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1 Continuous Random Variables

1.1 Cumulative Distribution Function (CDF)

FX(x) = P (X ≤ x) −∞ < x <∞
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1.2 Probability Density Function (PDF) Ahmed H. Zahran

� if FX(x) is a continuous function of x, then X is a continuous random variable.

� Properties of cumulative distribution function

� 0 ≤ FX(x) ≤ 1, −∞ < x <∞
� FX(x) is a monotonically increasing func. of x

� limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1

� P (X = c) = 0 where c is any real number

1.2 Probability Density Function (PDF)

� f(x) = dFx(x)
dx

is the pdf of X

� similarly, FX(x) =
´ x
−∞ fX(x)dx for −∞ < x <∞

� PDF properties

� f(x) ≥ 0 for all x

�
´∞
−∞ fX(x)dx = 1

1.3 Common Distributions

1.3.1 Uniform Distribution

� U(a,b) → pdf constant over the (a,b) interval and CDF is the ramp function

f(x) =

{
1
b−a , a < x < b

0 , otherwise

FX(x) =


0 , x < a
(x−a)
(b−a) , a ≤ x ≤ b

1 , x > b

very common distribution for homogeneity

1.3.2 Exponential Distribution

� Arises commonly in reliability & queuing theory.

� A non-negative random variable

� It exhibits memoryless (Markov) property.

� Related to (the discrete) Poisson distribution

� Interarrival time between two IP packets (or voice calls)

� Time to failure, time to repair etc.
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� Mathematically (CDF and pdf, respectively)

FX(x) = 1− e−λx ⇐⇒ f(x) = λe−λx, x ≥ 0

� Exponential Memoryless property

� Let X > t

� Let Y = X − t, the remaining (residual) lifetime

P (Y ≤ y|X > t) = P (X ≤ y + t|X > t)

=
P (X ≤ y + t,X > t)

P (X > t)

= 1− e−λy

� The distribution of the remaining life, Y, does not depend on how long the component
has been operating.

� The minimum of two exponential distribution is another exponential distribution whose
parameter is the sum of the parameters of the original distributions.

� Racing property : if two events with exponential distribution starts together, the prob-
ability that a speci�c event �nishes �rst equals its parameter divided by the parameter
sum.

1.3.3 Erlang-K distribution

� K identical exponential stages in series

fYk(y) =
λkyk−1e−λy

(k − 1)!

FYk(y) = 1−
k−1∑
n=0

(λy)ne−λy

n!

� Very common in queuing systems with exponential inter-arrival and service time.
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1.3.4 HypoExponential RV

� multiple Exp stages in series .

� A general case for Erlang-K

� 2-stage Hypo-exp denoted as HYPO(µ1, µ2). The CDF and PDF are expressed as

FX(x) = 1− µ2

µ2 − µ1

e−µ1x +
µ1

µ2 − µ1

e−µ2x

fX(x) =
µ2µ1

µ2 − µ1

(e−µ1x − e−µ2x)

� Disk service time may be modeled as a 3-stage Hypo-exponential as the overall time is the
sum of the seek, the latency and the transfer time

1.3.5 Hyper-exponential Distribution

� Multiple Exp stages in parallel.

fX(x) =
k∑
j=1

αjλje
−λjx

FX(x) =
k∑
j=1

αj(1− e−λjx)

� A very good �t in modeling parameters with high variability. E.g., �le length, residence time,
. . . .

1.3.6 Gamma Distribution

f(t) =
λαtα−1e−λt

Γ(α)
α > 0, t > 0

Γ(α) =

ˆ ∞
0

xα−1e−xdx

� Gamma with a = 1
2
and = n/2 is known as the chi-square random variable with n degrees of

freedom

� Represent a good distribution for modeling the mobility
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1.4 Distribution Fitting Ahmed H. Zahran

1.3.7 Weibull Distribution

f(t) = λαtα−1e−λt
α

FT (t) = 1− e−λtα

� α is called the shape parameter and λ is the scale parameter

� Frequently used to model fatigue failure, ball bearing failure etc. (very long tails)

1.3.8 Gaussian Distribution

f(x) =
1

σ
√

2π
e−0.5(

x−µ
σ )

2

� m: mean, sv: std. deviation, sv2: variance (N(m, sv2))

� Very common in statistical estimation/signal processing/communication theory etc.

