Lecture 2

September 29, 2013

1 Data Representation (Cntd)

1.1 Floating Point Representation

- IEEE 754 floating-point standard (1985)
- Floating-point numbers have
 - a sign,
 - mantissa (M),
 - exponent (E).
- 32 bit representation:1 sign bit, 8 exponent bits, and 23 mantissa bits.
- E.g. $228_{10} = 11100100_2 = 1.11001_2 * 2^7$

Figure 1: Floating Point Representation

- Implicit leading one: the first bit of the mantissa is always 1 and is not stored for efficiency.
- Biased exponent: original exponent plus a constant bias to represent both positive and negative exponents
 - Single precision (32-bit floating-point) uses a bias of 127.

1 bit	8 bits	23 bits	
0	10000110	110 0100 0000 0000 0000 0000	228
Sign	Biased Exponent	Fraction	

Figure 2: Floating Point Representation

- The FF_{16} exponent is reserved to represent special numbers
 - $-\infty$ is a special case where the exponent = FFH, mantissa = 0 and S = 0
 - - ∞ is a special case where the exponent = FFH, mantissa = 0 and S = 1
- 0 is a special case where both exponent and mantissa = 0
- Max floating number is $2^{128} = 3.4 \times 10^{38}$ and the minimum value is $2^{-126} = 1.2 \times 10^{-38}$

1.1.1 Examples

- $0.25 = +0.01_2 = 1.00 * 2^{-2}$ S = 0, E=-2 + 127 = 01111101₂ and M=0

1.2 Other Common Data Representations

1.2.1 ASCII code

The American Standard Code for Information Interchange (ASCII) is a character-encoding scheme originally based on the English alphabet. ASCII codes represent text in computers, communications equipment, and other devices that use text. Most modern character-encoding schemes are based on ASCII, though they support many additional characters.

Standard ASCII code size is 7-bits [written in one byte (8-bits)] is used to represent differen charcters as shown in Table 1.

Table 1: Ascii Code Table										
	0	1	2	3	4	5	6	7		
0	NUL	DLE	space	0	@	Р		р		
1	SOH	DC1 XON	ļ	1	A	Q	а	q		
2	STX	DC2	"	2	В	R	b	r		
З	ETX	DC3 XOFF	#	З	С	S	С	s		
4	EOT	DC4	\$	4	D	Т	d	t		
5	ENQ	NAK	%	5	E	U	е	u		
6	ACK	SYN	&	6	F	\sim	f	V		
7	BEL	ETB	'	7	G	W	g	W		
8	BS	CAN	(8	Н	X	h	×		
9	HT	EM)	9	1	Y	i	У		
Α	LF	SUB	*	:	J	Z	j	z		
В	VT	ESC	+	÷	К	[k	{		
С	FF	FS		<	L	<u>ا</u>	1	Ι		
D	CR	GS	-	=	M]	m	}		
E	so	RS		>	N	۸	n	~		
F	SI	US	1	?	0	_	0	del		

1.2.2 BCD Code

- binary-coded decimal (BCD) is a digital encoding method for numbers using decimal notation, with each decimal digit represented by its own binary sequence.
- In BCD, a numeral is usually represented by four bits (nibble), which represent the decimal range 0 through 9.
- The BCD code may be
 - Packed: one byte contains two BCD digits [e.g.: $12 = 00010010_2$]
 - Unpacked: one byte contains one BCD digit only $[12 = 000000100000010_2]$

2 8086 Micro Architecture

- Intel 8086 is a 16 bit integer processor.
- It has 16-bit data bus and 20-bit address bus.
- The lower 16-bit address lines and 16-bit data lines are multiplexed (AD0-AD15).
- Since 20-bit address lines are available, 8086 can access up to 2^{20} or 1 mega-byte of physical memory.
- Programs written for the 8086 can be run on the 8088 without any changes. The main difference between 8088 and 8086 is the word size.

3 8086 Internal Architecture

3.1 Main Units

• The 8086 CPU has two main units

Figure 3: Intel 8086 Architecture

- Bus Interface Unit (BIU):
 - $\ast\,$ The BIU provides H/W functions, including generation of the memory and I/O addresses for the transfer of data between the outside world outside the CPU
 - * BIU reads (fetches) instructions, reads operands, and writes results.
- Execution Unit (EU):
 - * The EU receives program instruction codes and data from the BIU, executes these instructions, and store the results in the general registers.
 - * By passing the data back to the BIU, data can also be stored in a memory location or written to an output device.
 - $\ast\,$ Note that the EU has no connection to the system buses. It receives and outputs all its data thru the BIU
 - * executes instructions already fetched by the BIU

References

M. RAFIQUZZAMAN, "Fundamentals of Digital Logic and Microcomputer Design," Fifth Edition.