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1 Logistics

� Instructor: Ahmed H. Zahran

� Lecture: Saturdays 1:30 PM

� Grading

� 20% Midterm

� 20 % Project

� 60% Final

� References
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� Dimitri P. Bertsekas and John N. Tsitsiklis, �Introduction to Probability�

� Kishor Trivedi, �Probability and Statistics with Reliability, Queuing, and Computer
Systems Applications�

� M. F. Neuts �Matrix Geometric Solutions in Stochastic Models�

� B. R. Havercort, �Performance of Computer Communication Systems, a model based
approach�

� Selected papers

� Course Content

� Introduction

� Probability basics revisited

� System Simulation

� Discrete Markov Chain

� Continuous time Markov Chain

� Markov Reward Models

� Phase-Type distribution

� Probabilistic Complex analysis (time permitting)

� Renewal Process (time permitting)

2 System Performance Evaluation

2.1 De�nitions

System: a collection of components which are organized and interact in order to ful�ll a common
task

Performance: The degree to which a system or component accomplishes its designated func-
tions within given constraints, such as speed, accuracy, or memory usage.

2.2 Performance Evaluation Approaches

� Measurements

� System unavailable during design phase

� Discrete Event Simulation (DES)

� Time consuming task for accurate results.

� Analysis

� Oversimpli�ed assumptions

* Is the model logically correct, complete, or overly detailed?
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* Are the distributional assumptions justi�ed?

* How sensitive are the results to simpli�cations in the distributional assumptions?

* Are other stochastic properties, such as independence assumptions, valid?

* Is the model represented on the appropriate level?

3 Probability Basics revived :)

3.1 Probability Models

� Sample Space: is the set of all possible outcomes of an experiment or random trial. It is
often denoted S, W, or U (for "universe")

� Event: subset of the sample space

� Algebra of Events. Revise any probability book

� Probability Axioms

Conditional Probability P(A|B): prob. that A occurs, given that `B' has occurred

A and B are said to be mutually independent , i�,

Hence

� Independence Vs. Mutually Exclusive

� the probability of the union of mutually exclusive events is the sum of their probabilities

� the probability of the intersection of two mutually independent events is the product of
their probabilities
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3.2 Discrete Random Variables

� A random variable (RV) X is a mapping (function) from the sample space S to the set of
real numbers

� If image(X ) �nite or countable in�nite, X is a Discrete RV

� Ax: set of all sample points such that,

{s|X(s) = x}

P (Ax) = P (X = x) = P (s|X(s) = x) =
∑

X(s)=x

P (s)

� Probability Mass Function (PMF)

pX(x) = P (X = x) =
∑

X(s)=x

P (s)

� PMF Properties
0 ≤ pX(x) ≤ 1 ∀x ∈ R∑

x∈R
pX(x) = 1

� Cumulative Distribution Function (CDF)

� CDF Properties
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3.3 Common Discrete RV

3.3.1 Constant Random Variable

� PMF

� CDF

3.3.2 Discrete Uniform RV

� Discrete RV X that assumes n discrete value with equal probability 1/n

� Discrete uniform pmf

� Discrete uniform distribution function
X can take integer values 1, 2, ...., n, then

F (x) =
∑
i=1

pX(i) =
bxc
n

3.3.3 Bernoulli RV

� generated by experiments that has a binary valued outcome, e.g. {0,1}, {Success, Failure}

� The experiment is named Bernoulli trial (BT) and the generated RV is called Bernoulli RV

� PMF

� P(X=1)=p

� P(X=0)=(1-p)

� CDF

� F (x) =


0 x < 0

q 0 ≤ x < 1
1 x > 1
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3.3.4 Binomial Random Variable

� Generated from n Bernoulli trials.

� RV Yn: no. of successes in n BTs

� PMF b(k;n,p)

� CDF

Example: Packet Transmission

� The bit is transmitted successfully with prob p

� The probability of no error transmission for a packet containing N bits is

PerrorFree = pn

� The probability of recovering packets with at most m erroneous bits using forward error
correction (FEC) is

Precovery =
m∑
i=0

(
n
m

)
pn−m(1− p)m
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3.3.5 Geometric RV

� Number of independent trials upto and including the 1st success.

� Geometric RV is the only discrete distribution that exhibits MEMORYLESS property.

� given that the �rst success has not yet occurred, the conditional probability distribution of
the number of additional trials does not depend on how many failures have been observed.

P (Y = i|Z > n) =
P (Z = n+ i, Z > n)

P (Z > n)

= pqi−1 = pZ(i)

� Example: number or loops until exiting

� Number of failures until the �rst success � modi�ed geometric distribution

3.3.6 Poisson RV

� RV such as �no. of arrivals in an interval (0,t)�

� The Poisson distribution can be derived as a limiting case to the binomial distribution as the
number of trials goes to in�nity and the expected number of successes remains �xed.

� Poisson RV can be used as an approximation of the binomial distribution if n is su�ciently
large and p is su�ciently small.

� There is a rule of thumb stating that the Poisson distribution is a good approximation of
the binomial distribution if n is at least 20 and p is smaller than or equal to 0.05, and an
excellent approximation if n ≥ 100 and np ≤ 10

� In a small interval, Dt, prob. of new arrival= lDt.

� pmf b(k;n, lt/n) [Binomial]
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� CDF B(k;n, lt/n)=
∑
k b(k;n;

λt
n
)

Poisson Process

� Poisson process is a stochastic process which counts the number of events and the time that
these events occur in a given time interval.

� The number of arrivals in the given time interval is a Poisson RV.

� The time between each pair of consecutive events has an exponential distribution with pa-
rameter l. (prove)

� Sum of two Poisson RV is a new Poisson RV.

� Poisson process is used as a typical arrival process (call arrival, Requests for individual
documents on a web server, packet arrival, . . . .)

3.4 Probability Generating Function (PGF)

� Letting, P(X=k)=pk , PGF of X is de�ned by

� Can be used to estimate the moments of any RV.

� Theorem 1: If two RVs have the same PGF, then they have the same distribution
( One-to-one mapping: pmf (or CDF) ⇔PGF)

� Theorem 2: The PGF of a sum of RVs is the product of their individual PGFs

Example: proving the sum of two independent Poisson RV is another Poisson RV
Proof:
the PGF od Poisson Random Variable can be expressed as

GX(z) =
∑∞
k=0 pkz

k =
∑∞
k=0

e−λt(λt)k

k!
zk = e−λt[eλtz] = eλt(z−1)

Since the PGF of the sum of two random variables (X and Y) is the product of their individual
PGFs

then the PGF of the sum (M) can be expressed as
GM(z) = GX ∗GY = eλt(z−1) ∗ eηt(z−1) = e(λ+η)t(z−1)

Note that GM(z) has the same form of Poisson RV PGF. Then M is a Poisson RV with
parameter (λ+ η)
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3.5 Maximum of two RVs

Let Z=max{X,Y}

PZ(z) = P (max[X, Y ] < z)

= P (X < z, Y < z)

= P (X < z)P (Y < z)︸ ︷︷ ︸
by independence

� The CDF of the maximum is the product of the CDF of involved independent Rvs

� Determine the distribution of the minimum of two RVs.

3.6 Homework

� Prove that geometric distribution is memoryless.

� Derive the PGF of discussed Rvs

� Show that Sum of two Binomial RVs is another Binomial distribution.

� Show that the min of two geometric RV is another geometric RV.
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