� Central Limit Theorem: the sum of a large number of mutually independent RV's (having
arbitrary distributions) starts following Normal distribution as n � ∞

� Normal distribution N(0,1) is called normalized Gaussian

1.4 Distribution Fitting

� The three Exponential, hypo-exponential, and hyper-exponential distribution can be used to
approximate any statistics

� In many applications, two phases for hypo and hyper-exponential distributions are su�cient
to be a good approximation.

� Let Cx represents the coe�cient of variation of a set of measurements/ samples.

Cx =
σX

X

where X is the average value of the measurements and σX is the standard deviation of the
measurements

CX Best �t distribution estimated parameters

=1 exponential λ = 1/X

<1 hypo-exponential µ1 = 2
X

[
1 +

√
1 + 2(C2

X − 1)
]−1

,

µ2 = 2
X

[
1−

√
1 + 2(C2

X − 1)
]−1

>1 hyper-exponential choose α1, α2 = 1− α1

λ1 = 1
X

[
1−

√
α2

α1

C2
X−1
2

]−1
λ2 = 1

X

[
1 +

√
α1

α2

C2
X−1
2

]−1
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2 Expectations and Moments

2.1 Expectations

� There are several ways to abstract the information in the CDF into a single number: median,
mode, mean

E(X) =
∑
i

xipi for discreteRV

E(X) =

ˆ
xfX(x)dx for continuousRV

� The average is very common to use when showing performance metrics

� Example: the expected number of busy channels in a cellular system (system utilization)

2.2 Expectation Properties

� Scale and shift
E[aX + b] = aE[X] + b

� Linearity
E[X + Y ] = E[X] + E[Y ]

� Product of independent RVs
E[XY ] = E[X]E[Y ]

� Two RV are said to be uncorrelated i� CoV [X, Y ] = 0 where

CoV [X, Y ] = E[(X − E[X])‘(Y − E[Y ])]

� NOTE: covariance measures the linear dependence.

* Check: X~U(-1,1) and Y=X2

· Complete dependence

· Uncorrelated

2.3 Moments

� consider a RV X and another RV Y = ∆(X) the

E[Y ] = E[∆(X)] =

{∑
i ∆(xi)pi , discrete´
∆(x)fX(x)dx continuous

� For ∆(X) = Xk , k = 1, 2, 3, ..., the E[Xk] is called the kthmoment

� k=1 → mean , k=2 → second moment
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� The second moments is used to calculate the variability of the RV (RV variance)

var(X) = σ2
X = E[

(
X −X

)2
]

= E[X2]−X2

� The standard deviation is σX =
√
V ar(X)

� Coe�cient of variation CX = σX/X

3 Transform Methods

� Transforms are e�ective when dealing with compound random variables such as sums of
independent RVs.

� The transforms can also be used to estimate di�erent moments

M(s) = E[e−sX ] =

ˆ ∞
−∞

e−sxfx(x)dx, , continuous

� Transforms and moments

E[Xk] =

{
(−1)k d

kM
dsk
|s=0 continuous

dkM
dzk
|z = 1 discrete�� ��Remember if two RVs have the same M(s) then they have the same distribution�

�
�


The transform of SUM of mutually independent RVs is the product of the RV transforms
(Convolution-product property)

4 Function of a Random Variable

4.1 Function of one RV

� typically appear on processing a RV in your analysis or design

� The function of any RV is considered a new RV (why?)

� the objective here is to determine the distribution of the new RV

� Let Y = Φ(X) such that Φ(X) is monotone and di�erentiable

FY (y) = Pr(Y ≤ y)

= Pr(Φ(X) < y)

= Pr(X ≤ Φ−1(y))

= FX(Φ−1(y))

where Φ−1(.) is the inverted function of Φ(.). Hence, one can write

fY (y) = fX(Φ−1(y))
d

dy
Φ−1(y)

� Example: Y = −ln(1−X)
λ

and X is U(0,1)
X=1-e−λy→ fY (y) = λe−λy , y ∈ [0,∞]
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5 Homework

� Prove that the minimum of two exponential distribution is another exponential distribution
whose parameter is the sum of the parameters of the original distributions.

� Prove the racing probability of exponential distribution

� Develop a model for the �le size knowing that the average �le size is 5Kbytes and the standard
deviation of the �le size is 10Kbytes.

� Develop a model for the packet delay in a local area network given that the average packet
delay is 1.2sec and its standard deviation is 0.7sec.

� Derive the �rst and second moments for the studied continuous and discrete distributions

� Prove the expectation properties
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