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1 Introduction and Terminology

• There are systems that cannot be solved adequately with the analytical techniques. For
example, it may be hard to analyze the interaction of di�erent protocols over the various
layers in the protocol stack

• Generally, for large and complex systems, analytic model formulation and/or solution may
require making unrealistic assumptions and approximations.

• With simulation there are no fundamental restrictions towards what models can be solved.
However, practical restrictions do exist since the amount of computer time or memory re-
quired for running a simulation can be prohibitively large.

� For example, if we are simulating a model with rare events, we need a large number of
simulation runs to get such a rare event at least once and many more replications may
be needed to get statistically signi�cant results.

� Simulation can only show the existence of critical states but can never prove the absence
of such states.

• The idea of the simulation is create an estimator of the the target KPI by gathering several
measurements for such KPI.

• A deep understanding of statistical methods and necessary assumptions to assert the credi-
bility of obtained results.

1.1 Terminology

• Simulation time (AKA, simulated time): the parameter that corresponds to the real-time
clock.

• Run time is the time it takes to execute a simulation program.

• An event is a time point where the states of the system changes or other major things happen
(such as the start and the end of the simulation).

• In queuing systems, the two major events are customer arrival and customer departure.

� An arrival event increases the number of customer in queue by 1 (if the server is busy)
or changes the state of the server to busy (if the server was idle).

� A departure event decreases the number of customer in queue by 1 or changes the server
state to idle
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2 Simulation Classes

Figure 1: Simulation Classi�cations

• In continuous-event simulations, systems are studied in which the state continuously changes
with time. Typically this type refers to systems described by di�erential equations that are
solved numberically.

• In discrete-event simulations the state changes take place at discrete points in time.

2.1 Discrete Event Simulation Types

2.1.1 Time-based Simulation

• AKA, synchronous simulation

• the main control loop of the
simulation controls the time
progress in constant steps.

• easy to implement

• usually time-step so small that
the resulting simulation becomes
very ine�cient.
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Figure 2: Time-based simulation

2.1.2 Event-based Simulation

• AKA, asynchronous simulation

• time steps of varying length

• easy to implement :)

• All future events are generally gathered in an ordered event list.

• Very common in computer and communication system simulation.

• May not be the best option for simulating systems with small time steps such as micropro-
cessors
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Figure 3: Event-based simulation

2.2 Event-based Simulation Implementations

• The system is divided into entities rather than trying to model it as one big �nite state
machine.

� Temporary entities �ow through the system

∗ e.g. parts, customers or messages that arrive according to a stochastic distrubution

� Permanent entities stay in the system during the simulation

∗ e.g. machines, servers or routers, processing the temporary entities with stochasti-
cally distributed processing times

� Attributes are used for de�ning the states and properties of individual entities.

• The scheduler (timer) maintains the simulation time and sends timer events to the entities

� contains the simulation clock and

� a list of scheduled future events

• Operation:

� seeks the scheduled event that has the smallest time stamp

� advances the simulation time

� sends a timer event to the corresponding entity
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2.2.1 Event-oriented Implementation

• In an event-oriented simulation a system is modeled by identifying its characteristic events
and then writing a set of event routines that give a detailed description of the state changes
taking place at the time of each event.

• The simulation evolves over time by executing the events in increasing order of time.

• the activity following each event is implemented as an eventroutine

• the event-routine may schedule new events and re-schedule existing event

• Control loop

� event to happen is taken from the list

� The simulation time is incremented to the corresponding value of the taken event

� Corresponding eventroutine is invoked

� simulated system state is changed

� new events are generated and inserted in the event list

� some statistics may be collected

� loop until stopping criteria

2.2.2 Process-oriented Implementation

• The behavior of the system is represented by a set of interacting processes.

• A process is a time-ordered sequence of interrelated events which describe the entire experi-

ence of an entity as it �ows through the system.

• Note that the internal structure of a process-oriented simulation is based on scheduling events
as well.

• The logic behind process oriented simulation is similar to constructing a �owchart for the
�ow of an entity in the system.

• For example, imagine you are a customer in the bank example, then your experience will be
as follows:

� Create yourself (i.e. arrive to the system).

� Note your arrival time.

� Wait in queue if the server is busy.

