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Continuous Time Markov Chains (CTMC)
Lecture #6
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1 Markov Process (Continuous Time Markov Chain)

e The main difference from DTMC is that transitions from one state to another can occur at
any instant of time.

e In order to satisfy the Markov property, the time the system spends in any given state should
be memoryless = the state sojourn time is exponentially distributed.

1.1 Mathematical Representation

e A Markov process X; is completely determined by the so called generator matrixz or tran-
sitton rate matric () = [q;]

P{Xyne =jl Xy =1} ., .
A7 i F

= lim
G = %

where ¢;; transition rate or transition intensity and represents the probability per time unit
that the system makes a transition from state i to state j.

— The total transition rate out of state i, denoted as, can be expressed as ¢; = Z#j ij

— This is the rate at which the probability of state i decreases. Define ¢; = —g;
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1.2 Transient State Probabilities Ahmed H. Zahran

e Hence, one can express the generator matrix as

qoo qo1 - - - —qo qo1
dio 411 - - - qi0o —q1

Note that the sum of each row equals zero indicating that the probability mass flowing out
of state i will go to some other states (is conserved)

1.2 Transient State Probabilities

e State probability vector 7(¢) is now a function of time evolving as follows
—m(t) =7(1)Q (1)
e Generally, studying the behavior of CTMC is not a simple task. Even in homogeneous chains,
the study of such chains is not generally tractable
e The transient solution for the state probabilities m(¢) can be expressed as
m(t) = mper.

A closed-form expression for the transient behavior is not easy to obtain even for simple
chains.

1.3 Steady State Analysis

e For the steady state analysis, an irreducible CTMC has a limiting distribution that is inde-
pendent of the initial state distribution.

e For irreducible Markov Chains at steady state
7= lim7(t) 7Q =0 (2)
t—o0

— The solution is unique up to a constant factor.
— The solution is uniquely determined by the normalization condition (), m; = 1).

— 7 is the (left) eigenvector belonging to the eigenvalue 0.

e Hence, Global balance condition which expresses the balance of probability flows

T = Z Tiqij

i#j
T Z%’i = Zﬂ'z’qij
i#] 1#]
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1.3 Steady State Analysis Ahmed H. Zahran

e Solving Balance Equations. Similar to the discrete case, we have
7@ =0 and 7K =e¢
Hence, the steady state solution will be

T=e(Q+E)!

e Note that the global balance equation can be applied for a set of states.

0 5 0
—
—
::?
-1‘_‘"._,—:—""__J

Proof
T Z%’i = ZM%
1#] i#]
Now let us add a set of these equation corresponding to a subset S of the model states and split
the above summations into two summations over states € S and states ¢ S

ZW]‘ Z Qji = Z Z Tiqij

JES i, i) JES i, i#j
Zﬂ'j [Z qji + Z%’i] = Z [Z Q5 + Zﬂiqzj]
jes i¢S i€s jes Lies i¢S
Z Z Tiqji = Z Z Ti4ij
jeS i¢s i¢S jes

Example

Consider a birth death chain in which births occur with a rate of A and death occurs at a rate
of p. The chain represent the system population.

Solution:
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1.4 Embedded Markov Chain Ahmed H. Zahran

1.4 Embedded Markov Chain

e Also commonly known as jump chain.

— Focus is on the transitions of X; (when they occur), i.e. on the sequence of (different)
states visited by Xj.

— Let the state transitions of X; occur at instants tg, t1,.... Define Xﬁf) to be the value of
X; immediately after the transition at time ¢, (at the instant ¢ ) or the value of X; in
(tna tn—i—l)-

Since X; is a Markov process, the embedded chain X\ constitutes a Markov chain.

The transition probabilities of the embedded chain

qZ . .
p:{zji]” 77/7é.]
ij .
0 =]

Let 7 be the steady state probability of the Markov process and 7(¢) be the steady state
probability of the embedded Markov chain.

€/, .
L RN O N

> m 4y DL

T, =

Note that

— m;= proportion of time that the X; spends in state ¢
(e)

7

(e)

— ;= relative frequency with which state i occurs in the jump chain Xy

2 Queuing Systems

2.1 M/M/1 Queuing System
e jobs arrive with a negative exponential interarrival time distribution with rate X.

e The job service requirements are also negative exponentially distributed with mean E[S] =
1/p.

2.1.1 Average Performance Metric Derivations

O=OrnEmOmE
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2.1

M/M/1 Queuing System

Ahmed H. Zahran

e This is similar to the birth death example discussed above

T = 27@_1 zi:m =1

and hence we can express the steady state distribution as

where p = A\/u = AE[S].

M = p'mo = p'(1 = p)

e p is commonly known as the system utilization (my = 1 — p)

e Hence, the expected number of users can be expressed as

Using the computer science cheat sheet (prove that > ip" = p/(1 — p)?

N =D im=(1=p)> i

7

p

N=(1-p)p/(1-p) =

2.1.2 System Time Distribution

1

—p

The conditional distribution assuming that the user find n users in the system would be Erlang-

(n+1) (why?)

Hence, the unconditional waiting time distribution can be derived as follows

Hn+1tn

— — —put
fT‘N(t‘N = TL) = n| (&

fr(t)

HEnce, the mean system time is

!

.
N/

N

P

= Y fow(tIN = n)p,

n+1tn

= D (1 -0)

n

= e Mu(l—p) e

1
n—A
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2.2 M/M/m Systems Ahmed H. Zahran

2.2 M/M/m Systems
e jobs arrive with a negative exponential interarrival time distribution with rate .

e The job service requirements are also negative exponentially distributed with mean E[S] =
1/p.

e The system has m servers

A A A A

[z 2p (m—1pu  mp my mu

e Note the death rate of this chain?

e Using Global Balance condition, one can express the state probabilities as

T.—,Zpiﬂ'o Vi=0,...m—1
m=9q " .
! %p’ﬂo Yi>m

where p = A/mpu. For stability, p < 1.

e Using the normalization equation, one can express 7, as

-1

o lmi (mp) _(mp)™

1 — |
par (1 —p)m!
and the expected number of the users in the system can be calculated as
m

. (mp)™ 7o
N:ZZPi:mP+P ml (1—p)?
i=1

e The probability of queuing (also commonly known as Erlang-C blocking probability) can be

estimated as
o~ (mp)m

and represent the blocking probability for systems that enqueue access request when all the
servers are busy.

e Similarly, the average number of jobs in queue can be estimated as

e 3)

n=0 1_p

e Eq. (3) suggests that M /M /m system behaves identically to an M /M /1 system with a service
rate mu once all servers are busy.
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3 Homework

what if we scale the Arrival rate of M /M /17

what if we scale the service rate of M/M /17

what if we scale both service and arrival rates of M/M /17

Evaluate the performance of M/M/1/K, M/M/m, M/M/m/K, M/M /oo queuing systems
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