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1 Markov Process (Continuous Time Markov Chain)

• The main di�erence from DTMC is that transitions from one state to another can occur at
any instant of time.

• In order to satisfy the Markov property, the time the system spends in any given state should
be memoryless ⇒ the state sojourn time is exponentially distributed.

1.1 Mathematical Representation

• A Markov process Xt is completely determined by the so called generator matrix or tran-
sition rate matrix Q = [qij]

qij = lim
∆t→0

P{Xt+∆t = j|Xt = i}
∆t

i 6= j

where qij transition rate or transition intensity and represents the probability per time unit
that the system makes a transition from state i to state j.

� The total transition rate out of state i, denoted as, can be expressed as qi =
∑

i 6=j qij

� This is the rate at which the probability of state i decreases. De�ne qii = −qi
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1.2 Transient State Probabilities Ahmed H. Zahran

• Hence, one can express the generator matrix as

Q =


q00 q01 . . .
q10 q11 . . .
. . .
. . .
. . .

 =


−q0 q01 . . .
q10 −q1 . . .
. . .
. . .
. . .


Note that the sum of each row equals zero indicating that the probability mass �owing out
of state i will go to some other states (is conserved)

1.2 Transient State Probabilities

• State probability vector π(t) is now a function of time evolving as follows

d

dt
π(t) = π(t)Q (1)

• Generally, studying the behavior of CTMC is not a simple task. Even in homogeneous chains,
the study of such chains is not generally tractable

• The transient solution for the state probabilities π(t) can be expressed as

π(t) = π0e
Qt.

A closed-form expression for the transient behavior is not easy to obtain even for simple
chains.

1.3 Steady State Analysis

• For the steady state analysis, an irreducible CTMC has a limiting distribution that is inde-
pendent of the initial state distribution.

• For irreducible Markov Chains at steady state

π = lim
t→∞

π(t) πQ = 0 (2)

� The solution is unique up to a constant factor.

� The solution is uniquely determined by the normalization condition (
∑

i πi = 1).

� π is the (left) eigenvector belonging to the eigenvalue 0.

• Hence, Global balance condition which expresses the balance of probability �ows

πjqj =
∑
i 6=j

πiqij

πj
∑
i 6=j

qji =
∑
i 6=j

πiqij
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1.3 Steady State Analysis Ahmed H. Zahran

• Solving Balance Equations. Similar to the discrete case, we have

πQ = 0 and πE = e

Hence, the steady state solution will be

π = e(Q+ E)−1

• Note that the global balance equation can be applied for a set of states.

Proof

πj
∑
i 6=j

qji =
∑
i 6=j

πiqij

Now let us add a set of these equation corresponding to a subset S of the model states and split
the above summations into two summations over states ∈ S and states /∈ S∑

j∈S

πj
∑
i, i 6=j

qji =
∑
j∈S

∑
i, i 6=j

πiqij

∑
j∈S

πj

[∑
i/∈S

qji +
∑
i∈S

qji

]
=
∑
j∈S

[∑
i∈S

πiqij +
∑
i/∈S

πiqij

]
∑
j∈S

∑
i/∈S

πjqji =
∑
i/∈S

∑
j∈S

πiqij

Example

Consider a birth death chain in which births occur with a rate of λ and death occurs at a rate
of µ. The chain represent the system population.

Solution:
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1.4 Embedded Markov Chain Ahmed H. Zahran

1.4 Embedded Markov Chain

• Also commonly known as jump chain.

� Focus is on the transitions of Xt (when they occur), i.e. on the sequence of (di�erent)
states visited by Xt.

� Let the state transitions of Xt occur at instants t0, t1, .... De�ne X
(e)
n to be the value of

Xt immediately after the transition at time tn (at the instant t
+
n ) or the value of Xt in

(tn, tn+1).

• Since Xt is a Markov process, the embedded chain X
(e)
n constitutes a Markov chain.

• The transition probabilities of the embedded chain

pij =

{
qij∑
j qij

, i 6= j

0 , i = j

• Let π be the steady state probability of the Markov process and π(e) be the steady state
probability of the embedded Markov chain.

πi =
π

(e)
i /qi∑
j π

(e)
j /qj

⇐⇒ π
(e)
i =

πiqi∑
j πjqj

• Note that

� πi= proportion of time that the Xt spends in state i

� π
(e)
i = relative frequency with which state i occurs in the jump chain X

(e)
n

2 Queuing Systems

2.1 M/M/1 Queuing System

• jobs arrive with a negative exponential interarrival time distribution with rate X.

• The job service requirements are also negative exponentially distributed with mean E[S] =
1/µ.

2.1.1 Average Performance Metric Derivations
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2.1 M/M/1 Queuing System Ahmed H. Zahran

• This is similar to the birth death example discussed above

πi =
λ

µ
πi−1

∑
i

πi = 1

and hence we can express the steady state distribution as

πi = ρiπ0 = ρi(1− ρ)

where ρ = λ/µ = λE[S].

• ρ is commonly known as the system utilization (π0 = 1− ρ)

• Hence, the expected number of users can be expressed as

N =
∑
i

iπi = (1− ρ)
∑
i

iρi

Using the computer science cheat sheet (prove that
∑

i iρ
i = ρ/(1− ρ)2

N = (1− ρ)ρ/(1− ρ)2 =
ρ

1− ρ

2.1.2 System Time Distribution

The conditional distribution assuming that the user �nd n users in the system would be Erlang-
(n+1) (why?)

fT |N(t|N = n) =
µn+1tn

n!
e−µt

Hence, the unconditional waiting time distribution can be derived as follows

fT (t) =
∑
n

fT |N(t|N = n)pn

=
∑
n

µn+1tn

n!
e−µtρn(1− ρ)

= e−µtµ(1− ρ) eρµt

= [µ(1− ρ)]e−[µ(1−ρ)]t

HEnce, the mean system time is 1
µ−λ
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2.2 M/M/m Systems Ahmed H. Zahran

2.2 M/M/m Systems

• jobs arrive with a negative exponential interarrival time distribution with rate λ.

• The job service requirements are also negative exponentially distributed with mean E[S] =
1/µ.

• The system has m servers

• Note the death rate of this chain?

• Using Global Balance condition, one can express the state probabilities as

πi =

{
mi

i!
ρiπo ∀i = 0, ....,m− 1

mm

m!
ρiπo ∀i ≥ m

where ρ = λ/mµ. For stability, ρ < 1.

• Using the normalization equation, one can express πo as

πo =

[
m−1∑
j=0

(mρ)j

j!
+

(mρ)m

(1− ρ)m!

]−1

and the expected number of the users in the system can be calculated as

N =
∞∑
i=1

ipi = mρ+ ρ
(mρ)m

m!

πo
(1− ρ)2

• The probability of queuing (also commonly known as Erlang-C blocking probability) can be
estimated as

pQ =
∞∑
i=m

pi =
(mρ)m

m!(1− ρ)
πo

and represent the blocking probability for systems that enqueue access request when all the
servers are busy.

• Similarly, the average number of jobs in queue can be estimated as

NQ =
∞∑
n=0

npn+m = PQ

[
ρ

1− ρ

]
(3)

• Eq. (3) suggests that M/M/m system behaves identically to an M/M/1 system with a service
rate mµ once all servers are busy.
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3 Homework

• what if we scale the Arrival rate of M/M/1?

• what if we scale the service rate of M/M/1?

• what if we scale both service and arrival rates of M/M/1?

• Evaluate the performance of M/M/1/K, M/M/m, M/M/m/K, M/M/∞ queuing systems
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