� Once the server is idle, move out of the queue and �seize� the server.

� Note your start of service time and estimate your waiting time in queue.

� Stay in service (i.e. �delay� your self) for an amount of time equal to your service time.

� �Release� the server.

� �Dispose� of your bank visit (leave the system).

• Processes exchange information to communicate state changes

• The simulation can be seen as an execution path of the communicating event-processes
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2.3 Conducting Simulation

you can build your own code or use an existing package. The choice is not easy as it may involve
one or more of the following factors

• development time of required models

• learning time of existing tool

• comparing your results with others

• level of simulated details

2.3.1 Common known simulators

• General-Purpose Programming Language (GPPL): C, C++ , Java

� total control over the software development process.

� the model construction takes con- siderable time.

• Plain Simulation Language (PSL): SIMULA, SlMSCRlPT, SIMAN, GPSS, JSlM, SILK

� supports DES

� One also needs to get programming expertise in a new language before executing sim-
ulation models.

• Software libraries for simulation: CSIM-19, C++SIM and its Java counterpart JavaSim,
baseSim

� extensive libraries provide aid in simulation model development and execution

� provide various monitoring and statistical gathering functions with very little or no need
to learn any new language.

• Simulation Packages (SPs): OPNET Modeler, ns-2, OMNET++, Arena, Qualnet

� cover several application domains like TCP/IP networks.

3 Random Number Generation

• True random numbers cannot be generated with a deterministic algorithm

� We �rst generate pseudo-random numbers

� Second, we compute (pseudo) uniformly distributed random numbers

� Third, generate the required RV with di�erent techniques

• An RNG can be classi�ed as good if

� can be computed with little cost

� generated numbers are independent and uncorrelated

� has a very long period
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3.1 Pseudo-random numbers

• Only linear and additive congruential methods are considered

3.1.1 Linear congruential RNGs

zi+1 = (azi + c)modulom

• This algorithm will generate m di�erent values

� the values m and c are relative primes

� all prime factors of m should divide a - 1

� if 4 divides m, then 4 should also divide a � 1

• The number m is called the cycle length

• Cycles are relatively short :(

3.1.2 Pseudo-random numbers

zi =

 k∑
j=1

ajzi−j

 modulom

• Starting values z0 through zk−1 are generally derived by a linear congruential method

• With an appropriate selection of the factors aj cycles of length mk − 1 are obtained.

USE a DIFFERENT RNG for each random number sequence to be used
in the simulation

Have a control on your seed No random seeds

4 Generating non-uniform RV

• Uniform RV Generation: divide the obtained sequence with the largest number

• Various techniques for generating non-uniform RV

� Inversion Method

� Rejection method
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4.1 Inversion Method

• De�ne Z = F (y)→ Z U(0, 1)

• Hence, we generate Z and apply F−1 to get the corresponding Y value

• Example: generating exponential distribution

FY (y) = 1− e−λy → y = −ln(1− z)/λ

• Example: Generating Erlang-K RV Z

� We generate k exponential distributions, then

z =
k∑
i=1

xi

• Example: Hyper Exponential distribution

• Example: discrete distributions?

4.2 Rejection Method

• If we can not get the inverse

• Requirements:

� fX(x)is known,

� limited domain [a, b]

• generate two uniformly distributed numbers u1 and u2

• derive the random numbers x,y
x = a+ (b− a)u1 y = cu2

Figure 4: Rejecttion Method
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• We repeat the procedure until we encounter a tuple for which the condition holds

• fairly e�cient when the area under the density fX(x) is close to c(b− a)

5 Statistical Evaluation

5.1 Obtaining Measurements

• Typically, measurement could be

� User-oriented, such as time spent by a user in the system

� System-oriented, average number of users in the system.

• Initial transient removal

� System initially empty!!

• How long should we remove??

� Simulate so long (ine�cient) such that the impact of the initial collected data is negli-
gible.

∗ setting the initial state by an approximate analytical model could help in avoiding
the initialization step

� Truncation method, remove the �rst l samples of the total n samples, where l is the
smallest value such that

min{xl+1, ......., xn} 6= xl+1 6= max{xl+1, ......., xn};

in other words the (l + 1)-th sample is no longer the maximum, nor the minimum of
the remaining samples.

