Continuous Time Markov Chains (CTMC) Lecture \#8

Contents

1 Markov Process (Continuous Time Markov Chain) 1
1.1 Transient Analysis of CTMC 1
1.1.1 Pure Birth Transient Analysis 1
1.1.2 Pure death Transient Analysis 2
2 M/G/1 Queue Length Analysis 3
3 Homework 5

1 Markov Process (Continuous Time Markov Chain)

1.1 Transient Analysis of CTMC

Generally, transient analysis is a very challenging task. However, instantaneous state probability can be driven for a few case especially when the state probabilities at time $0, \pi_{i}(0)$, are known. E.g. usually one knows that the system at time 0 is precisely in a given state k . The objective of the transient analysis is to find how the state probabilities evolve as a function of time $\pi(\mathrm{t})$

The transient dynamics of CTMC are mainly defined by

$$
\begin{equation*}
\frac{d}{d t} \pi(t)=\pi(t) Q \tag{1}
\end{equation*}
$$

1.1.1 Pure Birth Transient Analysis

It is assumed that the system starts with zero population, that is to say $\pi_{0}(0)=1$ and $\pi_{i}(0)=$ $0 \forall i \neq 0$.

Using eq(1), one can write

$$
\begin{gathered}
\frac{d}{d t} \pi_{o}(t)=-\lambda \pi_{o}(t) \\
\frac{d}{d t} \pi_{i}(t)=-\lambda \pi_{i}(t)+\lambda \pi_{i-1}(t)
\end{gathered}
$$

Solving these differential equations using laplace transform, we have

$$
\begin{gathered}
s \pi_{o}^{*}(s)-\pi_{0}(0)=-\lambda \pi_{o}^{*}(s) \rightarrow \pi_{o}^{*}(s)=\frac{1}{s+\lambda} \\
\pi_{i}^{*}(s)=\frac{\lambda}{s+\lambda} \pi_{i-1}^{*}(s)=\frac{\lambda^{k}}{(s+\lambda)^{k+1}}
\end{gathered}
$$

Applying laplace transform, one can express the instantensous probabilites as

$$
\begin{gathered}
\pi_{o}(t)=e^{-\lambda t} \\
\pi_{i}(t)=\frac{(\lambda t)^{i}}{i!} e^{-\lambda t}
\end{gathered}
$$

Note that the obtained solution indicates that the population in some period t follows a Poisson process.

1.1.2 Pure death Transient Analysis

It is assumed that the system starts with a population of n members, that is to say $\pi_{n}(0)=1$ and $\pi_{i}(0)=0 \forall i \neq n$

Using eq(1), one can write

$$
\begin{gathered}
\frac{d}{d t} \pi_{n}(t)=-n \mu \pi_{n}(t) \Rightarrow \pi_{n}(t)=e^{-n \mu t} \\
\frac{d}{d t} \pi_{i}(t)=(i+1) \mu \pi_{i+1}(t)-i \mu \pi_{i}(t) \Rightarrow \frac{d}{d t}\left(e^{i \mu t} \pi_{i}(t)\right)=(i+1) \mu \pi_{i+1}(t) e^{i \mu t}
\end{gathered}
$$

Hence, one can express $\pi_{i}(t)$ as

$$
\pi_{i}(t)=(i+1) \mu e^{-i \mu t} \int_{0}^{t} \pi_{i+1}(\tau) e^{i \mu \tau} d \tau
$$

Solving this equation for $i=n-1$, we have

$$
\begin{aligned}
\pi_{n-1}(t) & =n \mu e^{-(n-1) \mu t} \int_{0}^{t} e^{-n \mu \tau} * e^{(n-1) \mu \tau} d \tau \\
& =n \mu e^{-(n-1) \mu t} \int_{0}^{t} e^{-\mu \tau} d \tau \\
& =n\left[\left(e^{-\mu t}\right)^{n-1}\right]\left[1-e^{-\mu t}\right]
\end{aligned}
$$

Solving recursively for $n-2, n-3, \ldots \ldots$ one can express the transient state probabilities as

$$
\pi_{i}(t)=\binom{n}{i}\left[\left(e^{-\mu t}\right)\right]^{i}\left[1-e^{-\mu t}\right]^{n-1}
$$

2 M/G/1 Queue Length Analysis

- The analysis is based on Embedded Markov chain or jump chain
- Let N_{k} be the queue length after the departure of customer k
- Let V_{k} be the number of new customers arrived during the service time of customer k .

