birth Transient Analysis

It is assumed that the system starts with zero population, that is to say π0(0) = 1 and πi(0) =
0 ∀i 6= 0 .

Using eq(1), one can write

d

dt
πo(t) = −λπo(t)

d

dt
πi(t) = −λπi(t) + λπi−1(t)
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Solving these di�erential equations using laplace transform, we have

sπ∗o(s)− π0(0) = −λπ∗o(s)→ π∗o(s) =
1

s+ λ

π∗i (s) =
λ

s+ λ
π∗i−1(s) =

λk

(s+ λ)k+1

Applying laplace transform, one can express the instantensous probabilites as

πo(t) = e−λt

πi(t) =
(λt)i

i!
e−λt

Note that the obtained solution indicates that the population in some period t follows a Poisson
process.

1.1.2 Pure death Transient Analysis

It is assumed that the system starts with a population of n members, that is to say πn(0) = 1
and πi(0) = 0 ∀i 6= n

Using eq(1), one can write

d

dt
πn(t) = −nµπn(t)⇒ πn(t) = e−nµt

d

dt
πi(t) = (i+ 1)µπi+1(t)− iµπi(t)⇒

d

dt

(
eiµtπi(t)

)
= (i+ 1)µπi+1(t)e

iµt

Hence, one can express πi(t) as

πi(t) = (i+ 1)µe−iµt
ˆ t

0

πi+1(τ)e
iµτdτ

Solving this equation for i = n− 1, we have

πn−1(t) = nµe−(n−1)µt
ˆ t

0

e−nµτ ∗ e(n−1)µτdτ

= nµe−(n−1)µt
ˆ t

0

e−µτdτ

= n
[
(e−µt)n−1

] [
1− e−µt

]
Solving recursively for n− 2, n− 3, ...... one can express the transient state probabilities as

πi(t) =

(
n
i

)[
(e−µt)

]i [
1− e−µt

]n−1
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2 M/G/1 Queue Length Analysis

� The analysis is based on Embedded Markov chain or jump chain

� Let Nk be the queue length after the departure of customer k

� Let Vk be the number of new customers arrived during the service time of customer k.

� Markov chain is constituted by the queue left by an departing customer.

� Given Nk , Nk+1 can be expressed in terms of it and of a random variable Vk+1

Nk+1 =

{
Nk − 1 + Vk+1 , Nk ≥ 1

Vk+1 , Nk = 0

� As the service times are independent and the arrivals are Poissonian, the Vk are inde-
pendent of each other.

� V k+1 is independent of Nk and its history

� The stochastic characterization of Nk+1 depends on Nk but not on the earlier history
� Markov Process

� Let aj denotes the probability of j arrivals between two departures, i.e. P (Vk = j) = aj

� Let pj denotes the length distribution probability, then

pj = p0aj +

j+1∑
i=1

piaj−i+1

� The MGF for the number of the customers in the system can then be derived as

GN(z) =
∞∑
j=0

zjpj =
∞∑
j=0

zjajpo +
∞∑
j=0

i=j+1∑
i=1

zjpiaj−i+1

= poGV (z) +
∞∑
i=1

∞∑
j=i−1

zjpiaj−i+1

= poGV (z) +
∞∑
i=1

pi

∞∑
k=0

zk+i−1ak

= poGV (z) +
∞∑
i=1

piz
i−1

∞∑
k=0

zkak

= poGV (z) + z−1[GN(z)− po]GV (z)
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Hence, one can conclude that

GN(z) =
(z − 1)poGV (z)

z −GV (z)
(2)

Eq (2) indicates that if one can characterize the number of arrivals between two departures
[Gv(z)], one can characterize the limiting distribution of the number of the customers in the
system.

� Note that GN(1) = 1 =
(1−1)poG′

V (1)+poGV (1)

1−G′
V (1)

→ po = 1−G′(1) = 1− ρ

� In the following, we charactrize the distribution of inter-departure arrival

� First, let us characterize the number of arrivals from a Poisson process during a random
interval X

GV (z) =
∞∑
v=0

zvP{V = v}

=
∞∑
v=0

zv
ˆ ∞
0

P{V = v|S = s}fS(s)ds

=
∞∑
v=0

zv
ˆ ∞
0

(λs)v

v!
e−λsfS(s)ds

=

ˆ ∞
0

∞∑
v=0

(zλs)v

v!
e−λsfS(s)ds

=

ˆ ∞
0

ezλse−λsfS(s)ds

=

ˆ ∞
0

e−(1−z)λsfS(s)ds

= GS(λ(1− z)) (3)

� The same result can be attained using the law of iterated expectations

GV (z) = EV [z
k] = ES[EV |S[z

k|S]] = ES[e
−(1−z)λS] = GS((1− z)λ)

� By pluging (3) in (2), we have

GN(z) =
(z − 1)poGS(λ(1− z))
z −GS(λ(1− z))

� For M/M/1, we have GS(s)=
µ
µ+s
⇒ GS((1− z)λ) = µ

µ+(1−z)λ = 1/(1 + (1− z)ρ)

GN(z) =
(z − 1)(1− ρ)

z(1 + (1− z)ρ)− 1
=

1− ρ
1− ρz

= (1− ρ)(1 + ρz + (ρz)2 + ....)
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3 Homework

� Consider a system with two components whose failure rate is l. The component repair time
is exponentially distributed with rate µ. However, the system fails if both components fail.
Fine the mean time to failure of such system. Characterize the failure time of this system.
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