• Truncation Method 2

� Split samples into batches with k elements k = [n/l]

� Start with batch size l = 2

� For every batch, estimate the mean

mi =
1

l

l∑
j=1

x(i−1)l+j i = 1, , k

and the sample variance

σ2 =
1

k − 1

k∑
i=1

(mi −m)2

where m is the sample mean
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• Increase l stepwise until variance starts to decrease and drop �rst batch. Note that by
increasing the batch size l, more and more samples of the initial transient period will become
part of the �rst batch.

5.2 Mean Value and Con�dence Intervals

5.2.1 Mean Value Estimation

• Estimator: we de�ne a new stochastic variable, X̃

• If Xi are independent realization of the random variable X̃, the estimator

X̃ =
1

n

n∑
i−1

Xi

will be unbiased and consistent

• Successive samples taken from the same simulation are NOT independent!!!!

� e.g. queue response time of successive customers is correlated.

5.2.2 Guaranteeing Independence

• Method 1: Independent replicas

� repeat the simulation n times with a di�erent seed

� Estimate the mean of every simulation

� The obtained n means are considered independent

� :( simulations has to be repeated several times

• Method 2: Batch means

� Split measure samples into batches

� Estimate the mean of each batch

� Use the batch means as independent samples

� Not completely independent but is a good approximation.

• Method 3: Regenerative method

� Batches are de�ned between regenerative points

� Main concern is that regeneration points may not be su�ciently many

� In queuing systems, regeneration points typically occurs when the queue is empty.
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5.2.3 Con�dence Intervals

• The mean estimator will have normal distribution N(a,sv2/n) according to the central limit
theorem. σ2 is the varience of Xi

• Hence, Z = X̃−a
σ/
√
n
is N(0, 1) .

• However, since we do not know the variance of the random variable X, we have to estimate
it as well. A typical estimator for σ2 is de�ned as

σ̃2 =
1

n− 1

n∑
i=1

(Xi − X̃)2

• The stochastic variable Z = X̃−a
σ̃/
√
n
has a student distribution. The Student distribution with

three or more degrees of freedom is a symmetric bell- shaped distribution, similar in form to
the Normal distribution. As n → ∞ student approaches a normal distribution and normal
distribution tables can be used

• Note that

Pr{|Z| ≤ z} = Pr{
∣∣∣∣∣X̃ − aσ̃/
√
n

∣∣∣∣∣ ≤ z} = β

• β indicates the probability that the mean estimate lies in [a− zσ̃/
√
n, a+ zσ̃/

√
n]. In other

words, β represents the con�dence level that the estimated KPI lies in the interval

[a− zσ̃/
√
n, a+ zσ̃/

√
n].

Figure 5: Con�dent interval

• Common choices for the con�dence level are 0.90, 0.95, and 0.99

• For a 95% con�dence interval, the area in each tail is equal to 0.05/2 = 0.025

• A 95% con�dence interval for the standard normal distribution, then, is the interval (-1.96,
1.96)
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EXAMPLE
the sample mean of the boiling temperatures is calculated as101.82, with stan-
dard deviation 0.49. Determine the 95% and 90% con�dence intervals.
Solution
• The critical value for a 95% con�dence interval is 1.96. A 95% con�-
dence interval for the unknown mean is ((101.82 - (1.96*0.49)), (101.82
+ (1.96*0.49))) = (101.82 - 0.96, 101.82 + 0.96) = (100.86, 102.78).

• For a 90% con�dence interval for the boiling temperature, the critical
value z* for this level is equal to 1.645, so the 90% con�dence interval is
((101.82 - (1.645*0.49)), (101.82 + (1.645*0.49))) = (101.82 - 0.81, 101.82
+ 0.81) = (101.01, 102.63)

6 Homework

• The average and standard deviation of call durations in a telephony system is measured as
120 sec and 80 sec respectively. Estimate the 95% con�dence interval of these measurement.
[the corresponding interval to 95% con�dence in normal distribution is (-1.96, 1.96)]

• Explain how to generate a uniform RV U(a, b) using inverse method

• Explain how to a Pareto RV using inverse method

• Explain how to a Rayleigh RV using inverse method

• Explain how to a triangular RV using inverse method
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