- Markov chain is constituted by the queue left by an departing customer.
- Given N_{k}, N_{k+1} can be expressed in terms of it and of a random variable V_{k+1}

$$
N_{k+1}= \begin{cases}N_{k}-1+V_{k+1} & , N_{k} \geq 1 \\ V_{k+1} & , N_{k}=0\end{cases}
$$

- As the service times are independent and the arrivals are Poissonian, the V_{k} are independent of each other.
- V_{k+1} is independent of N_{k} and its history
- The stochastic characterization of N_{k+1} depends on N_{k} but not on the earlier history \rightarrow Markov Process
- Let a_{j} denotes the probability of j arrivals between two departures, i.e. $P\left(V_{k}=j\right)=a_{j}$
- Let p_{j} denotes the length distribution probability, then

$$
p_{j}=p_{0} a_{j}+\sum_{i=1}^{j+1} p_{i} a_{j-i+1}
$$

- The MGF for the number of the customers in the system can then be derived as

$$
\begin{aligned}
G_{N}(z) & =\sum_{j=0}^{\infty} z^{j} p_{j}=\sum_{j=0}^{\infty} z^{j} a_{j} p_{o}+\sum_{j=0}^{\infty} \sum_{i=1}^{i=j+1} z^{j} p_{i} a_{j-i+1} \\
& =p_{o} G_{V}(z)+\sum_{i=1}^{\infty} \sum_{j=i-1}^{\infty} z^{j} p_{i} a_{j-i+1} \\
& =p_{o} G_{V}(z)+\sum_{i=1}^{\infty} p_{i} \sum_{k=0}^{\infty} z^{k+i-1} a_{k} \\
& =p_{o} G_{V}(z)+\sum_{i=1}^{\infty} p_{i} z^{i-1} \sum_{k=0}^{\infty} z^{k} a_{k} \\
& =p_{o} G_{V}(z)+z^{-1}\left[G_{N}(z)-p_{o}\right] G_{V}(z)
\end{aligned}
$$

Hence, one can conclude that

$$
\begin{equation*}
G_{N}(z)=\frac{(z-1) p_{o} G_{V}(z)}{z-G_{V}(z)} \tag{2}
\end{equation*}
$$

Eq (2) indicates that if one can characterize the number of arrivals between two departures $\left[G_{v}(z)\right]$, one can characterize the limiting distribution of the number of the customers in the system.

- Note that $G_{N}(1)=1=\frac{(1-1) p_{o} G_{V}^{\prime}(1)+p_{o} G_{V}(1)}{1-G_{V}^{\prime}(1)} \rightarrow p_{o}=1-G^{\prime}(1)=1-\rho$
- In the following, we charactrize the distribution of inter-departure arrival
- First, let us characterize the number of arrivals from a Poisson process during a random interval X

$$
\begin{align*}
G_{V}(z) & =\sum_{v=0}^{\infty} z^{v} P\{V=v\} \\
& =\sum_{v=0}^{\infty} z^{v} \int_{0}^{\infty} P\{V=v \mid S=s\} f_{S}(s) d s \\
& =\sum_{v=0}^{\infty} z^{v} \int_{0}^{\infty} \frac{(\lambda s)^{v}}{v!} e^{-\lambda s} f_{S}(s) d s \\
& =\int_{0}^{\infty} \sum_{v=0}^{\infty} \frac{(z \lambda s)^{v}}{v!} e^{-\lambda s} f_{S}(s) d s \\
& =\int_{0}^{\infty} e^{z \lambda s} e^{-\lambda s} f_{S}(s) d s \\
& =\int_{0}^{\infty} e^{-(1-z) \lambda s} f_{S}(s) d s \\
& =G_{S}(\lambda(1-z)) \tag{3}
\end{align*}
$$

- The same result can be attained using the law of iterated expectations

$$
G_{V}(z)=E_{V}\left[z^{k}\right]=E_{S}\left[E_{V \mid S}\left[z^{k} \mid S\right]\right]=E_{S}\left[e^{-(1-z) \lambda S}\right]=G_{S}((1-z) \lambda)
$$

- By pluging (3) in (2), we have

$$
G_{N}(z)=\frac{(z-1) p_{o} G_{S}(\lambda(1-z))}{z-G_{S}(\lambda(1-z))}
$$

- For $\mathrm{M} / \mathrm{M} / 1$, we have $G_{S}(s)=\frac{\mu}{\mu+s} \Rightarrow G_{S}((1-z) \lambda)=\frac{\mu}{\mu+(1-z) \lambda}=1 /(1+(1-z) \rho)$

$$
\begin{aligned}
G_{N}(z) & =\frac{(z-1)(1-\rho)}{z(1+(1-z) \rho)-1}=\frac{1-\rho}{1-\rho z} \\
& =(1-\rho)\left(1+\rho z+(\rho z)^{2}+\ldots .\right)
\end{aligned}
$$

3 Homework

- Consider a system with two components whose failure rate is λ. The component repair time is exponentially distributed with rate μ. However, the system fails if both components fail. Fine the mean time to failure of such system. Characterize the failure time of this system.

